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Abstract—Balancing of asymmetrical rhomboid mechanism 

with forked crank which is used in engines with external 

heat sources is considered. The main equations for 

correcting masses (counterweights) and their coordinates 

calculations are given. The conditions of full static balancing 

of rhomboid mechanism with forked crank are obtained.  

 

Index Terms— external combustion engine, asymmetrical 

rhomboid mechanism, balancing, correcting masses. 
 

I. INTRODUCTION 

Your goal is to simulate the usual appearance of papers 

in the. We are requesting that you follow these guidelines 

as closely as possible. 

Engines with external sources of heat, also known as 

external combustion engines, which works with Stirling 

thermo dynamical cycle have a wide usage with 

rhomboid mechanisms [1]. That mechanisms are the base 

ones for machines with shortened thermo dynamical 

cycle [2-5].  Rhomboid mechanisms (fig.1) differs from 

ordinary crank mechanisms by existence of right and left 

closed kinematical chain and two pins: working and 

displacing. Pins chambers connected with each other 

through cooler and heat source. Synchronizing gearing 

allows to eliminate skewness of working and displacing 

pins. Rhomboid mechanism may be symmetrical or 

asymmetrical with forked cranks or conrods [2, 6, 7]. 

 While mechanisms links moves with accelerations 

force loading of machines basement consists dynamical 

part. When machine works is steady regime they changes 

cyclically, forcing periodical loads and causing vibrations 

of basement. For exclusion or reducing this harmful 

impact of dynamical loads on engines body, this parts of 

load should me reduced to zero level, or their amplitudes 

should be limited in allowable range. Solution of such a 

problem – balancing of mechanism – is necessary for 

engine longevity and stable working. Addition of 

correcting masses in mechanism may lead to zeroing out 

projections of each links principal vector of inertia forces 

on each coordinate axis. This means that mechanism will 

be fully statically balanced. 
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Figure 1. 

 

Generalized scheme of Stirling engine with forked crank.

 

 

It is needed to define necessary coordinates of 

counterweights and their masses. It may be obtained by 

usage of substitution mass methods, based on 

replacement of agile links masses by two o three 

equivalent masses. 

 

Symmetry of rhomboid mechanism relatively pins axis 

means that the principal moment of inertia forces on OY 

axis are equal to zero. Projection of the principal moment 

of inertia forces on OX axis still not equal to zero. (Fig. 2)  

For mechanism with forked crank solution of dynamic 

reactions balancing problem is made by following 

method.
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Figure 2.  Kinematical chain of rhomboid mechanism of Stirling engine with forked crank: 1 – forked crank, 2 – working pin’s conrod, 3 – working 

pin, 4 – displacing pin’s conrod, 5 – displacing pin; S1, S2, S3 – mass centers of links with masses m1, m2, m3; Rd and Rw – cranks parts lengths for 

working and displacing groups, Ld и Lw – lengths of displacing and working conrods, ed и ew – eccentricity of  pins, γ – crank angle

II. POINTED MASS METHOD 

Distributed masses of mechanisms links replaces by 

concentrated mass, located in the centers of rotational 

kinematic pairs. These masses are selected to satisfy the 

laws of constancy of masses and mass centers location. 

 

 
Figure 3.  Calculation scheme for pointed masses 

Calculation scheme of mechanism (Fig. 3) is described 

by pointed masses with relative abscises in parts of RP. 

i.e. while working pins crank length is equal to 1 

(R=RP=1): 
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 line segment, λB – 
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between lengths of displacing conrod to the same 

crank, while angles φ2, φ4 calculates using equations:  
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where kB – relative lengths of displacing conrod. 

As coordinates (4) – (9) are periodical functions 
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In this case 
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Expressing the coordinates (5), (7) through (12), (13), 

gains (14,15) 
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III. CORRECTING MASSES CALCULATION 

To calculate projection of forces on OX axis it is 

needed to differentiate equations (4), (8), (9), (14) – (15) 

by time twice and multiple them on masses with opposite 

sign. This forces equation with R = 1 (for general case of 

machine movement ω = dφ/dt = ω(t)) take the following 

form: 
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and others in the same sequence. 

The sum of second and higher orders harmonics may 

be presented in following form: 
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Solving this equation, gain: 
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To find the connection of С parameter with engines 

geometry, formulae (10), expressed relative  cosφ, with 

considering 
2
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In this equation coefficients with cosφ2 and sinφ2 

considered as values of sine and cosine functions of  

auxiliary function θ: 
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Equation (25) reduced to the form: 
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Solving (10) and (11) simultaneously, gains 
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The expression enclosed in parentheses is denoted by 

z2 and is expressed through cosφ. Using the basic 

trigonometric identity, expression (29) can be reduced to 

the form: 
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Having replaced and introducing new notation, we 

arrive at the expression: 
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When z3, z4, z5 are replaced by their original 

expressions and, by carrying out the corresponding 

transformations, we obtain an equivalent 

identity
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IV. BALANCING CONDITIONS 

From the condition that the values of the amplitudes of 

the groups of functions cos
4
φ2, sin

4
φ2; cos

3
φ2, sin

3
φ2; 

cos
2
φ2, sin

2
φ2, cosφ2, sinφ2 is equal to zero we obtain the 

following expressions: 
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In which (32) is equal to 1. 

It is important to note that conditions (36) - (38) are 

one of the necessary mechanisms for complete balancing. 

Replacing in the formulas from (26) and 

(28) ρcosθ,C  ρLz a  and using the conditions (34), 

(35), (36) in the expressions for θ and z, we arrive at the 

relation 

 

C=aR                                                           (39) 

 

Applying this relation in Eq. (23), we obtain one more 

necessary condition for complete balancing 
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The first-order equation of the sum of all forces has the 

form 
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We introduce the following notation: 
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Then equation (41) takes the form 
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Solving this system of equations, we find 
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- the value of the correcting mass and the angular 

coordinate of this mass 
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From the results obtained, it follows that (36-38), (40), 

(45) - (48) are the basic conditions for the complete 

balancing of the rhombic mechanism of the drive with the 

forked crank. 

V. CONCLUSION 

1. The influence of the relations of out-of-axes, crank 

radii, lengths of connecting rods, as well as the angle of 

crank development on the imbalance of the rhombic drive 

mechanism is determined. 

2. The use of the replacement mass method makes it 

possible to form, in a convenient form, equations by 

solving the conditions necessary for the complete 

balancing of the mechanism. 

3. The symmetry of the considered schemes of 

mechanisms relative to the axis of motion of the pistons 

eliminates the effect of inertial forces in the direction 

perpendicular to this axis and inertial moments. 
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