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Abstract— This paper proposes feedback linearization 

control (FBLC) based on function approximation technique 

(FAT) to regulate the vibrational motion of a smart thin 

plate considering the effect of axial stretching. The FBLC 

includes designing a nonlinear control law for the 

stabilization of the target dynamic system while the closed-

loop dynamics are linear with ensured stability. The 

objective of the FAT is to estimate the cubic nonlinear 

restoring force vector using the linear parameterization of 

weighting and orthogonal basis function matrices. 

Orthogonal Chebyshev polynomials are used as strong 

approximators for adaptive schemes. The proposed control 

architecture is applied to a thin plate with a large deflection 

that stimulates the axial loading thus, the plate behaving 

nonlinearly. The governing partial differential equation for 

the piezo-plate system is transformed into definite ordinary 

differential equations (ODEs) using the Galerkin approach; 

hence, multi-input multi-output ODEs are obtained. 

Simulation experiments are performed to verify the validity 

of the proposed control structure.  

 

Index Terms—nonlinear vibrations, feedback linearization, 

smart plates, piezo-patches 

 

I. INTRODUCTION 

Much attention has been paid to applications of smart 

materials in active vibration control of flexible structures 

such as cables, beam-like structures, and plate-like 

structures and so on. The interesting point is that they are 

configurable and adaptable if external stimuli are applied. 

They can behave as actuators or sensors depending on the 

external motivator. In view of the above, they are 

extensively used in vibration suppression of flexible 

structures; however, the design of a suitable control 

system is still required to stabilize the structure vibration. 

The task of the control system could be difficult if the 

vibrating structure undergoes nonlinear vibrations since 

the conventional linear controllers cannot be useful in this 

case. Therefore, this work is concerned with the design of 

a nonlinear control strategy that is sufficient to regulate 
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the plate motions. The PDF for the vibrating plate is 

transformed into multi-ODEs using the Galerkin 

approach, considering the effect of axial stretching 

resulted from large deflection behavior. For more details 

on the modelling of plate dynamics, see, e.g. [1-6]. 

There are miscellaneous control schemes for 

attenuation of the structure vibrations [7-13]. However, 

what important here is design of a control structure that 

can stabilize the piezo-plate system under uncertain 

modelling. In general, there are two categories of control 

strategies that deal with the control of uncertain dynamics 

which are adaptive control and robust control. The core 

of this work is focused on adaptive approximation 

technique that attempts to approximate the target 

uncertain parameter/term in terms of weighting and basis 

function matrices. Then the weighting coefficient matrix 

is updated based on Lyapunov theory (see [14-20] and the 

references therein for more details). Besides, one of the 

powerful tools to deal with nonlinear dynamics is 

feedback linearization control. It selects a nonlinear 

control law for controlling the dynamic system while the 

closed-loop dynamics is linear with guaranteed stability.  

As a result, this paper suggests FAT-based FBLC for 

vibration suppression of a nonlinear plate with piezo-

patches. One limitation of FBLC is that it requires 

calculation of inverse mass matrix and modal acceleration 

that complicates the control task. Therefore, we assume 

here that the mass matrix is known, since it can easily be 

measured for plate structure, while the coupled 

nonlinearity resulted from bending-axial stretching effect 

is unknown. The nonlinear restoring force vector is 

estimated using the linear parameterization of weighting 

and basis function matrices. Orthogonal Chebyshev 

polynomials are used as strong approximators for 

adaptive schemes. Simulation experiments were 

performed using MATLAB/SIMULINK package to 

verify the proposed control architecture. 

The remainder of the paper is organized as follows. 

Section 2 introduces nonlinear dynamic modelling of the 

smart plate while the control architecture is presented in 
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Sect. 3. Simulation results and discussion are described in 

Sect. 4. Section 5 concludes. 

II. NONLINEAR DYNAMICS OF SMART PLATES 

In this section, a detailed derivation for a piezo-

electrically thin with axial stretching is presented in Fig. 

