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Abstract—In order to realize a disaster response robot that 

can reach and climb straight stairs within a certain range, 

this paper proposes a method for estimating the position 

and orientation of the stairs using 2D image and 3D point 

cloud. In this method, first, an object detection method is 

applied to an RGB image, and a 3D point cloud including 

stairs is extracted by combining the detection result and the 

3D point cloud. Next, a 3D point cloud of a step candidate is 

extracted by applying plane estimation and region 

segmentation to the extracted 3D point cloud. The 3D point 

cloud of the step candidate is projected on a 2D plane, and 

the orientation of the stairs is estimated by detecting their 

contour and lines. In addition, the position of the stairs is 

estimated by searching for a combination of 3D point clouds 

of the step candidates located at equal intervals using the 

structural characteristics of the stairs. As a result of 

simulation using a disaster response robot WAREC-1, it was 

confirmed that the orientation of the stairs can be 

accurately estimated by the proposed method. It was also 

confirmed that the position could be accurately estimated 

under specific conditions.  
 
Index Terms—disaster response robot, reaching stairs, 

climbing stairs, object detection, 3D point cloud processing 

 

I.  INTRODUCTION 

Japan is one of the most disaster-prone countries where 

various disasters such as large-scale earthquakes and 

nuclear power plant accidents have occurred. When these 

disasters occur, investigating the damage situation and 

performing recovery work is strongly requested. However, 

disaster sites such as collapsed factories and high-

radiation dose nuclear power plants are environments 

where there is a great danger for people to enter and work. 

Therefore, the demand for disaster-response robots that 

perform recovery work and rescue activities on behalf of 

humans at disaster sites has increased, from the viewpoint 
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of preventing secondary disasters and reducing the work 

load at those dangerous sites.  

In response to this growing demand, Waseda 

University has started to develop a four-limbed robot 

WAREC-1 [1] that aims at working in disaster sites. In 

order to perform various task there, disaster response 

robots are expected to have intelligent mobility including 

reaching or climbing stairs. In the DARPA Robotics 

Challenge (DRC) [2], a competition for rescue robots 

held in the United States in 2015, reaching and climbing 

straight stairs was set as one of the tasks. In DRC, the 

operator recognizes the straight stairs via an external 

sensor (RGB camera or Lidar) mounted on the robot. In 

addition, remote operation using a graphical operation 

interface supports reaching and climbing straight stairs. 

However, a disaster response robot, which is expected to 

operate in environments where the communications are 

unstable, requires autonomous operation based on sensing 

that does not rely on the operator. In this paper, we 

propose a method for estimating the position and 

orientation of the stairs based on 2D image and 3D point 

cloud analysis in order to realize an autonomous reaching 

and climbing stairs for a disaster response robot. In this 

paper, the straight stairs are targeted for reaching and 

climbing. 

II. PROPOSED METHOD  

In this section, we describe our proposed method for 

estimating the position and orientation of stairs. In this 

method, the inputs are an RGB image obtained by an 

RGB camera and a 3D point cloud obtained by a depth 

camera or a Lidar. Fig. 1 shows the processing flow of 

the proposed method. Steps 1 to 6 describe the processing 

common to position and orientation estimation. Steps 7 to 

9 describe the processing unique to orientation estimation. 

Steps 10 to 12 describe the processing unique to position 

estimation. Steps 1 to 12 correspond to (1) to (12) in the 

figure. 
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Figure 1. The processing flow of estimating the position and 
orientation of stairs. 

Step 1) Stairs detection using single shot multibox 

detector 

In this paper, the stairs are assumed to be in an indoor 

environment and its position, orientation and shape are 

unknown. As a related work on stairs detection, 

Shimakawa et al. [3] proposed a method in which line 

detection was applied to RGB and Depth images to detect 

stairs from lines corresponding to the edges of steps. 

However, in the environment assumed in this paper, there 

is a possibility that part of the edge of the steps may not 

be acquired, and it is difficult to detect stairs by their 

method. Therefore, in this research, in order to detect 

stairs of unknown positions, orientations and shapes from 

RGB images, object detection using a convolutional 

neural network (CNN) that learns general features of 

objects from a large amount of image data was used. In 

particular, we used the Single Shot MultiBox Detector 

(SSD) [4], which has high detection speed and accuracy. 

The original SSD is designed to be able to detect a total 

of 20 classes of objects, such as motorcycles, cats, and 

sofas, using PASCAL VOC [5]. As these 20 classes don't 

include stairs, we fine-tuned the original SSD using a 

new data set to enable detection of them. 

Step 2) Extraction of 3D point cloud including stairs 

using frustum culling 

As a related work on 3D object recognition, Fukai et al. 

[6] proposed a method for recognizing a target object by 

applying Iterative Closest Point (ICP) [7] to the 3D point 

cloud and the 3D CAD model prepared in advance. 

