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Abstract—In this work we introduce the concept of 

expendable robot teaming and its relevance in domain 

applications where the magnitude of hazards and risks 

reach the point that human exposure represents either a 

direct threat to life or long-term health consequences. We 

also introduce the main rationale behind this alternative 

approach to multiple robot deployment in extreme 

environments with particular attention to nuclear waste 

management and decommissioning. Finally, we briefly 

discuss related research challenges and directions.  

 

Index Terms—multi-robot systems, extreme environments, 

autonomous robots, communication networks, machine 

learning, nuclear waste, decommissioning, radiological 

instrumentation. robot coordination and cooperation 

 

I. EXPENDABLE ROBOT TEAMING: CONCEPT, 

RELEVANCE AND RATIONALE 

In the last decade, the employment of teams of 

heterogeneous robots in extreme environments has 

significantly increased [1-6]. Unlike single robot 

deployment, multiple robots can cooperatively perform 

more complex activities in less time [7-10]. Their 

heterogeneity also guarantees that a wider spectrum of 

tasks and domains can be covered [10-12]. Robots can 

reach areas not easily accessible to humans and can 

prevent exposure of humans to hazards which may 

represent either a direct threat to life or long-term health 

consequences [6]. 

Despite these great advantages, the deployment in 

extreme environments of a team of heterogeneous robots 

that are effective, reliable, fault tolerant, resilient and able 

to autonomously cooperate is still far from being 

developed in practice. The reason for this is that extreme 

environments especially those where hazards are present 

in the form of radiological or toxicity dangers, such as 

nuclear materials and waste, introduce challenges that 

current research in the field of Artificial Intelligence, 

Machine Learning and Robotics are not able to properly 

address yet. 

Nuclear decommissioning and the safe disposal of 

nuclear waste is a global problem of enormous societal 

importance [13]. The UK alone contains 4.9 million 

tonnes of legacy nuclear waste, representing the largest, 

and most complex, environmental remediation project in 
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the whole of Europe [15]. It has been estimated that the 

process of cleaning-up the UK’s million tonnes of waste 

is expected to take over 100 years with current annual 

costs exceeding £3 billion and that these costs are 

expected to rise over time. In Table I we report the 

general classification of the nuclear waste depending 

upon the degree to which it is irradiated together with its 

disposal route [16]. 

TABLE I.  CLASSIFICATION OF RADIOACTIVE WASTE AND DISPOSAL 

ROUTE 

Category Disposal route 

Very 
Low-

Level 

Waste 
(VLLW) 

Close to natural radioactivity. Its activity is less than 100 
becquerels per gram. It consists of rubble (e.g., concrete, 

plaster, soil), scrap metal (e.g., metal structures, pipes) or 

components from nuclear power plants, such as steam 

generators. Accounts for about 70% of the volume. Can be 

disposed of in normal landfill sites. 

Low-

Level 
Waste 

(LLW) 

Contains relatively low levels of radioactivity, not 

exceeding 4 gigabecquerel (GBq) per tonne of alpha 
activity, or 12 GBq per tonne of beta/gamma activity. 

Includes items such as scrap metal, paper and plastics. Some 

smaller amounts also come from hospitals and universities. 
Accounts for about 94% of the volume. Typically stored on-

site by licensees, either until it has decayed away and can be 
disposed of as ordinary trash, or until amounts are large 

enough for shipment to a dedicated site in containers 

approved by the Department of Transportation. 

Intermedi

ate-Level 

Waste 
(ILW) 

It exceeds 4 gigabecquerel (GBq) per tonne of alpha 

activity, or 12 GBq per tonne of beta/gamma activity but 

does not generate a significant amount of heat (< 2 kW/m3). 
Typically comprises resins, chemical sludges from the 

treatment of radioactive liquid effluents, and metal fuel 
cladding, as well as contaminated materials from reactor 

decommissioning. Smaller items and any non-solids may be 

solidified in concrete or bitumen for disposal. It makes up 
some 7% of the volume and has 4% of the radioactivity of 

all radioactive waste. It requires shielding. No dedicated 
facility in the UK at present [16]. Potential interim storage 

sites are located at AWE Aldermaston, AWE Burghfield, 

Capenhurst (CNS), Sellafield (NDA) Chapelcross (NDA) 
[14]. 

