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Abstract—UAVs are now applied to various fields, from 
military missions to civilian applications. A malfunction in 

the drone’s thrust system during flights can result in 

collisions and damages of property or human injury. To 

prevent this, the tolerant control of the multicopter has been 

studied to stabilize attitude, but it tends to focus on short-

sighted management. In this paper, we propose an overall 

fault diagnostic technique for the UAV motor itself. To do 

this, we derive a model for the UAV motor in the normal 

steady-state using a nonlinear equation, which is then 

experimentally verified with 99% accuracy. We consider 

bearing friction increase, phase open, propeller broken, 

transistor open, and back EMF signal errors for 

malfunction of UAV motor, and we suggest a simple fault 

diagnosis algorithm by an analysis of the fault 

characteristics. We show the effectiveness of our diagnostic 

technique by the experimental results of the testbed and 

flight model. 

 

Index Terms—fault diagnosis, hardware-based simulation, 

modeling, multicopter, nonlinear equations, steady-state, 

UAV motor 

 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) or drones, were 

originally developed for military purposes, but these days 

they offer many civil applications such as rescue, delivery, 

leisure, etc [1]. Especially large shipping companies such 

as Amazon, DHL, and Google aim to provide delivery 

services by drones. The drone related accidents have been 

increased with its number [2]. So far, human factors have 

been the most common cause of accidents in drone flights 

[3], [4]. As automation technology advances, human 

errors will be reduced, but problems related to 

unscheduled component failure or maintenance will be on 

the rise. Some defect in the thrust system of a UAV can 

cause to fail the flights, thus it can be a threat to objects 

or people. In propulsion systems of UAVs, BLDC type 

electric motors are commonly applied since they have 

less vibration and weight than gas engines [5]. 

The multicopter, which consists of several UAV 

motors (module with integrated propeller and BLDC 

motor), has attracted a lot of attention because it is easy 

to control the attitude and it is possible to operate even if 
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one of the motor has failed [6]. Early researches dealt 

with detecting or estimating techniques for motor failure 

by monitoring the performance during attitude control of 

drones [7]-[10]. Fault isolation [11] and fault tolerant 

control [12]-[14] techniques were studied because the 

studies on fault diagnosis focused mainly on overcoming 

faults with attitude stabilization. Fault tolerant control is 

only a short-term solution, so long-term solutions such as 

life prediction of battery, structure fatigue management or 

UAV motor fault diagnoses should be studied for 

prevention of failures. For this reason, there has been 

growing interest in diagnosing the faults of the UAV 

motor itself. F. Pourpanah developed a monitoring system 

to detect possible faults of UAV motors and propellers in 

an early state [15]. A. Bondyra proposed algorithms to 

detect the occurrence of rotor fault and to determine its 

scale and type from signal processing to machine learning 

[16]. A. Benini presented an actuator fault detection 

algorithm for UAVs, based on time and frequency-

domain analysis of acceleration signals and features 

selection techniques [17]. J. Fu showed a deep-learning-

based method to accurately locate actuator faults by using 

flight data of a real UAV [18]. G. Iannace built a model 

using an artificial neural network algorithm and tested 

unbalanced blade detection of the UAV propeller with 

noise measurements [19]. Most studies about UAV motor 

faults focused on the rotor integrated with the propeller 

and did not include any analysis of the overall faults of 

the motor. On the other hand, studies on fault diagnosis 

of general BLDC motors have been variously conducted 

in the last few decades. In [20], and [21], the causes of 

motor faults are classified as the bearing, stator, rotor, 

and others. The following studies of fault diagnostics all 

used this classification. O. Moseler suggested an 

estimation technique of electrical and mechanical 

parameters for fault detection on the BLDC type of 

motors [22]. M. A. Awadallah designed two adaptive 

neuro–fuzzy inference systems (ANFIS) for fault 

diagnosis and location of stator-winding interturns in 

BLDC motors [23], [24]. He developed an intelligent 

agent based on ANFIS to automate the fault identification 

and location process, and studied a faulty performance of 

motor drives under open-switch conditions [25]. S. 