However, as described in Step 1, we target stairs with 

unknown shape, and it is impossible to use ICP that 

requires a 3D CAD model of the target object. Therefore, 

in this research, Frustum Culling [8] was used to extract 

the 3D point cloud that includes the stairs from the input 

3D point cloud. In this method, first, the angle of view 

that includes the stairs is calculated based on the 

horizontal and vertical angle of view of the RGB camera 

and the coordinates of the bounding box estimated by the 

SSD. Next, based on the calculated angle of view, a 

frustum with the RGB camera as the origin is generated. 

Finally, by picking the points inside the frustum, the 3D 

point cloud that includes the stairs can be extracted. 

Step 3) Noise removal using statistical outlier removal 

The 3D point cloud normally contains noise, which has 

a significant impact on the estimation of the position and 

orientation of the stairs. Therefore, we used Statistical 

Outlier Removal [9] to remove such noise from the 3D 

point cloud including the stairs extracted by Frustum 

Culling. In this method, first, for each point of the input 

3D point cloud, the average value and standard deviation 

of the distance from an arbitrary number of neighbor 

points are calculated. Next, the distance threshold is 

determined based on the calculated average value and 

standard deviation of the distance. Finally, the points 

whose distances are larger than the threshold are removed 

as noise. 

Step 4) Plane estimation using random sample 

consensus 

The stairs are composed of multiple steps whose 

planes are parallel to the horizontal plane, and the 

position and orientation of the stairs can be estimated 

from the 3D point cloud of the steps. Here, we used 

Random Sample Consensus (RANSAC) [10] to extract 

the 3D point cloud that is a step candidate from 3D point 

cloud obtained in Step 3. In this method, first, three 

points are randomly selected from the input 3D point 

cloud, and a temporary 3D plane is calculated. Next, the 

plane is applied to the input 3D point cloud, and the 

number of points that fit the plane is recorded. This 

process is repeated a specified number of times, and the 

plane that fits the most points is output as the most 

applicable 3D plane. Finally, by picking the points that fit 

the output plane, the 3D point cloud that is a step 

candidate can be extracted. 

Step 5) Region segmentation using euclidean clustering 

RANSAC outputs multiple regions on the same plane 

as one region due to the nature of the algorithm. When 

the 3D point cloud of the step and others are on the same 

plane, they need to be separated. Therefore, Euclidean 

Clustering was used to divide them into each region. In 

this method, the distance between each point of the input 
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3D point cloud is calculated and points less than the 

threshold of any distance are assigned to the same cluster. 

This process is applied to all points in the input 3D point 

cloud. By assigning all points to clusters, the 3D point 

cloud of step candidates is divided into regions. 

Step 6) Region removal based on normal vectors 

The normal vector of each region was used to remove 

the region of the inappropriate step candidate from the 3D 

point cloud obtained in Step 5. Here, we first focus on the 

fact that the normal direction of the step is almost vertical, 

and estimate the normal vector of each region. Next, the 

angle between the estimated normal direction and the 

vertical direction is calculated. Finally, the region where 

the calculated angle is equal to or larger than the 

threshold value of the arbitrary angle is removed from the 

input 3D point cloud as an inappropriate step candidate 

region. 

Step 7) Generation of binary image of 3D point cloud 

using projection processing 

As a related work on estimating orientation of the 

stairs, Patill et al. [11] proposed a method of applying 

line detection to RGB image. In their paper, the midpoint 

of the line corresponding to the edge of the step is 

calculated for each step, and the orientation of the stairs is 

estimated from the line passing through the midpoint of 

the edges of the plurality of steps. However, as described 

in Step 1, in the environment assumed in this paper, it 

may not be possible to acquire a part of the edge of the 

step, and it is not appropriate to use their method here. 

Therefore, the orientation of the stairs was estimated from 

the slope of the edge of the step instead. However, the 

slope on an RGB image that does not include depth 

information does not represent the true slope of the step. 

So, we estimated the orientation from the 3D point cloud 

of the step candidate. In order to estimate the orientation 

of the stairs from the 3D point cloud obtained in Step 6, 

the 3D point cloud is converted into a binary image here. 

We focused on the fact that the steps of the stairs are 

almost horizontal. Since the orientation estimation doesn't 

use the height of the steps and the relationship between 

steps, the subsequent processing can be performed not 

only from 3D point cloud processing but also from 2D 

image processing. In this method, first, the input 3D point 

cloud is projected on a horizontal plane for each region. 

Next, a binary image is generated by plotting each point 

of the projected 3D point cloud with pixel values of 255 

on an image initialized with all pixel values of 0. The 

white pixel region in the binary image generated by the 

above processing represents the shape of the step of the 

stairs when viewed from directly above. And, the angle 

between the edge of the step and the horizontal direction 

when viewed from directly above represents the 

orientation of the stairs. Therefore, the orientation of the 

stairs can be estimated by detecting the line of the edge of 

the step from the generated binary image and calculating 

the angle formed with the horizontal direction. 

