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Abstract—In order to improve the control precision of the 

giant magnetostrictive actuator (GMA), the unknown 

parameters of the hysteresis nonlinear model are quickly 

identified based on the test data before use, and the GMA 

nonlinear dynamic model is established based on the free 

energy hysteresis model. Aiming at the shortcomings of 

standard particle swarm optimization (PSO) algorithm and 

the tendency to fall into local optimum in the late iteration, 

an improved chaotic particle swarm optimization algorithm 

with dynamic adjustment of flight time and optimal position 

of the group through chaotic traversal optimization is 

proposed. ICPSO), and the algorithm is applied to the 

parameter identification of actuator nonlinear model. 

Experiments show that the algorithm can identify GMA 

nonlinear dynamic model parameters with high efficiency, 

and the identified model can be well fitted with 

experimental data. The hysteresis displacement error is 

within 3%, and the kinetic model is highly reproducible by 

multiple comparisons. 

 

 

Index Terms—GMA, parameter identification, chaotic 

 

I. INTRODUCTION 

The Giant Magnetostrictive Actuator (GMA) has the 

advantages of simple structure, large strain, small volume, 

fast response and strong output force. It has a wide range 

of fields in fluid machinery control, precision positioning 

mechanism, active noise reduction and ultra-precision 

machining [1]. Application prospects. At present, the 

hysteresis models that can be used to describe GMA are: 

Preisach model, Jiles-Atherton model, free energy model 

and neural network model. Compared with other models, 

the free energy hysteresis model has the advantages of 

simple model structure, physical properties of parameters 

and easy modification of external influences (such as 

eddy current loss, temperature, etc.), but it is often used 

for parameter identification in the free energy hysteresis 

model. In some optimization algorithms, Particle Swarm 

Optimization (PSO) is widely used. However, PSO 

algorithm has the disadvantages of being easy to fall into 

local optimum and slow convergence in the later stage, 

especially for nonlinear hysteresis models such as GMA 

[2]. It is difficult to get a satisfactory global optimal 

solution. Therefore, this paper improves PSO and 

combines chaos optimization method to propose an 

improved chaotic particle swarm optimization algorithm 
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(ICPSO), which is applied to the parameter identification 

of GMA nonlinear dynamic model. Simulation and 

experimental research show that the improved algorithm 

is feasible and effective. 

II. GMA NONLINEAR MODEL 

A. The Working Principle of GMA 

A schematic diagram of the structure of the GMA is 

shown in Fig. 1. GMA works as follows: the output rod, 

the outer casing and the bottom cover are made of 

magnetically permeable materials. They can form a 

closed magnetic circuit with the giant magnetostrictive 

rod. The magnetic field generated by the coil acts as the 

driving magnetic field, and the driving magnetic field is 

input [3], [4]. The change of current changes, and under 

the action of the changing driving magnetic field, the 

giant magnetostrictive rod undergoes expansion and 

contraction due to the axial magnetostrictive effect, 

thereby converting electromagnetic energy into 

mechanical energy. 
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Figure 1. GMA structure Sketch diagram. 

B. GMA Nonlinear Dynamic Model Based on Free 

Energy Hysteresis 

The magnetization expression of the free energy 

hysteresis model： 
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In the equation： 

 (2) 
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The time set 𝜏(𝑡) at which the average localized 

magnetization𝑀̄is converted is expressed as： 

    τ(t) = {t ∈ 0, Tf|H(t) = −Hc  or  H(t) = Hc} (3) 

In the equation, 𝛼 is the probability distribution 

parameter of free energy, 𝑀𝑅 is the magnetization 

intensity when the free energy obtains the minimum 

value, 𝜂 is the slope of the hysteresis core, 𝐻̄𝑐 is the 

average coercive force, the 𝑏 interaction field density 

probability distribution parameter, 𝑐 is the core field 

density Probability distribution parameters. 

Under certain pre-stressing stress, the relationship 

between magnetostriction 𝜆 and magnetization 𝑀 is 

approximately the following quadratic 

domain-transformation model. 

 λ =
3

2
λS (

M

MS
)

2

 (4) 

where𝜆𝑆is saturation magnetostriction and𝑀𝑆is saturation 

magnetization. 