Rajagopalan proposed two novel methods using 

windowed Fourier ridges and Wigner–Ville-based 
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distributions for the detection of rotor faults in brushless 

DC motors operating under continuous nonstationarity 

[26]. B. Park presented a simple fault diagnosis scheme 

for open-circuit fault of motor drives using the measured 

phase current information [27]. A. Tashakori proposed a 

fault diagnostic technique that can identify fault type and 

the faulty switch to an inverter based on the discrete 

fourier transform (DFT) analysis of the measured line 

voltages of 3-phase drives of a BLDC motor [28]. J. Fang 

suggested an online model-based inverter fault diagnosis 

method, which can detect and identify both open-circuit 

and short-circuit damages of a single switch for buck 

converters or 3-phase full bridge inverters of BLDC 

motors [29]. Compared to general DC motors, A UAV 

motor that is affected by the propeller may have a 

different model and causes of faults. Since a precisly 

estimated model is similar to the real state, it can predict 

the output accurately and it has the advantage in fault 

diagnosis. 

This paper proposes a suitable model and a fault-

diagnosis technique using the steady state conditions for a 

UAV motor. By the steady state assumption, DC motor 

models can be simplified because derivative terms are 

removed. As a result, the parameters of the models are 

estimated more accurately and stably for steady state than 

in the transient state. Compared to the general motor 

model, the proposed model is nonlinearly related to 

angular speed and depends on the friction torque caused 

by thrust. This paper deals with overall faults that can 

occur to the UAV motors and suggests a detailed method 

to simulate the faults. The faults are classified as bearing, 

stator, rotor, and others and are analyzed based on steady 

state. We design a diagnostic algorithm for UAV motor 

faults to distinguish each fault including normal operation. 

The experimental results of a testbed verify the suitability 

of the proposed UAV motor model and show the 

effectiveness of the diagnostic algorithm. Moreover, 

hovering experiments of the hexacopter shows that the 

fault diagnosis is applicable even for the flight models. 

II. UAV MOTOR MODELLING 

In this section, a mathematical process model will be 

derived for UAV motors. First, the steady state model of 

general DC motors is summarized. The equivalent circuit 

of a DC motor is simplified based on the fact that the coil 

winding has a resistance R, a self-inductance L and an 

induced back EMF [30]. Voltage equation of DC motors 

is given by 

𝑉 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝑘𝑒ω (1) 

where 𝑘𝑒  and 𝜔 denote back-EMF constant and rotation 

speed of the motor respectively. For steady state, the coil 

current is constant and hence the rate of change of the 

coil current is zero. Hence the voltage equation reduces to 

𝑉 = 𝑅𝑖 + 𝑘𝑒ω (2) 

A generic mechanical equation of the DC motors 

consists of inertial torque, friction, and load torque. It is 

given symbolically as 

𝑇𝑔 = 𝐽
𝑑ω

𝑑𝑡
+ 𝐵ω + 𝑇𝑓 + 𝑇𝑙 (3) 

where 𝐽 is a moment of inertia of the rotor which includes 

the assembled structure, 𝐵  is a damping coefficient 

associated with the rotational system of the machine, 𝑇𝑓 is 

the static or dynamic friction torque, 𝑇𝑙  is the load torque, 

and 𝑇𝑔  is the electromagnetic torque. In the case of a 

motor, the input is electrical energy and the output is the 

mechanical energy. So the generated torque by 

electromagnetic force determines the acceleration, speed, 

and position of the rotor and it is proportional to the coil 

current [31]. In the steady state, angular acceleration 

converges to zero if there is no external torque. The 

mechanical equation of the motors can be derived as 

follows 

𝑘𝑡𝑖 = 𝐵ω + 𝑇𝑓 (4) 

where 𝑘𝑡  is the torque constant which has the same 

quantity to back-EMF constant.  

A. Nonlinear Modelling for UAV motor 

A UAV motor is equipped with a propeller on a BLDC 

motor to generate thrust. When the propeller rotates, 

thrust in the direction of the rotation axis is generated 

aerodynamically. As thrust is transmitted from the 

propellers to the vehicle, additional friction is generated 

in the motor by normal forces act on the bearings. 

