Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2024-06-06
2024-09-03
2024-07-09
Abstract—In the past two decades, automotive manufacturing has witnessed some advancements, especially for vehicle handling and active safety systems (ASSs). Progressively, more controllers have been designed to deal with linear and non-linear systems. However, studies and research on integral terms in linear quadratic regulators are scarce. In this paper, linear controllers, including the proportional integral derivative (PID) and linear quadratic integral (LQI) using direct yaw control (DYC), have been designed and compared. With the interference of external disturbances and variation of the friction coefficient, the result indicates that the LQI controller produces a significant improvement in the vehicle slalom manoeuvre system compared to the PID controller.