Higher-

Level 
Waste 

(HLW) 

It is radioactive enough for the decay heat to increase 
significantly its temperature and the temperature of its 

surroundings. It includes the liquid residue that contains 

most of the radioactivity from the reprocessing of spent 
nuclear fuel, this residue once it has been solidified due to a 

vitrification process or any other waste with similar 
radiological characteristics. Accounts for no more than 3% 

of the volume. Requires special storage with cooling. 

The Ministry of Defence (MOD) in the UK has seven 

decommissioned submarines currently stored afloat at 

Rosyth Royal Dockyard in Scotland, and thirteen at 
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Devonport Royal Dockyard in Plymouth [17]. The 

submarines can only be completely dismantled once the 

radioactive material and components have been safely 

removed [18]. 

The accident at the Fukushima Daiichi Nuclear Power 

Plant (FDNPP) in Japan on March 11, 2011 resulted in a 

release of about 73 radionuclides (135 in total including 

radioactive progeny). During the following days, 

hydrogen explosions released large amounts of 

radioactivity into the atmosphere. Fearing more severe 

damage and larger releases, plant managers ordered 

seawater to be used as a cooling medium. This highly 

radioactive water was discharged to the Pacific Ocean, 

with discharges (to both land and sea) ongoing more than 

three years following the accident [19]. Despite the 

tremendous technological and financial efforts in Japan to 

deal with the effects of the FDNPP accident, cleanup 

operations to remove contaminated water, to keep out the 

inflow of water into the sources of contamination and to 

prevent leakage of contaminated water into the 

environment are still ongoing [20]. 

Another area for decommissioning is that of many 

offshore North Sea oil and gas fields which are reaching 

the end of their lives [21]. This includes 6 fields on the 

Danish Continental Shelf, 23 fields on the Norwegian 

Continental Shelf (NCS), 106 fields on the Dutch 

Continental Shelf and 214 fields on the UK Continental 

Shelf (UKCS). From 2017 to 2025, across the four 

regions, over 200 platforms are forecast for complete or 

partial removal, close to 2,500 wells are expected to be 

plugged and abandoned and nearly 7,800 kilometres of 

pipeline are forecast to be decommissioned [22]. The cost 

and complexity of carrying out this work is one of the oil 

and gas industry’s largest ongoing challenges [23]. Given 

the costs involved in offshore decommissioning, several 

research institutes are looking for methods to make 

offshore oil platforms “clean” and able to support marine 

life as an alternative to full removal (e.g., bringing 

disused oil platforms into shallow water and using them 

as artificial reefs or making them clean and safe, and then 

leaving them [24]). 

Multiple robots deployment in the domains and the 

scenarios mentioned above pose several crucial problems 

that have not received adequate attention. First, sensors 

like LIDARs, RGB-D and infrared cameras, commonly 

used on current robotic platforms for 3D mapping and 

visual perception, are unable to provide information 

about invisible phenomena such as radioactivity. Second, 

ionizing radiations can damage the robots’ electronic 

components leading to malfunctions and to strongly 

corrupted measurements from sensors [25]. Another issue 

concerns communication between robots. Usually the 

structures of nuclear facilities can be of particularly thick 

concrete walls, they sometimes can include lead or they 

can be of carbon steel [26]. These structures prevent the 

use of the standard communication network 

infrastructures and protocols currently adopted in multi-

robot systems [27]. Moreover, the equipment necessary 

for communication (e.g., antennae, relays) can often not 

be set up. 

Accessibility and reachability of particular areas of a 

nuclear facility that need to be inspected represent 

another interesting challenge for a team of heterogeneous 

robots. It will suffice to consider the example of 

traversing the pipes to reach the reactor of a nuclear 

submarine to check for possible leakages rather than 

navigating into contaminated water to determine the 

presence of residuals of fuel debris and corium [19]. Last, 

but not least, the temporary or definitive loss of robots 

due to contamination must be considered. After their use, 

robots must be put in sealed containers and sent to a 

processing facility. Here, they must be security 

declassified and final reassurance monitored to ensure 

that no radioactivity is released before their next possible 

reuse. This represents an additional cost to the 

dismantling and decommissioning management process, 

that must be included in costing. 