Considering this additional friction in mechanical 

equations of the DC motors, this paper proposes an 

adaptive model for UAV motors. Many studies have 

verified a relationship between thrust and speed of a 

propeller in both theory and experimental results [32], 

[33]. The mathematical model of thrust can be calculated 

by 

𝐹𝑇 = 𝐶𝑇ρ𝐷
4ω2 (5) 

where 𝐶𝑇  is thrust coefficient, 𝜌  is air density, 𝐷  is the 

diameter of the propeller, and 𝐹𝑇 is the thrust. If a UAV 

motor is fixed, thrust coefficient and diameter of the 

propeller are constants. In most of the available models, 

air density is considered constant too. There are 

modelling studies in which the relationship between 

friction torque and thrust is assumed to be linear [34], 

[35]. But such models have only been theoretically 

simulated, and moreover they were not able to be verified 

experimentally. It has been experimentally proved that 

the mechanical model of bearings is complicated and 

depends on bearing types, the contact angle of balls, the 

materials and et al [36], [37]. One study has suggested the 

propeller model as a power function of speed, and 

furthermore experimental results have shown that the 

modelling is fairly accurate [38]. The equation of friction 

torque by a propeller can be expressed by 

𝑇𝑝 = 𝐶𝑝ω
𝑘 (6) 

where 𝑇𝑝 is a generated friction torque by propeller, 𝑘 is 

an exponent of angular speed, and 𝐶𝑝 can be defined as a 

proportional factor by the aerodynamic properties. 

Joining (4) with (6), a mechanical model of UAV motors 
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can be derived as 

𝑘𝑡𝑖 = 𝐶𝑝ω
𝑘 + 𝐵ω + 𝑇𝑓 (7) 

As a result, we suggest (7) as the model of UAV 

motors, which is a nonlinear equation for the steady state. 

B. Estimation of the Model Parameters of UAV Motor 

We made the testbed which consists of a UAV motor 

and electronic speed control (ESC) to experiment on the 

ground. The UAV motor includes a BLDC motor 

(sunnysky X2212) and a propeller (DJI Phantom 3-9450), 

and ESC (ZTW spider oneshot125) can control the input 

voltage to pulse width modulation (PWM). In general, 

low and middle cost UAVs use products of a similar type 

to have given hardware models. If a UAV requires a 

different range of angular speed or torque, then the 

hardware can be changed. Table 1 shows the 

specifications of the UAV motor which is used in the 

testbed. 

In this paper, the phase resistance and the motor 

constant were estimated for verification, although these 

are given as a specification. A test for an estimation of 

parameters was set to 11 equivalent points for the voltage 

range that is 4 to 11 V. Measurements of angular velocity 

and current are obtained during a steady state for 5 

minutes at each voltage point. As Fig. 1 clearly shows the 

nonlinearity of velocity-current, the proposed model 

confirmed the applicability. Levenberg-Marquardt (LM) 

method for nonlinear least squares estimation is used to 

solve (2) and (7). The standard method consists of 

minimizing the given equations: 

𝑆 =∑(𝑦𝑡
𝑗 − 𝑦𝑚

𝑗)2
𝑛

𝑗=1

 (8) 

where 𝑛 is the number of data sets, 𝑦𝑚 is a measurement 

and 𝑦𝑡  is a theoretical value which is calculated by the 

model. As a first step, the phase resistance and the motor 

constant are estimated by voltage equations. Theoretical 

voltage is calculated from the measurement of current 

and angular velocity, which can be represented by the 

following equation: 

𝑉𝑡 = 𝑅𝑖𝑚 + 𝑘𝑒ω𝑚 (9) 

 

 

 

Figure 1.  A comparison of the steady-state input voltage between the 
average measurements and estimated value from (9). 

TABLE I.  SPECIFICATION AND PARAMETERS OF THE UAV MOTOR 

Items Values Units 

DC motor dimension Ø27.5/H42.0 [mm] 

DC motor weight 56 [g] 

Phase resistance 160 [mΩ] 

Bus voltage 11.1 [V] 

Motor constant 9.74 [mNm/A] 

Maximum power 300 [W] 

Propeller dimension 240 [mm] 

Propeller weight 24 [g] 

 

 

Figure 2.  A comparison of the steady-state output current between the 

average measurements and estimated value from (10). 