Considering the interference force 𝐺 and 

pre-compression stress𝜎that GMA is subjected to during 

operation, the transfer function of GMA output 

displacement and input current based on nonlinear 

piezomagnetic equation and dynamics principle is: 

 y =
1

Ms2+Cs+K
(ArEHλ + MG − σAr) (5) 

In the equation 𝑀 = 𝑀𝑟 + 𝑀𝑙 ， 𝐶 = 𝐶𝑟 + 𝐶𝑙 ，

𝐾 = 𝐾𝑟 + 𝐾𝑙 ， 𝑀𝑟 =
𝜌𝑙𝑟𝐴𝑟

3
， 𝐶𝑟 =

𝐶𝐷𝐴𝑟

𝑙𝑟
， 𝐾𝑟 =

𝐸𝐻𝐴𝑟

𝑙𝑟
，

Here 𝑀𝑟 , 𝐶𝑟 , 𝐾𝑟 , 𝑀𝑙 , 𝐶𝑙 , 𝐾𝑙 are the equivalent mass, 

equivalent damping coefficient and equivalent stiffness 

coefficient of the giant magnetostrictive rod and the load, 

respectively, 𝑙𝑟 , 𝐴𝑟 , 𝜌 , 𝐶𝐷 , 𝐸𝐻 are respectively 

supermagnetic Length, cross-sectional area, mass density, 

internal damping coefficient, Young's modulus of the 

telescopic rod. Equations (1), (4), and (5) constitute a 

nonlinear dynamic model of GMA. 

III. IMPROVEMENT OF PARTICLE SWARM 

OPTIMIZATION 

A. Particle Swarm Optimization 

The basic idea of the PSO algorithm is to find the 

optimal solution through the cooperation and information 

sharing among individuals in the population. Suppose a 

particle swarm contains 𝑛 particles and extends into 

the𝑁dimension space. The position of the particle𝑖 in 

the 𝑁 dimension space is represented as vecto 𝑋𝑖 =
[𝑥𝑖1, 𝑥𝑖2 , ⋯ , 𝑥𝑖𝑁] , the flight speed is expressed as 

vector𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝑁], and the individual optimal 

value of the𝑖particles is recorded as𝑝𝑏𝑒𝑠𝑡𝑖. The global 

optimal value of the entire population is recorded 

as𝑔𝑏𝑒𝑠𝑡, and the particle updates its speed and position 

by the following equation. 

Vi(t + 1) = wVi(t) + c1r1[pbesti(t) − Xi(t)] +
c2r2[gbest(t) − Xi(t)] (6) 

 Xi(t + 1) = Xi(t) + Vi(t + 1) (7) 

In the above equation:𝑤is the inertia weight;𝑐1,𝑐2are 

the acceleration constants, and 𝑟1 and 𝑟2 are random 

numbers independent of(0,1). 

B. Improved Chaotic Particle Swarm Optimization 

Algorithm 

It has been shown that there is a coupling effect 

between the length and direction 

of𝑤𝑉𝑖(𝑡)and𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) and𝑔𝑏𝑒𝑠𝑡(𝑡) , resulting in slow 

update. In addition, in the PSO algorithm, when the 

particle is updated in position, the particle is fixed every 

time of flight, and sometimes the particle oscillates back 

and forth around the optimal solution. Because at the 

beginning of the iteration, the particles are far from the 

optimal position, the flight time of the particles is longer, 

which is conducive to faster flight to the optimal position; 

but in the later stage of the iteration, the particles are 

closer to the optimal position due to the larger flight time 

[5]-[8]. And "flying through" the optimal position, 

resulting in a decline in particle search performance. 

Therefore, in order to improve the performance of the 

PSO algorithm, the speed and position update equation is 

improved. The basic idea is: firstly, the (6) is 

decomposed into three-step updates, and three 

speeds𝑉1(𝑡 + 1),𝑉2(𝑡 + 1),𝑉3(𝑡 + 1)are obtained, when 

the particle update speed exceeds the maximum. When 

the speed is𝑣𝑚𝑎𝑥 , the maximum speed value is taken to 

prevent the influence of the speed on the search accuracy. 