The challenging domain applications previously 

introduced together with the above considerations 

motivated us to push towards the concept of expendable 

robot teaming. Expendable robot teaming refers to a team 

composed of robots of different size (e.g., tiny, small, 

medium, large), locomotion systems (e.g., tracked, 

wheeled, legged, flying, underwater), sensors, electronics, 

power systems, payload and price, some of which can be 

left on-site in case of fault or contamination, without the 

need to be retrieved or repaired and without representing 

a significant loss in terms of cost of the technology and of 

the disposal process. Such a feature depends upon the 

relations which can be established between the different 

characteristics of the robots of the team and the degree of 

complexity, dimension, type, accessibility, reachability 

and the expected level of radioactivity of the different 

areas of a nuclear site. Moreover, by means of their 

design in term of both size and mobility, these robots 

have the characteristic that some of them can be carried 

or lifted by others [28]. 

II. EXPENDABLE ROBOT TEAMING IN EXTREME 

ENVIRONMENTS 

In Fig. 1 we show an example of how the accessibility 

and reachability of different areas of a nuclear site depend 

upon the locomotion system and size of robots. 

Let us consider, for example, the large tracked vehicle 

Guardian [29], the small wheeled robot Vertigo [30] and 

the medium-size ape-like robot RoboSimian [31] 

depicted in Fig. 1. It is worth noting that these robots are 

endowed with a dual locomotion system. In fact, 

Guardian has two active sub-tracks and two wheels on 

both the ends of the main tracks. This dual locomotion 

system makes this vehicle suitable for off-road terrain 

navigation, debris and rubble negotiation and stair 

climbing. Vertigo has two tiltable propellers and four 

wheels. The propellers provide this robot with thrust onto  

the walls which enables climbing of cooling towers.
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Figure 1. Correlation between the degree of complexity, dimension, type, accessibility, reachability of the different areas of a nuclear site and the 
robots’ characteristics in terms of size and mobility. 

RoboSimian is endowed with both limbs and hands 

through which this robot can accomplish both mobility 

and manipulation tasks. 

The locomotion system of the medium-size tracked 

vehicles Gemini-Scout [32] and Absolem [33] includes 

multiple passive DOF links and novel track design. These 

characteristics provide these robots with a better traction 

on harsh terrains [34]. The mechanical design of the six-

legged underwater robot Crabster CR200 [35] enables 

this platform also to handle hazardous materials, to move 

on land and to crawl over rubble and debris. The 

compliant feet of the small hexapod DIGbot [36] allow 

the robot to execute complex climbing manoeuvres on 

surfaces of any orientation with respect to gravity like in 

a reactor pressure vessel of a nuclear power plant. 

Finally, also note in Fig. 1 how the use of robots with 

variable size and mobility is paramount, in particular for 

inspecting nuclear pipes of different diameter. Table II 

and Table III show an analysis of the radioactivity 

conditions under which a particular robot (among those 

depicted in Fig. 1) might operate and of the economic 

impact on the cost of the decommissioning process in the 

case in which such a robot was employed and it was left 

on-site. The latter aims at better clarifying the concept of 

expendability introduced in this work. 

From the last column of Table II and Table III, it is 

clear that none of the robots mentioned in this work 

would be able to operate in the nearby of sources of HLW 

independently by their price. To the best of our 

knowledge, none of them is endowed with a shielding 

material which is resistant to the high temperatures 

generated by these sources (see Table I). All the robots 

could operate in the presence of either VLLW or LLW of 

solely alpha activity since any material provides shielding 

for alpha radiations. In the presence of both beta and 

gamma activities there are several issues to be considered. 

The materials used in the construction of very high cost 

robots may not prevent bremsstrahlung radiations being 

produced by the interaction with beta radiations. The 

materials may not protect against gamma radiations as 

they may be completely transparent to them or may also 

not be of the required thickness. This would create a 

disposal problem (see Table I). Therefore, it would be 

preferred that very high cost robots were not operating 

closely to either ILW or LLW of beta and gamma activity. 

Their temporary or definitive loss would represent a 

significant cost. For this reason, they should be 

considered non-expendable at least until “suitable” 

materials are adopted for shielding (see Section III). 