The estimation result shows that a phase resistance of 

0.165 Ω and a motor constant of 9.75 mNm/A. The error 

of the parameters was respectively 3.1% and 0.1%, hence 

it was verified that it was similar to the specifications of 

the UAV motor. A 3-dimensional plot of the steady state 

data in comparison with the estimated voltage equation is 

shown in Fig. 1. In the second step, parameters of the 

mechanical equation are estimated by the equations: 

𝑖𝑡 =
𝐶𝑝

𝑘𝑡
𝜔𝑚

𝑘 +
𝐵

𝑘𝑡
𝜔𝑚 +

𝑇𝑓

𝑘𝑡
 (10) 

where 𝑘𝑡  is the estimated motor constant, 𝑖𝑡  is a 

theoretical current which is calculated from the 

measurement of angular velocity. In addition, 𝑘  is 

considered a positive integer because of simplicity when 

equations of angular speed and current are converted to 

function of voltage. This assumption was required 

because a processor predicts the output of current and 

speed of the voltage input when the state of the UAV 

motor is analyzed. Similar to the voltage equation, 

parameters of (10) estimate to use the nonlinear least 

squares by comparing theoretical current with 

measurement. The proportional factor 𝐶𝑝 , the damping 

coefficient and the dynamic friction torque are estimated 

1.692E-10 Nm/(rad/s)3 , 1.275E-7 Nm/(rad/s) and 

4.606E-10 Nm respectively. The exponent 𝑘 is estimated 

to be 3 which is closest to the positive integer. Estimated 

mechanical modeling of the UAV motor is compared 

with the measured values in the angular velocity-current 

plot, which is represented in Fig. 2. Based on the above 

estimation results, we verified the proposed modeling of 

the UAV motor for the steady-state and provided the 

basis for judging the normal driving conditions. 
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III. UAV MOTOR FAULTS DIAGNOSIS 

A. Faults Assumption and Injection 

In this section, causes of the UAV motor failure are 

surveyed, and faults are selected to verify the 

performance of diagnosis. In addition, fault injection 

methods for experimental simulation are suggested. 

Common failures of electric motor have been caused by 

bearings, stators, and rotors, as well as other factor [28], 

[29]. This classification is not optimized to the UAV 

motor, but it can help to select the fault which may occur. 

Hence major and testable situations have to be chosen for 

each of these failure areas. 

For general DC motor faults, damage to bearings are 

the most frequently encountered, which are classified into 

6 categories according to ISO 15243:2004(E). A bearing 

can be susceptible to fatigue, wear, corrosion, electrical 

erosion, plastic deformation, and fracture or cracking. 

This study assumes that these damages commonly 

increase the dynamic friction because kinetic energy is 

lost to thermal or sound energy. The coil winding can be 

damaged by mechanical, electrical, thermal, or 

environmental stresses. The stator faults are categorized 

into short and open circuits and especially short-circuit 

faults are classified as detailed leakage point [39]. It is 

predicted that the problem is more likely to occur in the 

external than the internal coil of the stator structure due to 

physical impact or surface contact. Since phase wires of 

most UAV motors are exposed to the outside, phase 

faults are the main source of stator damage. If the phase 

wire is shorted to another, excessive current flows to the 

circuit and the entire motor system can immediately fail. 

For this reason, only the phase open fault is selected for 

diagnostic experiments for verification. If the UAV 

crashes into something in flight, the most vulnerable 

component is the fast spinning propeller. Furthermore, 

propeller has a larger radius, so blades can be broken or 

damaged even from a slight contact. In the UAV motor, 

the propeller is included in the rotor, so it is an important 

area for rotor faults. Most studies about the failure of 

UAV motors have focused on the propeller [15]-[19]. 

Previous studies on the classification of motor faults 

included the category 'others' which refers to eccentricity. 

But eccentricity can be included in 'bearing' or 'rotor' fault 

because it relates to the rotating assembly. As we 

mentioned above, the ESC is a component of the UAV 

motor that converts electrical energy into mechanical 

rotation. Therefore, it can cause malfunctions to the UAV 

motor by external disturbance or internal fatigue. Since 

our target is the UAV motor, we propose an 'ESC fault' as 

one of the subjects of the faults. 

