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Abstract—In recent years, Cable-Driven Parallel 

Manipulators (CDPM) become more and more interesting 

topics of robot researchers due to its outstanding 

advantages. Unlike traditional parallel robots, CDPMs use 

many flexible cables in order to connect the robot fixed 

frame and the moving platform instead of using 

conventional rigid links. Since cables used in CDPM is very 

light compared to rigid links, its workspace can be very 

large. Besides, CDPMs are often enhanced load capacity by 

adding redundant actuators. They also help to widen the 

singularity-free workspace of CDPM. On the other hand, 

the redundant actuators produce the underdetermined 

system i.e. the system has non-unique solutions. Moreover, 

the elasticity and bendability of flexible cable caused by self-

weight and external forces act on it, resulting in the 

kinematic problem of CDPMs are no longer related to the 

geometric problem. Therefore, the system of CDPM become 

non-linear when the deformation of cable is considered. In 

this study, we introduce the simplified static cable model 

and use it to linearize the static model of redundantly 

actuated CDPM. The algorithm to solve the force 

distribution problem is proposed in section 4. The static-

workspace and the performance of those are analyzed in a 

numerical test.  

Index Terms—cable-driven parallel manipulator, CDPM, 

static analysis, sagging cable, force distribution, workspace 

 

I. INTRODUCTION  

The coupling between the moving platform and robot 

fixed frame of cable-driven parallel manipulators (CDPM) 

has fundamental difference from the one of conventional 

parallel robot. Therefore, approaches used to solve force 

distribution problem in fixed-links parallel robot are 

unapplicable in CDPM. Based on recent scientific papers 

on them, there are many issues that are still leaving 

behind or not included generally. The main problem of 

CDPM is caused by the high elasticity and bendability of 

flexible cable. The force distribution problem becomes 

more complex since the mass of cable is also taken into 

account. Erika et al [1] introduced the forward kinematic 

model for a 4-CDPM. Based on this model, Samir et al [2] 

proposed collision-free path-planning for the same 
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configuration of CDPM. All of them have practical 

applications but the positioning accuracy of this kind of 

model will quickly decrease if CDPM is applied to the 

larger workspace. Perfectly straightly stress the cable is 

impossible due to their self-weight and it’s easy to see that 

the length of the cable is closely dependent on the tension 

force caused by an actuator and load of moving platform. 

Therefore, the kinematic problem of CDPM doesn’t 

make sense without the presence of static or dynamic 

problems. Han et al [3] present the effect of sagging cable 

on the static and dynamic behavior of CDPM and 

evaluate the pose error of end-effector due to sagging 

effect in a static state in. They also deal with the effect of 

cable stretching on system accuracy. Their other study [4] 

completely established the non-negligible mass cable 

model in order to provide a full kinematic model of 

CDPM with the presence of both sagging and elasticity. 

Merlet and Jean-Pierre [5, 6] determined the solution of 

the forward kinematic problem by using a heuristic 

interval analysis approach in a static state. Furthermore, 

this method also takes care of the overconstrained system 

where the number of cables of CDPM greater than its 

degree of freedom. However, it produces large and 

unbalanced forces distribution that is illustrated in their 

experiment section. 

Another problem that cannot be ignored is redundant 

actuators in CDPM. In order to increase the load capacity 

and completely restrain all degrees of freedom of the 

moving platform [7], many redundant actuators often 

present in the system, resulting in the overconstrained 

system. Furthermore, the force distribution problem of 

redundant resolution CDPM has a non-unique solution. 

