Short Title: Int. J. Mech. Eng. Robot. Res.
Frequency: Bimonthly
Professor of School of Engineering, Design and Built Environment, Western Sydney University, Australia. His research interests cover Industry 4.0, Additive Manufacturing, Advanced Engineering Materials and Structures (Metals and Composites), Multi-scale Modelling of Materials and Structures, Metal Forming and Metal Surface Treatment.
2025-04-27
2025-04-02
2025-02-28
Abstract—The growing worldwide use of 3D printing techniques requires the support of scientific research to improve the process and the quality of 3D printed parts. In a previous work, the authors developed a computer code that predicts the temperature evolution and the adhesion at any location of a 3D part produced by Fused Filament Fabrication (FFF). Here, a 3D printed scalpel handle is used as a case study to evaluate the usefulness of the simulation tool in the definition of the printing conditions. Considering a printer with a convection oven, the best built orientation is selected. The results demonstrate the complexity of the heat transfer mechanisms that develop during the deposition stage. For this particular case study, the importance of using a 3D printer fitted with a convection oven is demonstrated, as its positive effect on adhesion cannot be compensated by tuning other process parameters.