Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2025-01-20
2025-01-09
2024-12-18
Abstract—Autonomous vehicles (AV) have gained ground in recent years. However, they still use the principles of traditional vehicles in terms of design and operation. This work proposes an adaptive transportation system based on autonomous POD vehicles, and investigates a major aspect of its operation. The PODs used in the proposed system can be considered a variant version of existing autonomous PODs. However, their unique design and concept of operation enable them to operate more efficiently than existing PODs. The proposed system involves docking and undocking of these PODs based on passengers’ demands. However, during the merging process, undesired collisions could happen due to unforeseen conditions. If the approach speed is high enough, it could induce damage to the vehicles. This work investigates some possible scenarios of the potential collisions that could happen between these PODs during the merging process. Based on these scenarios, the allowed safe approach speeds are determined. These speeds can help in designing the operation of the proposed transportation system. Some of the variables considered in this work include; type of body material, shell thickness, impact speed, stress, deformation, and absorbed energy. The safe design merging speeds have been determined under different conditions.