Hence, there was more likely exist set of non-negative 

tension force and the valid workspace of these kinds of 

system are larger. However, Tobias et al [8] pointed out 

that solving these systems are usually expensive in 

computational time. To the best of our knowledge, 

numerical approaches are usually applied in order to 

extract the approximated solution from the undetermined 

system. Clément et al addressed the force distribution 

problem in the redundantly actuated system. The unique 

solution introduced in Ref. [9] is obtained by using a non-

iterative algorithm while minimizing the 4-norm of the 

relative force. Though, this method is not applicable to the 
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systems that have more than one redundant actuator, in 

our case is 2. Linear programming employed in Ref. [10] 

to find safe tension distribution is presented. Hui et al [11] 

proposed the algorithm to determine the optimal force 

distribution based on quadratic programming. Andreas [12] 

introduced the closed-form algorithm based improved 

force distribution. 

In this paper, the simplified static cable model is 

presented by linearizing the sagging cable model of Irvine 

[13] in terms of analysis. Thereby, the static problem of 

CDPM is coordinated with the new cable model to 

produce a simpler static model that can be solved in real-

time. In section 4, an algorithm used to obtain the optimal 

set of cable tension forces is introduced. The static-

workspace is also analyzed in the simulation section with 

a given certain configuration. The validation of the 

proposed model is also considered. 

II. STATIC ANALYSIS OF CABLE DRIVEN PARALLEL 

MANIPULATORS AND SAGGING CABLE MODEL 

Our CDPM used in this study is illustrated in Fig. 1. 

This figure shows the spatial CDPM contained two 

redundant actuators. This study just takes care of the 

active segment of cable that traces from bear to the 

moving platform since the cable segment from an actuator 

to a pulley is perfectly vertical and its length is almost 

constant. One more assumption is that the friction on the 

bears is ignorable. Fig. 2 illustrates the geometric problem 

of a general CDPM model that is also treated as the 

kinematic model without the presence of sagging and 

elasticity. Let {W} be the reference frame located in the 

robot fixed frame. From now on, any vector without frame 

denotation is considered in the reference frame. Let {R} = 

(P(t), (t)) be the moving platform frame attached on its 

body where P = [xP yP zP]T and  = [P P P]T are the 

position of the center of mass of moving platform and the 

its orientation respect to {W}. In this study, the ideal static 

state of CDPM is taken into account which leads to the ith 

cable of CDPM perfectly lies in the plane that defined by 

the cable frame {A}. This frame is also illustrated in Fig. 

2. Let Ai and Bi be the point where ith cable R
ib attached to 

robot fixed frame and moving platform respectively. R
ib is 

the constant vector demonstrates the position where the 

reaction force of tension Ti = [Txi Tyi Tzi]T exerts on the 

end-effector respect to {R}. bi can be determined by 

employing Eq. (1). 

 
T

W R

i R i b R b (1) 

Where WRR is the rotational matrix that presents the 

transformation from {R} to {W} and can be expressed as 

Eq. (2). For convenience, Cx and Sx are denoted cos(x) 

and sin(x) respectively. 
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(2) 

Vector ai can be treated as the unique solution of inverse 

kinematic problem of conventional parallel robots. 

According to Fig. 2, it can be given by Eq. (3). 

i i i i i    a P b A B A
 

(3) 

 

Figure 1. The simulated CDPM with 2 redundant actuators used for 
checking validation of proposed method. 

 

Figure 2. The geometric problem of general CDPM. 

However, ai cannot be considered as the solution of 

inverse kinematic problem of CDPM due to the flexible 

links that are used to connect between robot’s fixed frame 

and moving platform. As discussed, the length of cable 

just can by exactly determined if static or dynamic 

problems take part in. Meanwhile, the exact value of 

length of suspended cable is difficult to extract since its 

natural complexity. However, the approximated solution 

of Eq. (3) for CDPM can be determined via the realistic 

sagging cable model presented by Irvine. This model has 

been proven usability through several applications such as 

cable-stayed bridge, improving analysis of CDPM, ship 

anchor analysis, etc. cable’ mass and elongation are also 

taken into account in Irvine’s sagging cable model. Let 

consider a certain cable illustrated in Fig. 3 has one 

extremity fixed to A, the other one B is free and affected 

by the external force TA = [TA
x TA

z]T. The reaction force 

at A is denoted as TA’=[TA’x TA’z]T. Let L be the 

unstrained length of the cable. The , E, A are the linear 

density, Young’s modulus, and ordinary cross-section 

area of cable respectively. The Cartesian coordinate of B 
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= [xB
A

 zB
A]T respect to {A} can be given by Eqs. (4) and 

(5). 