In literature about faults classifications of motor drives 

such as [40], and [41], transistor faults commonly occur. 

A stress on a transistor may become excessive because it 

carries the entire phase current. For a shorted transistor, a 

base drive should be immediately suppressed in order to 

prevent the phase current from continuously growing. So, 

we also exclude the transistor short fault for a similar 

reason as the stator fault. Since we use the sensorless 

motor which uses a back-EMF signal to drive, we add the 

fault of an abnormal back EMF signal. 

In this study, the faults were classified into bearing 

faults (F1), stator faults (F2), rotor faults (F3), and ESC 

faults (F4). We selected in detail the faults of bearing 

friction increase (F1.1), phase open (F2.1), propeller 

damage (F3.1), transistor open (F4.1) and back EMF 

signal error (F4.2) respectively. To simulate these faults 

we used the following experimental methods. F1.1 and 

F3.1 were mechanically designed, which is represented in 

Fig. 3. In (a) of Fig. 3, a bar, which has a large coefficient 

of friction, was installed to a servo motor. The purpose of 

the bar is to push the side of the motor when F1.1 is 

injected. As shown (b) in Fig. 3, a partial broken 

propeller was used to simulate F3.1. The blades were 

trimmed to about 30% of their original length. 

Fig. 4 is a circuit diagram of the fault injection module 

for F2.1, F4.1, and F4.2. To simulate F2.1, one of the 

phases connected from the ESC to the motor is cut off 

through the relay, and F4.1 is also applied to the 

transistor in the same way. When F4.2 is injected, the 

relay connects to ground the MCU pin of the back-EMF 

signal line. 

 

 

Figure 3.  Experimental setting for fault injection of (a) F1.1 and (b) 
F3.1. 

 

Figure 4.  Schematic circuit diagram for F2.1, F4.1 and F4.2 of fault 

injection module 

B. Faults Analysis and Diagnosis  

The fault injection and diagnosis scheme are depicted 

in Fig. 5, and is designed to work as follows. The 

processors for fault injection and diagnosis are separated 

to two MCUs (STM32F407VE) for the possibility of 

independent diagnosis on a commercial vehicle. The PC 

transfers the fault injection commands to the MCU1 and 

receives the fault diagnosis result from MCU2. When F1 

is injected, the servo motor is commanded to rotate by the 
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MCU1. For the F3, ordinary propeller is replaced with a 

broken propeller. In the case of the F2 and F4 injections, 

the MCU1 turns on the relay inside the fault module 

digitally. For simplicity and economy of the system, the 

voltage and current are measured on an entrance of the 

ESC, not on the phase. Since the infrared sensor 

generates the pulse by the motor rotation, the angular 

speed is calculated by frequency of the pulse. The 

measurements are read by the MCU2 and the diagnosis 

result is sent to the PC after the estimation of variables. 

In order to diagnose faults, it was necessary to analyze 

not only the normal conditions but also characteristics of 

the fault. The data of selected faults were acquired for the 

steady-state of each input voltage. Angular speed and 

current plots for voltage are shown in Fig. 6 (a) and (b) 

respectively. The points on the graph represent averages 

at each point. Using the estimated model, the input 

voltage can estimate the steady state current and speed. 

Hence, we can confirm the possibility of prediction for 

the normal operation of the UAV motor. 

If the friction increases in constant voltage, kinetic 

energy is lost. Therefore, from (2), the speed decreases 

and the current increases. In the case of F1.1, angular 

speed was slightly lower and the current was slightly 

higher than the estimations, so this result supports the 

theory. When the friction was larger than the test 

situation, F1.1 was more clearly distinguished from the 

normal operation because the difference between speed 

and current increased. The ESC of the sensorless motor 

determines the electrical angle using the back-EMF signal. 

A coil turning inside a magnetic field induces back-EMF 

which is included in the phase signal. If the phase is 

opened, the drive signal of the motor does not normally 

occur and current cannot flow in one phase. 