Step 8) Noise removal using morphological 

transformation 

In order to remove noise from the generated binary 

image, morphological transformations such as closing 

and opening were performed. Closing is a process in 

which erosion is performed after dilation, and removes 

noise in the white pixel region. Meanwhile, opening is a 

process in which dilation is performed after erosion, and 

removes noise in the black pixel region. Here, after 

applying the closing to the binary image, the opening is 

applied to remove the noise. 

Step 9) Orientation estimation using line detection 

In order to estimate the orientation of the stairs from 

the binary image cleaned in Step 8, processing such as 

contour detection, line detection, angle calculation, and 

voting was performed. Here, we focus on the line of the 

edge of the step, and in particular, use the horizontal line 

longer than the depth direction and easier to detect for the 

orientation estimation. First, the contour of the white 

pixel region in the input binary image is detected. Next, a 

line that fits the detected contour is extracted using 

stochastic Hough transform. Then, the elevation angle of 

the line is calculated, and is voted in a ballot box 

provided for each 1.0[degree]. Finally, the average value 

of the angles stored in the ballot box with the largest 

number of votes is output as the orientation of the stairs. 

Step 10) Region removal based on comparison between 

binary image and 3D point cloud 

In order to remove the region of the inappropriate step 

candidate from the 3D point cloud obtained in Step 6, the 

3D point cloud of the step candidates and the binary 

image derived in Step 8 are used. Here, we focus on the 

fact that the xy components of the 3D point cloud of the 

step candidate obtained in Step 6 correspond to the xy 

components of the binary image generated in Step 7. 

Here, we first apply labeling to remove the effect of the 

slight noise remaining in the input binary image. Here, 

the label of the region with the largest area is determined 

as the target label. Next, based on the xy components of 

the pixels in the region to which the target label is 

assigned on the binary image, a 3D point cloud 

corresponding to the target label region is extracted from 

the input 3D point cloud. This process has the same effect 

as applying the noise removal using the morphological 

transformation to the input 3D point cloud. 

Step 11) Judgment of steps based on structural 

characteristics of stairs 

In order to extract the 3D point cloud of the step from 

the 3D point cloud obtained in Step 10, the step was 

judged based on the structural characteristics of the stairs. 

The structural characteristic used here is that the steps of 

the stairs are arranged at equal intervals in the directions 

of the xyz axes. First, the center of gravity α of the region 

of interest label acquired in Step 10 and the center of 

gravity β of each region of the input 3D point cloud are 

calculated. Then, the 3D coordinates obtained by 

combining the xy component of α and the z component of 

β are recorded as the representative points of the step 
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candidates. A depth camera and Lidar get different 3D 

point cloud densities depending on the distance to the 

target object. When the density of the 3D point cloud of 

the step is biased, the xy component of β deviates from 

the center of gravity of the step in the direction of higher 

density. On the other hand, the density of white pixels in 

the region of the target label acquired in Step 10 is almost 

constant because of the passing of the closing in Step 8. 

Therefore, we consider that the xy component of α is less 

affected by the density bias than the xy component of β. 

Thus, we adopted the method of calculating the 

representative point combining α and β. Next, search for 

combinations that are arranged at equal intervals in the 

directions of the xyz axes from all the recorded 

representative points. Finally, the 3D point cloud to 

which each representative point of the search result 

belongs is output as the 3D point cloud of the step. 

Step 12) Position estimation based on center of gravity of 

step and orientation of stairs 

In order to estimate the position of the stairs from the 

center of gravity of each step and the 3D point cloud of 

each step obtained in Step 11, the orientation of the stairs 

estimated in Step 9 was used. Here, we focus on the fact 

that the orientation of the stairs represents the angle of the 

line of the edge of the step. First, a line that passes 

through the center of gravity and is orthogonal to the line 

of the edge of the step is obtained from the center of 

gravity of the first step and the orientation of the stairs. 

Next, the calculated line is applied to the 3D point cloud 

of the first step, and the points on the line are picked. 

Finally, from the picked points, the point closest to the 

sensor is output as the position of the stairs. 

III. EXPERIMENTS AND DISCUSSION 

This section describes the experiments performed to 

verify the effectiveness of the proposed method, followed 

by its results and considerations. Section A explains the 

experimental environment. Section B illustrates an 

example of applying the processing of the proposed 

method. Section C denotes the results of the orientation 

and position estimation of the stairs. In Section D, we 

discuss the experimental results. 

A. Experimental Environment 

 

  
(a)   (b) 

Figure 2. Stairs used for experiments. (a) Without handrails (b) With 
handrails. 