1 1sinh sinhA

AA A A
xx z z

A A

x x

TT L T T gL
x

EA g T T





 
    

      
    

B
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     

 

B  (5)

 

 

Figure 3. Static equilibrium of a certain cable with the presence of 
sagging. 

It should be noted that the exact solution TA cannot be 

extracted directly from (4) and (5). Let WRAi be the 

rotational matrix that presents transformation from {Ai} to 

{W} and can be expressed as Eq. (6). 

0

0 0 1

i i

i

W

A

C S  
  

 
R  

(6) 

Wherei can be defined by Eq. (7). 

 tan 2 ,
i ii y xa a a 

 
(7) 

If only the tensions of cables and load of the moving 

platform are treated as the external forces exerted on the 

moving platform then the static equilibrium can be 

presented by Eqs. (8), (9). 
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
 

(9) 

Since the relationship between length of cable and a 

force exerts on it, the solution of static problem of general 

spatial CDPM can be expressed as in Eq. (10). 

 
1

i i

i i

T
n

A A

x z
i

T T


 
    

(10) 

III. LINEARIZING THE RELATIONSHIP BETWEEN TA
X AND 

TA
Z 

According to Irvine’s sagging cable model, a unique 

point BA exists and satisfies the given a certain set of 

parameters: L, Tx, Tz, , E and A. If the parameter 

described material of cable, L and Tx is fixed then it can 

be stated that the Eq. (11) is also the bijective function. 

:
T T

A A A

d x zf L T T      B ς  
(11)

 

 

Where ς = [ρ E A]T is the vector that denotes properties of 

material that used in cable and Bd
A is the desired position 

of the free extremity of considered cable. However, in the 

inverse kinematic problem of CDPM, L is unknown 

which leads to the problem has non-unique solution. In 

this section, the relationship between TA
x and TA

z with 

varies L will be tried to figure out in order to reduce the 

number of variables in our system. This relation is 

proposed by Irvine in [13] but this is just applicable for 

inextensible cable. However, Dinh Quan et al [14] prove 

that the cable elastic has a small change in shape of cable 

as long as TA<<EA. In this study, the system is assumed 

that TA<<EA. Besides, the nonlinear part of the 

relationship between TA
x and TA

z is located where TA
x 

belongs to the open interval (0, Txmin). Thereby, this 

relation can be linearized if the condition TA
x ≥ Txmin was 

satisfied. Based on these assumptions, the relationship 

between TA
x and TA

z can be given by Eq. (12). 

A A

z xT a T b    (12)
 

 

According to Eq. (12), aπ and bπ depend on [Bd
A ς]T. 

On the other hand, since TA<<EA, a and b now only 

depend on [Bd
A ρ]T. 

Let m and α be the magnitude and heading of tension 

force TA acts on free extremity BA. β is the heading of 

positioning vector Bd
A and D is its L2-norm respect to 

{A}. The heading of TA can be expressed as Eq. (13). 

1tan
A

z

A

x

T

T
   
  

   
(13)

 

According to the relationship between TA
x and TA

z 

given by Eq. (12), the heading of TA can be rewritten as 

Eq. (14). 

