Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2024-06-06
2024-09-03
2024-07-09
Abstract—In this paper, a framework architecture that combines grasping with adaptive locomotion for modular snake robots is presented. The proposed framework allows for simulating a snake robot model with locomotion and prehensile capabilities in a virtual environment. The simulated robot can be equipped with different sensors. Tactile perception can be achieved by using contact sensors to retrieve forces, torques, contact positions and contact normals. A camera can be attached to the snake robot head for visual perception purposes. To demonstrate the potential of the proposed framework, a case study is outlined concerning the execution of operations that combine locomotion and grasping. Related simulation results are presented.