1. Let us consider the following assumptions [21]:  

1. The plate has a uniform thin thickness. 

2. The attached piezo-patches are of neglected 

dynamics. 

3. The coupled bending-axial loading is considered. 

 

Figure 1.  A simply supported thin plate with attached piezo-transducers. 

Based on [1, 22, 23], the PDF for the target smart plate 

can be expressed as 
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where ),,( tyxw  is the transverse deflection for the target 

plate, F  is the Airy's stress function, m  is the mass 

density of the plate, h  refers to the plate thickness, p  is 

the external transverse load per unit area, (.)pM  is the 

piezo-actuator external moment per unit length, D  is the 

flexural rigidity, E  is the Young's modulus, and v  is the 

Poisson's ratio. Using the Galerkin technique to expand 
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Substituting (2) into (1), multiplying (1a) and (1b) by 

ij  and tu  respectively and integrating the equations 

across the area of the plate to get 

dxdyyx
y

M

x

M
LqapKqqM

ij
nm nmsr

a b
pypx

rsmnijmnrsijmnijmnmnmnij
),(

, ,,, 0 0

2

2

2

2

   


















 
(3a) 

 

sr lknm

mnkltumnklrsturs BqqAa

, ,,,

 
(3b) 

where  

kji i j k,,

(.)(.) , 

ijijmnmnij mdxdymM      (Orthogonality property)    

  ijijmnmnij kdxdyM 4  (Orthogonality property)    

 dxdxpp ijij  , dxdy
Eh

A tu
rs

rstu 






4

, 

dxdy
yxyxyx

B tu
klmnklmn

mnkltu 


 































2

2

2

222

 

dxdy
yxyxyxxy

L ij
mnrsmnrsmnrs

rsmnij 









































 

22

2

2

2

2

2

2

2

2

2  

Substituting (3b) into (3a) leads to  

          dxdyyx
y

M

x

M
pqqqqkqm

ij

a b
pypx

ijijijijijij
),(),,(

0 0
2

2

2

2

.....
   























 
(4) 

Equation (4) includes a linearized stiffness term 

represented by the second term while the nonlinear 

restoring force is represented by ij . Let us reformulate 

the right-hand term associated with piezo-moments 

assuming piezoelectric charge constants in x and y 

directions, thus 
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where   is a constant, (.)H  is a Heaviside unit step 

function and )(tva  is the piezo-actuator voltage. Taking 

the second derivatives for pxM  and pyM  with further 

manipulations to obtain 
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and aN  refers to the number of piezo-actuators used that 

is assumed equal to the number of piezo-sensors (i.e., 

collocated piezo-transducers). As a result, the right-hand 

side of (4) becomes 
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Using Dirac-Delta function property 
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Equation (4) can be re-written as  

,ijijijijijijij udqkqm           Ni ,...,2,1    

and Mj ,...,2,1  
(9) 

where 

 
a b

ijij dxdyyxtyxptyxd
0 0

),(),,(),,(  , 





aN

k

akijkkij tvtu

1

)()(   

The above equation can be represented in matrix form 

as 

udσKqqM   (10) 

where 



























































































NMNMNMNMNM u

u

d

d

k

k

m

m













 1111111111

,,,

0

0

,

0

0

udσKM





 

At this stage, it is suitable to consider the damping 

effect where a viscous damping term is used 

udσKqqCqM    (11a) 

with 



















NMc

c







0

011

C  
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III. CONTROL ARCHITECTURE 

As aforementioned, the FBLC strategy attempts to 

design a nonlinear control law such that the closed-loop 

dynamics are linear, and hence the intuitive controller can 

be selected as [24,25] 
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definite matrix. Substituting (12a) into (11) results in the 
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where ).̂((.)).~(   and lRε  represents the 

modelling/approximation error. Equation (13) is basically 

a linear closed-loop dynamics (if it is without the robust 
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term )sgn( xPBκ
TT
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the FAT, the mass and nonlinear matrices/vectors can be 
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And the closed-loop dynamics (13) are 
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where  llR (.)Φ  is the adaptation matrix.  