The experiment was performed in a virtual 

environment developed in the GAZABO simulator [12]. 

It takes the RGB image and the 3D point cloud as inputs 

acquired by Multisense SL, which is a sensor equipped 

with an RGB camera and Lidar. Two types of straight 

stairs were prepared for the experiment. The difference of 

the two stairs is the presence or the absence of handrails. 

The appearances of these stairs are shown in Fig. 2(a) and 

(b). 

B. Example of Applying the Processing of the Proposed 

Method 

Step 1) Stairs detection using SSD 

The SSD was fine-tuned using an original data set to 

enable detection of stairs. Here, the VGG16 model [13] 

trained by ImageNet [14] is used as the feature extractor. 

The data set was created by collecting 3523 RGB images 

of stairs from ImageNet and Open Images Dataset v4 [15] 

and manually annotating them. 80% of the data set was 

used as training data and the rest as test data. 

In this experiment, the stairs were successfully 

detected in all 32 patterns. Fig. 3(a) and (b) show 

examples of detection using SSD. The value following 

the word "Stairs" in Fig. 3 indicates the confidence that 

signifies how convinced the SSD judged the object in the 

bounding box to be stairs. In this experiment, we regard 

the detection as successful when the confidence is over 

0.9. 

 

  
(a)   (b) 

Figure 3. Stairs detection using SSD. (a) Stairs without handrails / 
Position1 / Orientation0 (b) Stairs with handrails / Position2 / 

Orientation15. 

Step 2) Extraction of 3D point cloud including stairs 

using frustum culling 

Fig. 4 shows an extraction example of 3D point cloud 

including stairs using frustum culling. Fig. 4(a) represents 

a 3D point cloud acquired by Lidar. Fig. 4(b) is the 

extraction result of a 3D point cloud that includes the 

stairs by Frustum Culling. In Fig. 4(a) and (b), the color 

is changed based on the value of the z component of the 

3D point cloud. 

 

  
(a)   (b) 

Figure 4. Extraction of 3D point cloud including stairs using frustum 
culling. (a) A 3D point cloud acquired by Lidar. (b) A 3D point cloud 

that includes the stairs extracted by Frustum Culling. 
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Step 3: Noise removal using Statistical Outlier Removal 

Fig. 5 shows an example of removing noise using 

Statistical Outlier Removal. Fig. 5(a), identical to Fig. 

4(b), is shown again for convenience. Fig. 5(b) is the 

result of removing noise. 

 

  
(a)   (b) 

Figure 5. Noise removal using Statistical Outlier Removal. (a) A 3D 
point cloud that includes the stairs extracted by Frustum Culling. (b) A 

3D point cloud from which noise has been removed by Statistical 

Outlier Removal. 

Step 4) Plane estimation using RANSAC 

In this experiment, in the random sampling, 

considering that the stair steps are almost horizontal, we 

picked three points where the error of the elevation angle 

of the temporary plane was within 2.5[degree]. In 

addition, we regard the points whose distance from the 

plane is within 3.0[cm] to be fitted to the plane, taking 

into account the measurement error of the Lidar. Fig. 6(a) 

shows the 3D point cloud identical to Fig. 5(b). Fig. 6(b) 

displays a 3D point cloud of the step candidate extracted 

by RANSAC. Planes of the extracted step candidate are 

represented by different colors. 

 

  
(a)   (b) 

Figure 6. Plane estimation using RANSAC. (a) A 3D point cloud from 
which noise has been removed by Statistical Outlier Removal. (b) A 3D 

point cloud of the step candidate extracted by RANSAC. 

  
(a)   (b) 

Figure 7. Region segmentation using Euclidean Clustering. (a) A 3D 

point cloud of the step candidate extracted by RANSAC. (b) A 3D point 
cloud of the step candidate divided by Euclidean Clustering. 

Step 5) Region segmentation using Euclidean Clustering 

Here, the distance threshold was also set to 3.0[cm] in 

consideration of the Lidar measurement error. Fig. 7(a) is 

the same as Fig. 6(b), and Fig. 7(b) shows a 3D point 

cloud of the step candidate in Fig. 7(a) divided by 

Euclidean Clustering. Generated clusters are again 

represented by different colors. 

Step 6) Region removal based on normal vectors 

The threshold of the angle was set to 15.0[degree] to 

determine the regions of the inappropriate step candidate. 

Fig. 8(a) and Fig. 8(b) show the region removal based on 

normal vectors. Fig. 8(a) is the clustering result in Fig. 

7(b). Red arrows are added to indicate normal lines of the 

regions where the angle between the normal direction and 

the vertical direction is less than the threshold value. Blue 

arrows are also added to indicate the normal lines of the 

regions where the above angle is equal to or more than 

the threshold value. Here, the points belonging to the 

regions with the blue arrow normals are removed as 

inappropriate step candidates. Fig. 8(b) shows a 3D point 

cloud obtained by removing these regions. 