In the case of F2.1, it was designed so that the motor 

starts to rotate and stop repeatedly, and the current 

constantly flows at about 3A. In most damaged propellers, 

thrust is reduced, so it is expected that 𝑘  or 𝐶𝑝  will 

decrease as described in (7). As a result, kinetic energy 

increases because friction by thrust decreases in contrast 

to F1.1. In the case of F3.1, angular speed was slightly 

higher and the current was slightly lower than the 

estimations, so this result can be explained theoretically. 

If a transistor is open, a connected phase with the 

transistor does not carry current even in the control 

sequence. However, by design the back-EMF is still 

measurable, unlike F2.1. The motor driving is disabled in 

one of the sequences and angular speed is expected to 

decrease. In the case of F4.1, both the angular speed and 

the current were smaller than the estimation, but the 

differences with normal condition were small at low 

speeds. In the case of F4.2, the results were similar to the 

motor operation of F2.1. Since the back-EMF signal is 

connected to the ground, the starting position of the 

motor cannot be figured out. But the phase and the 

currents flowing through the coil were healthy, so the 

current consumption was consistently higher than F2.1 at 

about 8A. 

 

Figure 5.  Flow chart of the motor fault injection and diagnosis 

 

 

Figure 6.  A comparison between estimated value and measured fault 
characteristics for the steady-state of the UAV motor: (a) input voltage 

vs. rotor speed and (b) input voltage vs. output current. 

Each of the faults had a different consequence as 

shown, which were distinct to model estimation. First, we 

need to specify the interval of the model estimation to 

define the normal operation. Noises and errors of 

measurements are considered to ensure the reliability of 

the determination of fault detection. Since the noise of 

speed measurements are about ±10 rad/s, the interval of 

normal driving is defined as ±20 rad/s of the model 

estimation. As the input voltage increases, so does the 

current noise. Since the noise of the current varies from ± 

0.15A minimum to ± 1.0A maximum, the determination 

interval of the normal operation is defined as ± 

0.25~2.5A according to input size. 
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Figure 7.  Flowchart of the proposed fault diagnosis algorithm. 

Based on the fault analysis, we propose an algorithm 

that can diagnose the faults across the UAV motor for the 

steady-state condition. The F3.1 diagnosis algorithm 

includes the fact that the angular velocity is greater and 

the current is lower than the model estimation. F1.1 or 

F4.1 is diagnosed when the angular velocity is included 

or less than the estimated range. If the angular velocity is 

lower than 100 rad/s, F1.1 or F4.1 is diagnosed. In detail, 

F1.1 and F4.1 are diagnosed with whether the current is 

greater than the estimated, and F2.1 and F4.2 are 

diagnosed with whether the current is less than 6A. Fig. 7 

shows the flowchart of the fault diagnosis algorithm. The 

proposed algorithm is designed to be as simple as 

possible to diagnose the selected faults. 

 

 

Figure 8.  Experimental setup of the UAV motor testbed for fault 
injection and diagnosis. 

IV. EXPERIMENTAL VERIFICATION 

A. Fault Diagnosis Experiments on the Testbed 

The configuration of the experimental setup to inject 

faults and to verify diagnostic performance is shown in 

Fig. 8. UAV motors were installed at a height at least 

three times the radius of the propeller to minimize ground 

effects [42], [43]. Since the height is 520mm, the ratio of 

the radius to the height was about 4.3:1. The infrared 

sensor was placed facing the motor to measure the pulse 

output by the spin of the rotor. All the sensors were read 

to MCU2 in 200 Hz, but the sampling rate of the data was 

40Hz. A five moving average filter is applied to current 

measurements and it reduces noise in the steady-state. 

The lithium polymer battery which can be applied in the 

flight model is used. The ESC and the UAV motor were 

connected to the fault injection & diagnosis module. For 

the F1.1, the servo motor was fixed under the propeller 

and rotated the bar which was covered with rubber. The 

broken propeller was used for F3.1 and replaced in other 

experiments. 

The experiments were planned to diagnose all the 

selected faults across the operating speed range. 

Verification was required at various input voltages, 

because the model of the UAV motor was nonlinear. 