1tan
x

b
a

T


   

  
 

 
(14)

 

Let consider the tension force TA exert on free 

extremity BA and its reaction force TA’ exerted on the 

other one. We know that if the cable is perfectly straight 

then TA + TA’ = 0. In reality, it’s impossible due to weight 

of the cable itself, resulting in the change of z-axis 

component of tension along the cable. This explains the 

phenomenon of not being able to straightly stress the 

cable. Meanwhile, if TA
z approach to infinity then weight 

of the cable can be ignored, resulting in that α approaches 

to β. This expression can be given by Eq. (15). 
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lim
zT

 


  (15) 

Based on the Eq. (12) and Eq. (14), it can be stated that 

if TA
z approaches to infinity and aπ is non-zero then α 

approaches to tan-1(aπ). This express can be given by Eq. 

(16). 

 1 1lim lim tan tan
z xT T

x

b
a a

T
  

 

  
     

  

 (16)

 

From Eqs. (15) and (16), it can be proved that if Eq. (15) 

is considered as the relationship between TA
x and TA

z then 

the parameter aπ in the Eq. (12) can be formulated by Eq. 

(17). 

 tana   
(17) 

According to Fig. 3, Let M be the point located in cable 

where the tension force exerts on it is parallel to the chord. 

In statics, since the resultant force at each point along the 

cable is affected only by tension cable and gravitational 

force, the resultant force component along x-axis is not 

changed over the length of cable. The resultant force 

component along z-axis is combined between tension 

cable and its weight, and this component at M can be 

given by Eq. (18). 

 tanA A

z xT T
M

 (18)
 

Thereby, the parameter bπ in Eq. (12) depends on the 

weight of cable segment surrounded by M and B. It can 

be stated in Eq. (19). 

b gL MB  (19)
 

Where LMB is the length of cable segment MB. However, 

determining exactly LMB is inefficient by its 

computational time. Furthermore, in CDPM problems, 

the presence of sagging based on adjusting the cable 

length not only reduces tension but also reduces cable 

stiffness if the distance between M and chord is large 

enough. Therefore, the sag of cable should not be large. 

In fact, the sag depends on T. If our assumption Tx ≥ 

Txmin is satisfied and Txmin is large enough, the shape of 

cable is approximated flat parabola then LMB ≈ D/2. Thus, 

the Eq. (12) is completely simplified to Eq. (20). 

 tan
2

z x

gD
T T


   (20)

 

IV. FORCE DISTRIBUTION ON THE OVERCONSTRAINED 

CABLE DRIVEN PARALLEL MANIPULATORS 

The couple of Eqs. (8), (9) present the force distribution 

of CDPM in a static state. Its solution is easily extracted 

by applying it for a fully constrained system which 

usually links the end-effector and robot fixed frame by 6 

cables. However, as previous discussion, this problem 

becomes more complex with the presence of redundant 

actuators. In this section, we introduced a procedure in 

order to obtain a feasible set of tension for 

overconstrained CDPM. By substituting Eq. (20) to Eqs. 

(8) and (9), the number of variables in the static problem 

is reduced and these equations can be expressed as Eq. 

(21). 

x  W t b 0  (21) 

   

   

   

       

       

       

1 1

1 1

1 1

1

1

1

1 1

1 1

1 1

cos cos

sin sin

tan tan

tan sin tan sin

cos tan cos tan

sin cos sin cos

n n

n n

n n

n

n

n

y z y n z n

z x z n x n

x y x n y n

b b b b

b b b b

b b b b

 

 

 

   

   

   

  
 

  
 
 

  
    
 
     

W

 

(22)

 

Where W presents the wrench matrix given by Eq. (22), 

tx = [ TA
x1 TA

x2 … TA
xn] is a vector of cable horizontal 

force components represented in {A}, and b is a 

complement of the static model and it can be obtained by 

employing Eq. (23). 

1 1 1

0 0 0
2 2 2i i

T
n n n

i i y i x

i i i

g g g
D mg Db Db

  
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 
   
 

  b

 

(23) 

The particular solution tx of Eq. (21) may determine by 

finding the pseudo-inverse matrix of W, but this may 

violate the previous assumption Txi ≥ Tximin and the worst 

case is Txi < 0. The stiffness matrix is taken into account 

to tackle this problem in many research [3,4]. However, a 

disadvantage of this method is high computational time. 