The specific equations are as follows: 

 V1(t + 1) = wVi(t) (8) 

V2(t + 1) = V1(t + 1) + c1r1[pbesti(t) − Xi(t)] (9) 

V3(t + 1) = V2(t + 1) + c2r2[gbest(t) − Xi(t)] (10) 

Then, in (7), the velocity term is multiplied by the 

dynamically adjusted flight time, and the three speeds 

generated by the decomposition are respectively brought 

into the corresponding three update positions 𝑋1(𝑡 +
1),𝑋2(𝑡 + 1),𝑋3(𝑡 + 1). The improved location update 

equations are as follows: 

 X1(t + 1) = Xi(t) + TV1(t + 1) (11) 

 X2(t + 1) = Xi(t) + TV2(t + 1) (12) 

 X3(t + 1) = Xi(t) + TV3(t + 1) (13) 

 T = T0 (1 −
kt

tmax
()) (14) 

Among them, 𝑇 is the dynamic flight time,𝑇0 is the 

maximum flight time,𝑘is the proportional coefficient,𝑡is 

the current number of iterations, and𝑡𝑚𝑎𝑥is the maximum 

number of iterations. Finally, the fitness function of the 

three positions is evaluated by the objective function𝑓(𝑥), 

and the best position is selected as the final result.  

The particle position update process of the improved 

PSO algorithm is shown in Fig. 2. 
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Figure 2. Location update process vector. 

For the optimal position of the group, it is realized by 

chaotic traversal optimization. Logistic image is selected 

to generate chaotic variables. The iterative equation is as 

follows: 

 Zn+1 = μZn(1 − Zn)  n = 0,1,2 ⋯ (15) 

The method of changing the chaotic variable back to 

the optimization variable adopts linear mapping, and its 

expression is as follows: 

 zn = a + (b − a)xn (16) 

In the above equation, for the improved PSO 

algorithm, 𝑎 and 𝑏 are expressed as the minimum and 

maximum values of the particle positions. In the iterative 

optimization process, when the chaotic variables are 

traversed in the[0,1]interval, the corresponding optimal 

position of the group is traversed within the 

corresponding range of values to find the optimal 

position. 

In summary, the basic idea of the improved chaotic 

particle swarm optimization algorithm (ICPSO) is: firstly 

improve the speed and position update equation of PSO, 

and decompose (6) into three-step update, find the fitness 

value and find The optimal position of the individual and 

the optimal position of the group, then transform the 

required optimization variables (the optimal position of 

the group) into chaotic variables, and transform the range 

of the optimization variables into the traversal range of 

the chaotic motion for chaos optimization, and then 

optimize the The chaotic variable is expressed as an 

optimization variable [9]. By continuously updating the 

velocity and position of the particle, the optimal solution 

of the variable is finally obtained. The calculation steps 

are described as follows: 

Step 1 Randomly generate𝑛particle populations, set 

relevant parameters of ICPSO algorithm: particle swarm, 

chaos algorithm maximum iteration number 𝑀1 , 𝑀2 , 

inertia weight𝑤 , learning factor𝑐1 ,𝑐2 , fitness error𝑒 , 

speed value range[𝑣𝑚𝑎𝑥𝑚𝑖𝑛]and the position of the value 

range is[𝑥𝑚𝑎𝑥𝑚𝑖𝑛]. 
Step 2 Calculate the fitness value of each particle. The 

current position of the particle is recorded as𝑝𝑏𝑒𝑠𝑡𝑖, and 

the optimal position of the fitness value in the entire 

group is recorded as𝑔𝑏𝑒𝑠𝑡. 

Step 3 Update the velocity and position of the particles 

according to the ICPSO algorithm update (8)~(14). 

Step 4 Perform chaos optimization on the optimal 

position𝑔𝑏𝑒𝑠𝑡of the population: 

Map the optimization variable 𝑔𝑏𝑒𝑠𝑡 to the 

domain[0,1]of the Logistic equation: 

 Z1
k =

gbestk−xmin, k

xmax, k−xmin, k
 (17) 

The 𝑀2 iteration is performed by the Logistic equation 

(15) to 𝑍1
𝑘 to obtain the chaotic 

sequence𝑍𝑘 = (𝑍1
𝑘 , 𝑍2

𝑘 ⋯ 𝑍𝑀2
𝑘 ). 

Linearly map chaotic sequences back to the original 

solution space: 

gbestk,m
∗ = xmin, k + (xmax, k − xmin, k)Zm

k ,  m =

0,1,2 ⋯ M2   (18) 

Get a feasible solution sequence for chaotic variables: 

𝑔𝑏𝑒𝑠𝑡𝑘
∗ = (𝑔𝑏𝑒𝑠𝑡𝑘,1

∗ , 𝑔𝑏𝑒𝑠𝑡𝑘,2
∗ , ⋯ 𝑔𝑏𝑒𝑠𝑡𝑘,𝑀2

∗ ). 

Calculate the fitness value of each feasible solution 

vector in the feasible solution sequence, select the 

optimal fitness value and record its corresponding 

feasible solution vector as𝐺𝑏𝑒𝑠𝑡𝑘
∗. 