Robots whose cost ranges from medium to high might 

be expendable members of a robot team for which the 

risk of fault and contamination due to the presence of 

either ILW or LLW beta and gamma activity is such that 

it would not constitute a heavy loss. They may be left on-

site without any need for retrieval. Conversely, very low 

or low cost robots cannot be considered expendable even 

though their deployment in the nearby of sources of beta 

or gamma radiations would be preferred for size and 

mobility reasons related to accessibility and reachability 

(see Fig. 1). The motivation behind this distinction is due 

to the existing tradeoff between the price of the robots 

and their performance. Medium and high cost robots are 

endowed with electronic components which are probably 

more robust than their cheaper counterpart. The exposure 

to this kind of ionising radiation even for a few seconds 

would be already enough to immediately damage very 

low and low cost robots. Moreover, being cheaper than 

the others, very low and low cost robots would certainly 

have a limited and less accurate sensor suite. The above 

considerations give rise to three important issues: (1) how 
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to make standard sensors resilient to radiations; (2) how 

to harden electronics and, finally, (3) what kind of 

measurement units could be used to enable the collection 

of all the radiological data necessary to characterize a 

facility. These aspects will be briefly discussed in the 

next section. 

III. RESEARCH CHALLENGES AND DIRECTIONS 

1) Hardening electronics and shielding: In nuclear 

domain applications materials for shielding robots must 

meet several functional requirements [37]. 

First, they must protect robots against alpha, beta and 

gamma radiations. Any material can provide shielding for 

alpha radiations. Materials that have a low atomic number 

such as plastic, aluminum, acrylic and polyethylene, can 

protect robots against beta radiations. On the other hand, 

shielding materials required for gamma radiations need to 

have a higher atomic number and density like for instance 

lead, tungsten and depleted uranium. Due to its high 

atomic number, lead is not suitable to be used for 

protection against alpha, beta and gamma. It does not 

prevent the production of bremsstrahlung radiations. 

Conversely, acrylic on its own cannot be used to protect 

against gamma radiations as it is completely transparent 

to it. A study conducted in [38] showed that using 

materials with lower atomic numbers before materials 

with higher atomic number provided effective shielding 

against beta and gamma radiations. According to this 

study, a combination of acrylic and lead acrylic can be 

used to shield a robot against alpha, beta and gamma 

radiations. In this combination, acrylic must be placed 

before lead acrylic. Acrylic will attenuate the beta 

radiations and lead acrylic will attenuate the gamma ones. 

However, both lead and acrylic need to be encapsulated 

in a clothing material. Therefore, shielding materials must 

also be capable of being malleable to be shaped into 

clothes for the robot. Demron is a fabric which is more 

flexible and malleable than lead. It can provide 

reasonable protection from low energy gamma radiations 

and limited protection from medium and high energy 

gamma radiations [39]. These properties make Demron 

the most suitable material for developing the radiation 

protection clothing for the robot. Moreover, special 

attention must be paid to the type of joints applicable to 

materials for radiation protection. Joints can be of two 

types: (1) permanent (e.g., thin layers of fabric melted 

through laser welding to avoid damages to the outer 

surfaces) or (2) temporary (e.g., zip or Velcro to reduce at 

minimum the permeability). Temporary joints can be 

applied to all the materials. The thickness of the shielding 

materials is also an important functional requirement. It 

must be directly proportional to the energy of radiations. 

Finally, the materials for covering lens or thermal devices 

must be transparent. Acrylic is the most reasonable 

choice. Unlike other materials mentioned above, it is 

transparent and can protect against alpha and beta 

radiations. 

TABLE II.  MAPPING BETWEEN THE ROBOTS AND THE DIFFERENT AREAS OF A NUCLEAR SITE WITHIN WHICH THEY SHOULD OPERATE BASED ON 

THE ROBOTS’ PRICES AND ON THE LEVELS OF RADIOACTIVITY IN TABLE I. 