Therefore, in the very next step, the general solution of Eq. 

(21) will be determined first and a simple searching 

technique is employed to determine a feasible particular 

solution. Firstly, an arbitrary particular solution tx0 = 

[ TA
x10 TA

x20 … TA
xn0] is obtained by using the least-

squares method. The general solution of Eq. (21) is given 

by Eq. (24). 

0x x t t Nλ  (24) 

Where N is the 6xn matrix that presents the orthonormal 

basis for the null space of H and value of tx depends on a 

vector λ = [λ1 λ2 … λn-6]. To ensure that cable tensions 

force is positive, the necessary condition is TA
z ≥ 0 that 

must be satisfied. Thus, there also has condition defined 

by Eq. (25).  

 2tanA

xT gD    (25) 

However, it does not guarantee that Eq. (22) is valid. 

By this reason, the sufficient condition is introduced and 

given by Eq. (26). 

 min min

gD
,

tani i

i
x x x x adj

i

T T





  t t

 
(26)

 

Where txmin = [ TA
x1min TA

x2min … TA
xnmin] is the allowable 

minimum horizontal component cable tension. Txi/adj is 

the adjusting force to maintain the accuracy of Eq. (22). 

By employing the Eq. (26) and Eq. (24), the feasible 

solution set Θλ is founded and defined by n-hypercube in 

. 

To be able to easily illustrate, this procedure is applied 

to our simulated system illustrated in Fig. 1 with a given 

certain configuration. Since our system contains 2 
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redundant actuators, Θλ in this case is a polygon related to 

 and that is illustrated in Fig. 4. Each line represents the 

equation (26) with #i represents ith cable. 

 

Figure 4. Feasible solution for the certain case of 2-redundant 

actuators CDPM. 

According to Fig. 4, the polygonal boundary of Θλ is 

determined by the vertex set Ωπ = {λ1, λ2, …, λh} where h 

is the number of vertices. In the case illustrated in Fig. 4, 

h = 4. However, a feasible particular solution tx cannot 

directly be determined from Θλ since this set is defined as 

preimage of feasible tension force set Θt. Thus, Θλ need to 

be transformed to Θt via Eq. (24) in order to determine 

feasible particular solution tx later. Since Eq. (24) is an 

affine transform and Θλ is a hyper-polyhedron in  

then Θt is also a hyper-polyhedron in . In the example, 

Θλ is a polygon in  and Θt is a polygon in . Since the 

static problem is considered, the feasible particular 

solution tx can take arbitrary in Θt. However, tx with 

minimum L2-norm can be considered as optimum 

solution of our study. It can be easily obtained by finding 

the projection of origin on boundary of Θt. According to 

this procedure, all of feasible particular solution tx in the 

workspace of CDPM can be determined. In the next 

section, the static-workspace and tension force set in a 

certain case is considered. 

V. SIMULATION AND RESULTS 

In order to prove the usability of the proposed method, 

this method have been applied to our simulated system. 

This system is a spatial CDPM illustrated in Fig. 1 has 

two redundant actuators. Thereby, our CDPMs has 8 

cables that are used to link 4 poles of robot fixed frame 

and the moving platform. For convenience, it is also noted 

that the first cable and the second one is fixed at the 

bottom right pole according to Fig. 4 and they are 

numbered clockwise. Their configuration and cable’ 

properties are specified in Table I. 

TABLE I. 
 

THE CONFIGURATION OF SIMULATED CDPM.
 

Workspace
 

6m x 3m x 3m
 

End-effector size
 

0.3m x 0.3m x 0.5m
 

End-effector load
 

50 kg
 

Cable’s density
 

0.09 kg/m
 

Young’s modulus
 

3.5 GPa
 

Cross-section area of cable
 

4 mm2
 

 

Figure 5. The static-workspace of proposed CDPM with  = [0 0 0]T. 

