Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2024-06-06
2024-09-03
2024-07-09
Abstract—In this research, Particle Swarm Optimization (PSO), Differential Evolution (DE) Algorithm and Searching Space improving DE & PSO Algorithm will be used for inverse kinematic solution of a 7-degree-of-freedom (DOF) serial manipulator. Firstly, the DH parameters of the robot manipulator are created, and transformation matrices are revealed. Afterward, the position equations are derived from these matrices. The end-effector position in the working space of the robotic manipulator is estimated using optimization algorithms. These algorithms were tested with two different end-effector motion scenarios. The first scenario uses 100 randomly selected points in the working space. The second scenario uses a spline trajectory including 100 points in the working space as well. According to the results, DE Algorithms has performed much more efficient than standard PSO Algorithms. The DE & PSO Algorithm using Searching Space Improvements can be used to optimize robots control easily.