 

  
(a)   (b) 

Figure 8. Region removal based on normal vectors. (a) A 3D point 
cloud of the step candidate divided by Euclidean Clustering. (b) A 3D 

point cloud obtained by removing the region based on the normal vector. 

Red arrows: Normal lines of the regions where the angle between the 
normal direction and the vertical direction is less than the threshold 

value. Blue arrows: Normal lines of the regions where the above angle 
is equal to or more than the threshold value. The points belonging to the 

regions with the blue arrow normal are removed as inappropriate step 

candidates. 

Step 7) Generation of binary image of 3D point cloud 

using projection processing 

 

  
(a)   (b) 

Figure 9. Generation of binary image of 3D point cloud using 
projection processing. (a) A 3D point cloud of the step candidate 
projected on a horizontal plane. (b) A binary image generated by 

plotting (a). 

In generating a binary image, the projected 3D point 

cloud was plotted on the image on a scale of 2[mm/pixel]. 

This means that a binary image with a horizontal 
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dimension of 500[pixel] is generated from a 3D point 

cloud of a step with a width of 1.0[m] in the horizontal 

direction. The smaller the scale is, the higher is the 

resolution of the binary image. However, if the angular 

resolution of the Lidar is coarse, the white pixels inside 

the step region become sparse, and the number of times 

the closing in Step 8 is applied increases. Fig. 9(a) shows 

a 3D point cloud of the step candidate projected on the 

horizontal plane. Fig. 9(b) shows a binary image 

generated by plotting (a). 

Step 8) Noise removal using morphological 

transformation 

Fig. 10(a) to (c) show the noise removal using 

morphological transformation. Here, the closing and 

opening were performed 25 times each. Fig. 10(a) is the 

generated binary image in Fig. 9(b). Fig. 10(b) and (c) are 

the results of noise removal by closing and opening, 

respectively. 

 

  
(a)   (b) 

 

(c) 

Figure 10. Noise removal using morphological transformation. (a) A 
generated binary image. (b) Noise removal by closing. (c) Noise 

removal by opening. 

Step 9) Orientation estimation using line detection 

Fig. 11(a) to 11(c) show the result of estimating 

orientation using line detection. Fig. 11(a) is the output 

binary image in Step 8. Green lines in Fig. 11(b) 

represent the contour of the region of the step candidate. 

Red lines in Fig. 11(c) represent those in the horizontal 

direction among the contour lines.  

  

(a)   (b) 

 
(c) 

Figure 11. Orientation estimation using line detection. (a) A binary 
image from which noise has been removed by morphological 

transformation. (b) An RGB image in which the detected contour  

is superimposed on (a). (c) An RGB image in which the detected line  
is superimposed on (a). 

Step 10) Region removal based on comparison between 

binary image and 3D point cloud 

Fig. 12(a) to (d) show the region removal based on 

comparison between binary image and 3D point cloud. 

Images in Fig. 12(a) and (b) are outputs of Steps 7 and 8, 

respectively. Fig. 12(c) shows a 3D point cloud obtained 

by removing the region based on the normal vector. Fig. 

12(d) illustrates a 3D point cloud obtained by removing 

the region based on the comparison between the binary 

image and the 3D point cloud. In Fig. 12(d), it can be 

observed that the protrusions at both ends of the step that 

existed in Fig. 12(c) were removed. This is the result of 

extracting the 3D point cloud corresponding to Fig. 12(b) 

from the 3D point cloud of Fig. 12(c). 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 12. Region removal based on comparison between binary image 
and 3D point cloud. (a) A generated binary image. (b) A binary image 
from which noise has been removed by opening. (c) A 3D point cloud 

obtained by removing the region based on the normal vector. (d) A 3D 

point cloud obtained by removing the region based on the comparison 
between the binary image and the 3D point cloud. The white pixels in 

(a) and (b) correspond to the 3D point clouds in (c) and (d). 

Step 11) Judgment of steps based on structural 

characteristics of stairs 
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The combinations of representative points are searched 

by limiting the range of each axis. We referred to the 

dimensions of the stairs specified in the Japanese 

Building Standard Law Enforcement Ordinance, Section 

3, Article 23 [16] to determine the range. According to 

literature [16], the depth (y-axis) of the step should 

be15[cm] or more, and the interval in the height of the 

step (z-axis) should be 23[cm] or less. Fig. 13(a) to (c) 

show the judgment of steps based on structural 

characteristics of stairs. Fig. 13(a) is the output 3D point 

cloud of Step 10. Yellow points in Fig. 13(b) are the 

representative points of the 3D point cloud of the step 

candidate. Magenta points in Fig. 13(c) are the 

representative points of the 3D point cloud of the step. 