Firstly, the static-workspace of the mentioned CDPM is 

established based on the simplified static cable model. 

Static-workspace is the set of position and orientation of 

the moving platform in that the static equilibrium Eq. (21) 

is satisfied.  Orientation constraint of {R} is  = [0 0 0]T. 

Based on numerical simulation, the moving platform is 

experienced in all workspace of it, the valid positions 

located inside the polyhedron block defined by out 

simulated data. This is illustrated in Fig. 5. Since the cable 

model is simplified and does not fully correct that lead to 

smaller valid static-workspace. However, it also has a 

trade-off in computational time, which can perform in 

real-time. It is also necessary to pay attention to the path 

planning or obstacle avoidance problem in CDPM, real-

time workspace analysis is required. According to the 

CDPM configuration in table 1 and static-workspace 

result in Fig. 5, the static-workspace can be defined by a 

frustum of a rectangular pyramid with Oz as the axis of 

symmetry. The large base whose size is approximated 1 x 

2.4 m2, while 2.2 x 4.6 m2 is area of the small base. The 

distance between two bases is 2.6 m where the small base 

located at z=0. Based on current constraints, all feasible 

tension sets in obtained static-workspace are easily 

constructed by applying Eqs. (24), (26). However, 

because of high dimensional space, the illustration of 

them is limited. Thus, the minimum tension force in each 

feasible tension set is considered and obtaining it by 

applying full procedure in section 4. After archiving the 

minimum tension force at this layer by using a numerical 

approach, these data are continousized and smoothed by 

employing the non-linear least-square fitting algorithm.  

Thereby, Fig. 6 indicates the minimum tension force of 

each cable at each valid position with zP = 1.8 mm in 

static-workspace. According to the result in Fig. 6, the 

layer with zP = 1.8 mm has an approximated area of 1.8 x 

3.8 m2. In fact, tension force of a particular cable is high 

when the end-effector approach to the pole where it is 

fixed to and vice versa. Meanwhile, because of non-

symmetric workspace and the limitation of simplified 

cable model, the maximum of minimum tension forces in 

the mentioned layer do not approach the pole where it is 

fixed to, they just approach to near them. Besides, the 

symmetric in force distribution is still reserved. In order to 

perform in all of these positions, Txmax should not be 

smaller than 250N. 
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Figure 6. Force distribution along the x-axis respect to {A} in static-
workspace with zP = 1.8 mm. 

All of simulations have been done on the PC powered 

by Intel® core™ I3-2100 processor 3.10MHz. The 

simulation program was written in both Java and 

MATLAB, and every presented data chart in this paper 

was plotted in MATLAB. The results show that our 

proposed method has high-efficiency computational time. 

By using the code performance measurement of 

MATLAB, the computational time of method is 

determined. It takes an average of less than 1ms to find 

out feasible solution.  

VI. C  

In this work, the simplified static cable model was 

introduced in terms of analysis. Based on that result, the 

force distribution problem of spatial redundantly actuated 

CDPM in an ideal static state was established. By fully 

applying the proposed method in section 4, the minimum 

set of tension force with a certain configuration is 

evaluated. The static-workspace is also considered and 

experimented in a certain case. Our introduced cable 

model and proposed method to solve the distribution force 

problem is low computational time and can perform in 

real-time. However, due to the limitation caused by 

constraint from Eq. (25), the valid static-workspace is 

restricted and smaller than in reality. That inspired us for 

future works: 
- Establish the relationship between LMB and Tx 

instead of approximating LMB ≈ D/2, resulting in the 
valid static-workspace nearly approach to the real one. 

- Quasi-static with low-speed trajectory will be 
considered and that will produce new challenges in 
force distribution problems. Besides having to 
minimize tension force, we also consider to the force 
distribution over time for continuous and smooth. 
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