Therefore, the experiments were divided into five cases in 

4.2V, 5.8V, 7.6V, 9.2V and 11V respectively. Input 

voltage was held constant and the fault was injected at a 

certain time to confirm the diagnosis result. Fig. 9 to 13 

shows the experimental results during ten seconds before 

and after the selected faults injection, except Fig. 11 

which the UAV motor was started at five seconds. 

Experimental results with an increasing input voltage are 

presented in each graph from left to right in the figures. 

The black dashed line indicates the input values such as 

the speed or current estimation and the fault injection 

command. The blue line is the real time measurements 

and the red line is the fault diagnosis value. 

Fig. 9 shows that fault diagnosis converges to F1.1 as 

speed decreases and current increases for the steady-state 

after F1.1 injection. The speed converged after about 0.5 

seconds from the F1.1 injection, but the maximum 

diagnosis time is about 1.1 seconds due to the time of 

current convergence. In Cases 2 and 3, F4.1 was 

diagnosed for a short time during the transient state, since 

the current is within the normal range. Fig. 10 shows that 

fault diagnosis converges to F2.1 within 0.8 seconds. 

Speed decreased to almost zero while the current was 

maintained at 2 to 4 A for the steady-state after the F2.1 

injection. The speed converged in 0.3 seconds, which is 

faster than the diagnosis, and F4.1 was diagnosed until 

the speed was less than 100 rad/s for the transient period. 

For Cases 4 and 5 with high currents, F4.2 is diagnosed 

until the current is below 6A. Since breaking a propeller 

in the middle of the UAV motor spinning is dangerous, 

the F3.1 experiment was carried out using the pre-broken 

propeller as indicated in Fig. 8. Fig. 11 plots the data 

from these experiments. The F2.1 was diagnosed during 

speeds measuring lower than 100 rad/s. Since the current 

flow was less than the estimation and the speed 
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measurement passed through the estimated range, the 

diagnosis shifts to F4.1 for a moment. F3.1 was 

diagnosed within 0.35 seconds, according to the results in 

which the speed was above the normal range. Fig. 12 

shows that the diagnosis corresponds with the fault 

injection even in transient-state. The diagnostic time of 

Case1 was the longest at 0.43 seconds, because the 

estimation error was the maximum among the cases. 

When F4.2 was injected, angular speed dropped to under 

100 rad/s and current flows remained at about 7 to 8A. It 

is shown in all the cases in Fig. 13. F2.1 was diagnosed 

during the current rising from 6A in cases 1 and 2 

whereas F1.1 was diagnosed in the other cases until 

below 100 rad/s for a short time. The F4.2 diagnosis 

experiment of Case1 took the longest time of 0.9 seconds 

among the all cases. 

 

 

Figure 9.  F1.1 injection and diagnosis experiments on the testbed. 

 

Figure 10.  F2.1 injection and diagnosis experiments on the testbed. 

 

Figure 11.  F3.1 injection and diagnosis experiments on the testbed. 

 

Figure 12.  F4.1 injection and diagnosis experiments on the testbed. 

 

Figure 13.  F4.2 injection and diagnosis experiments on the testbed. 

Thrust did not occur for the F2.1 and F4.2, when the 

UAV motor almost stopped. If these two faults occur, the 

diagnosis speed may be important because the drone has 

to apply a fault tolerant control. Thus, using diagnosis in 

the transient state is possible regardless of F2.1 or F4.2. If 

this method is applied, then a failure of the UAV motor is 

determined within 0.25 seconds. Except for the above 

situations, the diagnosis only in the steady-state is 

advisable for practical applications. 

B. Flight Test Results for Application 

When the UAV motor is fixed on the floor and the 

input voltage is stable, experiments cannot prove that the 

proposed technique has effected during flight. Therefore, 

additional flight tests for fault diagnosis are necessary to 

validate drone application. Fig. 14 shows the 

experimental scene where a hexacopter hovers with a 

weight of 5 kg and a diameter of 1m. F1.1 and F3.1 are 

difficult to implement on the hexacopter, so these are 

excluded from the flight test, while F2.1, F4.1, and F4.2 

are selected for their ability to be electrically injected. 

