Volume 3, No. 3, July 2014

General Information

  • ISSN: 2278-0149 (Online)
  • Abbreviated Title:  Int. J. Mech. Eng. Robot. Res.  
  • Editor-in-Chief: ​Prof Richard (Chunhui) Yang, Western Sydney University, Australia
  • Associate Editor: Prof. B.V. Appa Rao, Andhra University; Prof. Ian McAndrew, Capitol Technology University, USA
  • Managing Editor: Murali Krishna. B
  • DOI: 10.18178/ijmerr
  • Abstracting/Indexing: Scopus (since 2016), CNKI, Google Scholar, Crossref, etc.
  • E-mail questions to IJMERR Editorial Office.

Submissions

Please send your full manuscript to:

ijmerr@vip.163.com


Useful Documents

Paper Template

Copyright Transfer Agreement

Application For Reviewers

Contact us

International Journal of Mechanical Engineering and Robotics Research
E-mail: ijmerr@vip.163.com

Weld Bead Geometry Prediction Model by Design of Experiments for Mild Steel

Uma Gautam and Vipi2
1.Department of Mechanical and Automation Engineering, GGSIPU, Delhi, India
2.Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi, India

Abstract—Submerged Arc Welding (SAW) is a common arc welding process and the basic characteristics of this process are high deposition rate, ability to weld thick sections with ease and longer weld runs because of the same reason it is used to join thick and heavy sections. The stress carrying capacity of a weld determined by weld bead geometry. The models were developed in terms of Arc Voltage, Arc Current, Travel Speed, nozzle to Plate distance obtained experimentally. The Experimental data has been used to develop the models with the aid of regression analysis. The effects of cutting variables (Arc Voltage, Arc Current, Travel Speed, nozzle to Plate distance) on Bead Height, Bead Width, Bead Penetration have been investigated by Central composite Design

Index Terms—Submerged Arc Welding (SAW), Central composite design, Arc current, Travel distance, Arc voltage, Weld bead geometry

Cite: Uma Gautam and Vipin, "Weld Bead Geometry Prediction Model by Design of Experiments for Mild Steel," International Journal of Mechanical Engineering and Robotics Research, Vol. 3, No. 3, pp. 517-527, July 2014.