 

   
(a)  (b)  (c) 

Figure 13. Judgment of steps based on structural characteristics of stairs. 

(a) A 3D point cloud obtained by removing a region based on a 

comparison between a binary image and a 3D point cloud. (b) A 3D 

point cloud in which the representative points of the 3D point cloud of 
the step candidate are superimposed on (a). (c) A 3D point cloud in 

which representative points of the 3D point cloud of the step are 
superimposed on (a). Yellow points: The representative points of the 3D 

point cloud of the step candidate. Magenta points: The representative 

points of the 3D point cloud of the step. 

 

Step 12) Position estimation based on center of gravity of 

step and orientation of stairs 

 

  
(a)   (b) 

Figure 14. Position estimation based on center of gravity of step and 
orientation of stairs. (a) A 3D point cloud in which the representative 

points of the 3D point cloud of the step are superimposed and displayed 

on the 3D point cloud obtained by removing the region based on the 

comparison between the binary image and the 3D point cloud. (b) A 3D 
point cloud in which the position of the stairs by estimating the position 

based on the center of gravity of the first step and the orientation of the 
stairs is superimposed on (a). Rainbow line: A 3D point cloud on a line 

that passes through the center of gravity of the first step and is 

orthogonal to the edge of the step. Cyan point: The coordinates of the 
point that is closest to the sensor in the 3D point cloud on the rainbow 

line, and represents the position of the stairs. 

According to the representative points of the step 

obtained in Step 10 (displayed again as Fig. 14(a)), the 

position and the orientation of the stairs are estimated. 

Fig. 14(b) shows the result of the estimation. The rainbow 

line in Fig. 14(b) represents a 3D point cloud on a line 

that passes through the center of gravity of the first step 

and is orthogonal to the edge of the step. The cyan point 

in Fig. 14(b) is the coordinates of the point that is closest 

to the sensor in the 3D point cloud on the rainbow line, 

and represents the position of the stairs. 

C. Experiment of Estimating the Position and 

Orientation of Stairs 

To roughly approach to the stairs and bring it into sight, 

the disaster response robot WAREC-1 first moves along 

the path generated from the map information of the floor 

plan. As the motion of WAREC-1 is not precise enough, 

there will be normally a gap between the actual and the 

ideal goals of the robot. In the experiment, we assume 

that the maximum distance between WAREC-1 and stairs 

is 3.0[m] and the maximum orientation gap is 45[degree]. 

From this assumption, a total of 16 combinations of 

position and orientation within the range were applied as 

initial state of the robot to each of the two types of stairs 

in Fig. 3, and the relative position and orientation of the 

stairs were estimated. The Multisense SL was set at a 

height of 1.0[m] from the ground, which is the same 

height as the sensor actually installed on the body of 

WAREC-1. In this experiment, the center coordinates of 

the nose (the tip of the step) of the first step of the stairs 

are defined as "stair position", and the relative angle 

between Multisense SL and the stairs is defined as "stair 

orientation". Fig. 15 shows the pattern of the position and 

orientation of the stairs. The green point in Fig. 15 

indicates the position of Multisense SL, the red point 

indicates the position of the stairs, and the blue range 

indicates the orientation of the stairs. Here, the positions 

of Multisense SL are labeled as Position1-Position4 as 

shown in Fig. 15. The orientations of the stairs are also 

labeled as Orientation0-Orientation45. 

 

 

Figure 15. The pattern of the position and orientation of the stairs. Red 

point: The position of the stairs. Green points: The positions of 

Multisense SL. (P1-P4: Position1-Position4). Blue ranges: The 
orientations of the stairs. (0-45: Orientation0-Orientaion45). 

X 
Y 

Z 
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①Result of estimating the orientation of stairs 

In this experiment, the orientations of the stairs were 

successfully estimated in all the 32 patterns. Table I 

summarizes the errors in estimating the orientation of the 

stairs. These errors are the absolute value of the 

difference between the true value in the orientation of the 

stairs and the estimated value, and the unit of the error is 

[degree]. Table I shows that the orientation of the stairs 

can be estimated with an error of less than 0.3[degree]. 

TABLE I. THE ERROR [DEGREE] IN ESTIMATION OF THE 

ORIENTATION 

0 15 30 45

Position1 0.04660 0.05240 0.02847 0.008616

Position2 0.01511 0.1977 0.07508 0.005113

Position3 0.1516 0.1575 0.1766 0.02176

Position4 0.1117 0.2320 0.08965 0.005148

Position1 0.03320 0.1172 0.02649 0.003610

Position2 0.06696 0.2024 0.1651 0.06099

Position3 0.06618 0.2280 0.2245 0.003496

Position4 0.2323 0.2803 0.08936 0.01087

Position

pattern

Orientation pattern

Stairs

without

handrail

Stairs

with

handrail

 
 

②Result of estimating the position of stairs 

The position of stairs was successfully estimated in 19 

out of the 32 patterns. Table II summarizes the errors in 

estimating the position of the stairs. These errors derive 

from the Euclidean distance between the true value of the 

position of the stairs and the estimated value, and the unit 

is [mm]. Table II shows that the position estimation tends 

to fail in Position2 and Position4. Moreover, the errors in 

Position3 and Orientations15,30,45 are prone to be large. 