While the drone controlled the attitude for stability, the 

selected faults were injected into the UAV motor, and we 

observed the angular speed, current, and fault diagnosis 

results until the steady-state. 

In Fig. 15, 16, and 17, plots of the flight tests are 

numbered in order of stability of input voltage. The UAV 

motor stopped and the current was maintained at about 

2.26A on average after the F2.1 fault was injected. As 

shown in Fig. 15, all of the F2.1 test results reveal that 

diagnosis data is obtained same to inject faults. For the 

F4.2 injection test results, the UAV motor stopped in the 
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same way as the F2.1 tests, and the current flowed at 

7.73A on average. Since the measured current decreased 

below 6A, Fig. 16 shows that the diagnosis error rose to 

2.44% in the F4.2 test. This is because the diagnostic 

algorithm for the testbed was applied to the flight tests 

without modification. Thus the algorithm needs to be 

optimized for the flight model. F4.1 injection tests 

showed that the diagnostic performance was affected by 

the stability of the control, which is represented in Fig. 17. 

The timeliness and accuracy of the fault diagnosis of test 

no.1 to 3 are analyzed as 0.1s-98.49%, 0.2s-93.70% and 

1.4s-71.85%, respectively. Since the input voltage 

changes constantly, the transient state cannot be easily 

defined. For that reason, diagnostic accuracy was 

calculated at all ranges after the fault injection. Hence the 

results do not reflect the accuracy of the proposed 

technique, but it does help to check the variation of the 

diagnostic performance according to stability of the input. 

Meanwhile, the proposed model estimated the normal 

operation to an accuracy of 99.11% even with fluctuating 

input. 

In order to apply the fault diagnosis algorithm to the 

flight model, the conditions regarding the steady-state 

have to be defined additionally. Furthermore, the 

diagnostic technique for various environments of drone 

operation can be advanced to model-based neural 

networks. 

 

 

 

Figure 14.  Flight Test setup of the UAV motor for fault injection and 
diagnosis. 

 

Figure 15.  F2.1 injection and diagnosis experiments in flight. 

 

Figure 16.  F4.2 injection and diagnosis experiments in flight. 

 

Figure 17.  F4.1 injection and diagnosis experiments in flight. 

C. Discussion 

The proposed model properly estimated the normal 

operation of the UAV motor for all of the tests on the 

testbed as well as in flight. Even though unstable 

performance of diagnosis in transient state, the results in 

the steady-state are valuable in this study. Nevertheless, 

simulated faults were diagnosed well in flight tests when 

the fluctuation of the input voltage of the UAV motor 

was not too steep. In general, if the attitude of the drone 

is more stable, convergence speed with the steady-state 

will be fast and the UAV motor input will be more stable. 

Also, if current sensor performance is improved, 

measurement noise will be reduced and measurement will 

be more accurate. These two methods for a high-quality 

UAV system will help to advance the proposed technique. 

Although not included in this paper, overcurrent may 

occur instantaneously in case of short circuit failure. In 

this case, it is necessary to measure the current in 

transient state and shut off the input immediately for 

safety. 
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V. CONCLUSION 

This paper proposed a nonlinear steady-state model of 

the UAV motor using previous works and theoretical 

relations. Compared to current and velocity data, the 

accuracy of the estimated model is 99%. Dynamic 

friction increase, phase open, propeller broken, transistor 

open and back EMF signal error are experimented by 

manually injection. The simple diagnosis algorithm are 

designed by analyzing the each steady-state 

characteristics from fault injection experiments. Testbed 

experimental results showed that all the faults are 

successfully diagnosed for the steady-state. Flight tests 

are conducted for hexacopter during hovering state and 

diagnostic accuracy in stable condition was about 98%. 

These results validate that the diagnosis performance can 

be applied to commercial drones. Although most studies 

about fault diagnosis have dealt with just one fault type 

such as stator or rotor, the proposed technique has the 

advantage of diagnosing various faults by monitoring 

basic variables of the motor. For practical application, 

repetitive testing is necessary to verify the reliability, and 

complicated and advanced diagnosis algorithms have to 

be further studied depending on the environment. This 

diagnostic technique can help with the decision making 

of the repair or replacement before more serious or 

complete failures of the UAV motor. 
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