Theorem 1. The dynamics of the vibrating plate 

modelled in (11) with the control law, closed-loop 

dynamics and the associated updating laws described in 

(16)-(19) are stable in the sense of the Lyapunov theory. 

 

Proof.  

Let us select the following Lyapunov-like function 

along the closed-loop dynamics (18) 
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Substituting (19) into above equation to get  
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Equation (25) is stable in the sense of Lyapunov theory. 

Remark 3. A good way for selecting the positive 

definite matrices P  and Q  in (12b) is choosing Q  first 

then solving (12b) to determine P  for a given A . If the 

produced P  is positive definite, then the system stability 

is ensured. 

IV. RESULTS AND DISCUSSIONS  

In this section, a simply supported beam with 

collocated 2-piezo-patches is simulated using 

MATLAB/SIMULINK package. To motivate the 

vibration of the target plate, an impulse concentrated 

force of (5 N pulse) with period of (10 s) and pulse width 

of (1 s) is applied at the geometric center of the plate 

surface. For control purpose, the first two mode shapes 

are considered for experimental implementation since the 

high modal amplitudes occur at the low region of 

frequency response. Recalling Eq. (11a), the plate 

dynamics include a nonlinear cubic stiffness term that 

makes dynamic response complicated. The plate 

dynamics are similar to Duffing’s equation such that the 

nonlinear restoring force is a function to the modal 

displacement. In addition, jump phenomenon occurs 

clearly in the frequency response of the nonlinear plate 

structure, see [26] for more details. Table I shows the 

physical parameters and control gains used in simulation 

experiments.  

TABLE I. PHYSICAL PARAMETERS AND FEEDBACK GAINS USED IN 

SIMULATION EXPERIMENTS 

Plate 

,400mma   ,350mmb   ,3mmh   

,210GPaE   37800 mkg , 3.0v , The 

damping constants for the first two modes are 

selected as .028.0,0068.0 21  cc  

Piezo-

materials* 

,25mmap   ,25mmbp   ,25.0 mmhp   

.106 210 mNE   

Feedback 
gains** 

,22 ll IQ  ,200 llp  IK  ,50 lld  IK  

,20  ll  IΦ  ,0κ   ,2l  .15  

* For determining  , the reader can follow the work of [7]. 

** For finding the positive definite matrix P, please recall Remark 3. 

For control implementation, FAT is used as a basis for 

control formulation with orthogonal Chebyschev 

polynomials as approximators. Fifteen terms of basis 

functions are used in approximation schemes. The inverse 

mass matrix is assumed known and this can ease the task 

of controller. The cubic nonlinearities are estimated using 

the FAT scheme. The modelling error is neglected in 

simulation experiments, so the sliding term is also 

neglected. Fig. 2 and 3 show the response of modal 

amplitudes and input voltages respectively. The results 

show that the proposed controller can regulate the target 

plate system despite of the accompanied uncertainty. It 

should be noted that the number of input voltages is equal 

to the number of mode shapes. If the number of the mode 

shapes is not equal to the number of input voltages, then 

Pseudo-inverse matrix should be used to determine the 

input voltages for piezo-actuators. 

V. CONCLUSIONS 

This work designs FAT-based FBLC for nonlinear thin 

plate structures with piezo-patches. The FBLC is a 

powerful tool for control and regulation of nonlinear 

dynamic systems. However, FAT plays important role in 
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compensating for the highly coupled cubic nonlinearities 

resulted from axial stretching of the vibrating plate. One 

of the limitations of the FBLC is its requirement for 

calculation of inverse mass matrix and therefore it is 

assumed known to resolve the computational problems. 

Future work is required to deal with the following points: 

1. A comprehensive study to compare between the 

nonlinear control strategies for regulation of 

motion of plate-like structures. 

2. Extend the work to include vibration of shell 

structures with fluid interactions. 

3. Spill-over should be dealt carefully in the 

control structure, which is lost in the current 

work. 

 

Figure 2. Modal amplitude response. 

 

Figure 3.  Input control piezo-voltages.  
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