TABLE II. THE ERROR [MM] IN ESTIMATION OF THE POSITION 

0 15 30 45

Position1 20.45 19.56 22.83 46.68

Position2 19.73 Failure Failure Failure

Position3 19.93 73.68 107.9 127.4

Position4 Failure 10.31 Failure Failure

Position1 16.23 16.29 33.49 Failure

Position2 16.88 Failure Failure Failure

Position3 12.94 73.26 109.2 129.1

Position4 Failure 20.36 Failure Failure

Position

pattern

Orientation pattern

Stairs

without

handrail

Stairs

with

handrail

 
 

D. Considerations on the Results of Estimating the 

Position of Stairs 

Here, we will consider the causes of errors from three 

viewpoints 

①Vanishing of 3D point cloud on steps out of field by 

Frustum Culling 

In this experiment, Frustum Culling was used to 

extract the 3D point cloud including the stairs from the 

3D point cloud obtained by a Lidar. Fig. 16(a) to (d) 

show an example of estimating the position of the stairs 

with handrails partially out of view (Position3 and 

Orientation45). (a) is the stairs detected using SSD, (b) is 

the 3D point cloud acquired by Lidar, (c) is the stairs 

point cloud extracted using Frustum Culling, and (d) is a 

3D point cloud in which the position of the stairs (dotted 

in cyan) and the representative point of the step (dotted in 

magenta) are superimposed on (b). Here, the generated 

Frustum does not include the whole stairs. Unlike the 

orientation estimation using the edge of the step, the 

position estimation uses the center of gravity of the step. 

Therefore, if a part of the 3D point cloud of the step is 

missing, the calculated center of gravity will deviate from 

the center of gravity of the step, which may lead to an 

increase in error or failure in position estimation (Fig. 

16(d)). This phenomenon is observed in Position3 / 

Orientation15・30・45. Table II shows that the position 

estimation error is relatively larger than other patterns. 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 16. The estimation of the position of the stairs in "Stairs with 

handrails/Position3/Orientation45". (a) Detection using SSD. (b) A 3D 
point cloud acquired by Lidar. (c) A 3D point cloud that includes the 

stairs extracted by Frustum Culling. (d) A 3D point cloud in which the 
position of the stairs and the representative point of the step are 

superimposed on (b). 

②Vanishing of 3D point cloud on steps with high density 

difference by Statistical Outlier Removal 

In this experiment, Statistical Outlier Removal was 

used to remove noise from the 3D point cloud including 

the stairs extracted by Frustum Culling. Fig. 17(a) to (d) 

show the noise removal using Statistical Outlier Removal. 

Fig. 17(a) and (b) are an example of applying to stairs 

without handrails at Position2 and Orientation30, while 

Fig. 17(c) and (d) are another example of applying at 

Position2 and Orientation0. (b) and (d) show 3D point 

clouds from which noise has been removed by Statistical 

Outlier Removal from (a) and (c). The yellow points in 

(b) and (d) indicate the representative points of the step 

candidate. In this method, when the density of the cloud 

of the step differs a lot as in (a) and (b), the cloud of the 

step existing in the low-density region is removed as 
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noise (Fig. 17(b)). As a result, a part of the 3D point 

cloud of the step is lost, as in ①, which may lead to an 

increase in errors and a failure in position estimation. 

This phenomenon can be observed at Position2 and 

Position4 in Table II where the position estimation failed 

except for Position2 / Orientation0 and Position4 / 

Orientation15. On the other hand, when the cloud density 

of the step is even, as in the example for stairs without 

handrails at Position2 and Orientation0 (Fig. 17(c) and 

(d)), the position can be successfully estimated. 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 17. Noise removal using Statistical Outlier Removal. (a)(b) An 
example of applying to stairs without handrails at Position2 and 

Orientation30. (c)(d) An example of applying to stairs without handrails 

at Position2 and Orientation0. (a)(c) A 3D point cloud including the 

stairs extracted by Frustum Culling. (b)(d) A 3D point cloud from which 
noise has been removed by Statistical Outlier Removal. 