Robot 

Cost Radioactivity Classes 

Very Low Low Medium High Very High VLLW 
LLW ILW 

HLW 
α β γ β γ 

 
IG32 DM 

            

 
Vertigo 

            

 
Jackal 

            

 
Husky 

            

 
Warthog 

            

 
Sentinel 
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Robot 

Cost Radioactivity Classes 

Very Low Low Medium High Very High VLLW 
LLW ILW 

HLW 
α β γ β γ 

 
Devastator 

            

 
MLT-42-F 

            

 
Jaguar V4 

            

 
Absolem 

            

 
Guardian 

            

 
Gemini-Scout 

            

 
0x-ALPHA 

            

 
T8X 

            

 
Digibot 

            

 
PhantomX 

            

 
SpotMini 

            

 
RobotSimian 
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Robot 

Cost Radioactivity Classes 

Very Low Low Medium High Very High VLLW 
LLW ILW 

HLW 
α β γ β γ 

 
Valkyrie 

            

 
Crabster CR200 

            

 
Nano Helicopter 

            

 
Matrice 600 

            

 
Inspire 2 

            

 
Falcon 8+ 

            

2) Nuclear Instrumentation: Radiological inspection is 

of vital importance throughout all the stages of the 

dismantling and decommissioning process of a nuclear 

site. However, this activity requires specialized 

radiological measurement units to enable a robot to 

quantify radiological activities and to collect all the 

information necessary to interpret the radiological spectra. 

These units must be able to perform three kind of surveys: 

(1) radiation survey; (2) contamination survey and, finally, 

(3) radionuclide identification. 

Radiation surveys are performed to measure radiation 

dose rates, which are a measure of energy deposited in an 

object. Contamination surveys are used to survey for the 

presence of radioactive materials in a place that they are 

not expected to be. Radionuclide identification is 

performed to identify specific radionuclides present in a 

source or as contamination. For these purposes, the 

nuclear instrumentation of the robot must be highly 

sensitive to radiation as measuring the energy of alpha, 

beta and gamma radiation ranging from low to high is 

fundamental for contamination surveys. Moreover, it 

must be able to distinguish between radiation energies, as 

measuring radiation dose rate is necessary for radiation 

surveys. The nuclear instrumentation of the robot must 

also be able to classify the kind of radionuclides emitting 

radiation for their identification. The volume covered, the 

spatial resolution and the minimum distance allowed to 

detect the kind of radiological activity are also important 

features for the selection of the nuclear instrumentation of 

the robot. The wider the volume spanned by the 

radiological unit is, the greater the distance from the 

hazardous is, the less the dose and the energy of radiation 

which will hit the robot will be. Finally, the 

instrumentation must be lightweight and measurement 

dynamic. It must work at high temperature and it must be 

connectible with the robot via standard interfaces. 

Unfortunately, there exists no nuclear instrumentation 

which meets all the aforementioned functional 

requirements in a single device. Nonetheless, in the 

following we introduce some nuclear measurement units 

currently available on the market which meet some of 

them. iPIX is an ultra-portable high temperature gamma 

imaging system developed by CANBERRA [40]. This 

system can be used on a robot to locate and identify at 

real-time low level radioactive sources while estimating 

the dose rate at the measurement point. It is very light 

weight (∼2.5kg). It has a high detection sensitivity even 

at low energies and it is fully decontaminable. CdZnTe is 

a large volume spectroscopy detector developed by 

RITEC [41]. By means of its spectroscopy performance 
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like high efficiency, high energy resolution, room 

temperature operation, wide detection range and small 

dimensions and weight, this detector can be used for 

nuclide identification. GammaTRACER Series from 

Bertin Instruments are autonomous and hermetically 

sealed gamma dose rate probes for stationary and mobile 

use [42]. These devices integrate 2G/3G/4G, radio, 

satellite communication modules as well as GPS. They 

are designed for continuously measuring (with adjustable 

cycle times), recording and transmitting the 

environmental gamma dose rate. The APOC PRO 

produced by AeroSplice is a highly sensitive radiation 

sensor capable of detecting gamma and beta radiation 

[43]. This device is low voltage and it has been designed 

for the embedded systems market thus making it suitable 

for Unmanned Aerial Vehicles (UAVs). 

3) Coordination and Cooperation: Coordination and 

cooperation of expendable robots for monitoring and 

inspection activities of a nuclear site (e.g., exploration, 

coverage and patrolling) need to account for several 

critical factors, of which the foremost is the 

communication (see Section I). 