Step 6 Replace the position of any one of the particles 

in the current population with𝐺𝑏𝑒𝑠𝑡𝑘
∗ . 

Step 7 If the requirement of the fitness error 𝑒 is 

satisfied or the maximum number of iterations 𝑀1 is 

reached, the search stops, and output𝑔𝑏𝑒𝑠𝑡, otherwise 

skip to step 3. 

IV. MODEL PARAMETER IDENTIFICATION BASED ON 

ICPSO 

A. Identification Principle 

In the GMA magnetostrictive nonlinear model, there 

are 13 parameters in total, they are 

𝜆𝑆,𝑀𝑆,𝑛,𝐴𝑟,𝑀𝑍,𝐶,𝐾,𝑀𝑅,𝜂,𝐻̄𝑐,𝑏,𝑐2,𝛼. For a well-designed 

GMA𝑛,𝐴𝑟,𝑀𝑍,𝐶 are linear parameters either known or 

can be estimated, the magnetic nonlinearity of GMA is 

independent of them, mainly affected by nonlinear 

parameters such as𝜆𝑆,𝑀𝑆,𝑀𝑅,𝜂,𝐻̄𝑐,𝑏,𝑐2,𝛼. In order to get 

the optimal parameters of GMA, the ICPSO algorithm is 

used to jointly optimize the eight 

parameters𝜆𝑆,𝑀𝑆,𝑀𝑅,𝜂,𝐻̄𝑐,𝑏,𝑐2,𝛼. Set the parameter sss 

to be identified as: 

 θ = [λS MS MR η H̄C b c α]T (19) 

The objective function𝑓(𝑥)takes the squared sum of 

the error𝑒of the actuator system output displacement𝑦̄of 

the 𝑄 sampling number and the mathematical model 

output displacement𝑦, which is 
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f(θ) = ∑ e2(θ, k)Q
k=1 = ∑ (ȳ0(k) − y0(θ, k))

Q
k=1

2
(20) 

B. Identification Result 

The research team of the author of this paper designed 

and produced the GMA prototype, and tested it with the 

GMA performance test platform based on LabView. The 

experimental device is shown in Fig. 3. The relationship 

between input current and output displacement at 

different input frequencies is shown in Fig. 4. 

 

 
Figure 3. GMA test experimental device. 

The specifications of the selected giant 

magnetostrictive rod are 𝛷10 × 90 , Therefore 𝑛 =
14400/𝑚 , 𝐴𝑟 = 7.85 × 10−5𝑚2 ; Estimated from the 

characteristic parameters of the giant magnetostrictive 

rod and spring material 𝑀𝑍 = 0.5𝐾𝑔 , 𝐶 = 4.325 ×

103 𝑁𝑠

𝑚
,𝐾 = 3.375 × 107 𝑁

𝑚
. Parameter Identification of 

Current and Displacement Characteristics of Frequency 

at 50Hz in Fig. 4 Using ICPSO Algorithm, Identification 

results are as follows: Fig. 5 shows the identification 

process of the 8 parameters with the number of iterations. 

Fig. 6 shows the minimum value of the objective function 

as a function of the number of iterations. The minimum 

value of the objective function is 22.74. The comparison 

of the current and displacement characteristic curves 

calculated by the identified parameter values with the 

experimentally measured characteristic curves is shown 

in Fig. 7. 

 

 
Figure 4. Relationship between input current and output 

displacement at different input frequencies. 
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Figure 5. Parameter identification process with iteration number. 

 
Figure 6. Objective function minimum iterative process. 

 
Figure 7. Comparison of experimental and calculated input current 

and output displacementμ. 

V. CONCLUSION 

Aiming at the shortcomings of PSO algorithm, the 

PSO is improved, and the chaos optimization is 

introduced to obtain the ICPSO algorithm, which is 

applied to the parameter identification of GMA nonlinear 

model. Through the simulation experiment, the 

satisfactory parameter values can be obtained, and the 

nonlinear parameters of the model can be effectively 

identified, which indicates that the algorithm is feasible 

for the parameter identification of nonlinear systems. It 

can be seen from Fig. 7 that the curve of the 

identification calculation agrees well with the 

experimentally measured curve, the similarity is high, 

and the hysteresis displacement error is within 3%, and 

the kinetic model is found to have high repeatability 

through multiple comparisons. It shows that the 

identification value obtained by applying ICPSO 

algorithm has high precision. 
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