Next, we would like to discuss the relationship 

between the density of the step point cloud and cleaning 

noise by Statistical Outlier Removal. Fig. 18(a) to (d) 

show the noise removal to the 3D point cloud of the third 

step, which affected the result of position estimation. (a) 

and (b) are an example of applying to stairs without 

handrails at Position2 and Orientation30, while (c) and 

(d) are an example at Position2 and Orientation0. (a) and 

(c) are point clouds of the third steps extracted by 

Frustum Culling. (b) and (d) are results of removing noise 

by Statistical Outlier Removal. In these figures, the step 

point cloud is divided into five areas (shown in different 

colors) whose width is 15[cm] in the horizontal direction. 

The five areas are numbered Area 1 to 5 from left to right 

as shown in Fig. 18(a). Table III summarizes the number 

of points of each area before and after the noise removal, 

and the standard deviation of the number of points before 

the removal. Two facts can be observed from this table. 

One is that the larger the standard deviation is, the more 

the amount of points is removed. The other is that more 

points are removed in areas with fewer points. 

Summarizing the above two points, it can be seen that 

when Statistical Outlier Removal is applied to the area 

where the density difference of the 3D point cloud is high, 

the points in the area where the density is low tend to be 

removed. 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 18. Noise removal using Statistical Outlier Removal to the 3D 
point cloud of the third step. (a)(b) An example of applying to stairs 

without handrails at Position2 and Orientation30. (c)(d) An example of 

applying to stairs without handrails at Position2 and Orientation0. (a)(c) 
A 3D point cloud including the stairs extracted by Frustum Culling. 

(b)(d) A 3D point cloud from which noise has been removed by 
Statistical Outlier Removal. 

TABLE III. THE NUMBER OF POINTS PER AREA USING STATISTICAL 

OUTLIER REMOVAL ON STAIRS WITHOUT HANDRAIL 

1 2 3 4 5

Before 257 318 352 376 395 48

After 200 263 313 351 395

Delta 57 55 39 24 0

Before 364 413 439 425 379 28

After 364 413 439 425 379

Delta 0 0 0 0 0

Standard

Deviation

Position/Orientation

pattern

Position2/

Orientation30

Position2/

Orientation0

Area

 
 

③Division of 3D point cloud of steps by occlusion 

In this experiment, Euclidean Clustering was used to 

divide multiple regions existing on the same plane from 

the 3D point cloud of the step candidate extracted by 

RANSAC. Fig. 19(a) and (b) show the result of 

segmentation applying to the stairs with handrails at 

Position1 and Orientation45. (a) shows a 3D point cloud 

of the step candidate extracted by RANSAC, and (b) 

shows a 3D point cloud of the step candidate divided by 

Euclidean Clustering. In (a), the color of the 3D point 

cloud is changed for each plane of the extracted step 

candidate. In (b), the color of the 3D point cloud is 

changed for each cluster. The yellow point in (b) 

indicates the representative points of the step candidate. 

In this method, when stairs with handrails are recognized 

diagonally (e.g. at Position1 and Orientation45), the 

occlusion generated by handrails may divide the 3D point 

cloud of the step, and one step may be assigned to two 

A1/A2/A3/A4/A5 
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clusters by Euclidean Clustering (Fig. 19(b)). This can 

lead to an increase in errors and a failure in position 

estimation. This phenomenon was only observed on stairs 

with handrails at Position1 and Orientation45. Table II 

shows that the position estimation failed. 

Consequently, in order to estimate the position of stairs 

more accurately using the sensor installed on the disaster 

response robot, it is necessary to correct the position and 

orientation of the robot using the detection results and the 

orientation of the stairs. 

  
(a)   (b) 

Figure 19. Segmentation of the region using Euclidean Clustering to 
"the stairs with handrails / Position1 / Orientation45". (a) A 3D point 

cloud of the step candidate extracted by RANSAC. (b) A 3D point 

cloud of the step candidate divided by Euclidean Clustering. 

IV. CONCLUSION 

In this paper, we propose a method for estimating the 

position and orientation of stairs based on 2D image and 

3D point cloud analysis, so that a disaster response robot 

can autonomously reach and climb the stairs. First, 3D 

point cloud including the stairs is extracted by combining 

the estimated bounding box of the stairs on the RGB 

image with the 3D point cloud obtained by Lidar. Next, 

the 3D point cloud of the step candidate is extracted. 

Then the orientation estimation is performed using the 

detected lines, and the position estimation is performed 

by searching for those located at equal intervals of the 

extracted step candidates. In the experiments using the 

GAZEBO simulator, it was confirmed that stairs 

detection and orientation estimation were performed 

accurately in all combinations of positions and 

orientations. However, it was confirmed that position 

estimation was not possible in some patterns. To improve 

the success rate and accuracy of estimation, the position 

and orientation of the disaster response robot are 

corrected based on the results of stair detection and 

orientation estimation, and the distance between the 

sensor and the stairs needs to be short and the relative 

angle needs to be small. 
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