Long coaxial cables for remote handling 

communication can be ruled out as they would easily get 

stuck between the waste or the structural parts of the site. 

Wireless networks are not commonly used in nuclear 

installation as they would need to be adapted to hostile 

environments [27]. Hybrid communications involving 

both tethering and local wireless links (e.g., Zigbee, Wi-

Fi, WiMAX, and LTE) seems to be an appealing solution 

[44], [45]. Due to the potential loss of a robot of the team 

the network topology changes. This problem must be 

addressed in order to keep the connectivity among the 

remaining robots of the team. Under this perspective, 

adaptive tree-based algorithms accounting for overhead 

reduction and low battery power consumption constraints 

shall be employed as mechanisms for efficient neighbour 

discovery and routing [46], [47]. 

Special attention must be also paid to knowledge 

management. It constitutes the basis of any mechanism of 

decision making underpinning coordination and 

cooperation. The first problem related to knowledge 

management regards the integrity of the perceptual 

information of the individual robots operating in a 

contaminated area. This integrity depends upon the 

amount of disturbances affecting the sensor readings. 

Such disturbances may vary as the kind of robot, the price, 

the sensor suite, the type of irradiation resistance and the 

operational distance from a certain type of radiation 

change. To mitigate this problem techniques based on 

signal-disturbance discrimination should be adopted [48]. 

Another issue concerns the merging of the percepts of the 

individual robots for environment modelling. These 

percepts may have different representations and may be 

of different kind depending on the perceptual systems 

which built them. Moreover, only a part of these percepts 

may require merging while another could be kept 

separated. Common memory structures based on 

hierarchies of ontologies are a compelling solution [49], 

[50]. In addition to merging, these structures also favour 

the consistency and the persistence of the models. 

Moreover, they can also be exploited for decision making 

and knowledge discovery especially in the presence of 

missing information [51]. 

Finally, coordination and cooperation of expendable 

robots in nuclear domain applications need to account for 

team formation and coalition also under a parent-child 

grouping paradigm. Parent-child grouping is of particular 

interest if we want to make the most of both the strengths 

and the weaknesses of the locomotion mechanisms of 

every single robot of the team to access and reach the 

different areas of a nuclear site. An explanatory example 

may be the one in which an area of the nuclear site 

potentially contaminated would be reachable passing 

through a narrow passage on the top of a staircase. 

Another case may be the one in which it would be 

necessary to inspect the interior of a pipe whose entrance 

is located in the middle of a cooling tower. In the first 

case, a platform similar to Absolem (parent robot) by 

means of its triple-track locomotion system could climb 

the stairs carrying a vehicle like Devastator [52] (child 

robot). Once on the top, Devastator could get off and 

enter into the narrow passage because of its smaller size. 

In the latter, a UAV (parent robot) could fly through the 

cooling tower and carry a light weight robot (child robot) 

up to the entrance of the pipe. However, modelling such a 

behavioural control is very challenging as the dynamics 

of this form of grouping is quite complex and 

unpredictable [53], [54]. Multi-Robot Reinforcement 

Learning (MRRL) would provide a huge advantage [55]. 

It would allow robots to grab appropriate behaviours and 

interactions, without relying on a complete model of the 

environment. This particularly would benefit expendable 

robot teaming when some of the robots are lost or the 

environment is changed. 

IV. CONCLUSION AND ONGOING WORK 

In this work we introduced the concept of expendable 

robot teaming in extreme environments. We describe the 

main principles and motivations underpinning this 

concept in relations to the different properties of an 

extreme environment. We analyzed several robotic 

technologies in relation to these types of environments, 

focusing our attention to nuclear sites, and we also 

derived general criteria which can be applied to 

determine whether a robot technology can be considered 

expendable.  We finally report some of the most critical 

research challenges which must be carefully addressed 

when multi-robot systems are deployed in these 

environments. 

We are currently using the concepts and principles of 

expendable robot teaming to develop a framework 

enabling a team of heterogeneous robots to build and 

maintain over time a collective and continuous spatio-

temporal radiological assessment of nuclear submarine 

reactor compartments. The main purpose is to identify the 

presence of intermediate-level radioactive waste in the 

compartments after the removal of the nuclear fuel from 

the reactors. 
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