

632

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res
doi: 10.18178/ijmerr.8.4.632-638

Design and Implementation of Flood Fill and

Pledge Algorithm for Maze Robot

Semuil Tjiharjadi
Computer Engineering Dept., Maranatha Christian University, Bandung, Indonesia

Email: semuiltj@gmail.com

Abstract—Maze Robot is a path finding autonomous mobile

robot which can reach a certain point. One of its capabilities

is moving from one point to another autonomously. Maze

Robot is able to explore an unknown environment. Map the

environment and seeking good path to reach a certain point.

This MazeRobot is a mobile robot which moves using wheels

with differential steering type. It is designed to solve a maze

environment that has a size of 5 x 5 cells and it is used to

implement the flood-fill algorithm and the pledge algorithm.

It is using ultrasonic range finders to detect walls and

opening in the maze. The robot has ability to use pledge

algorithm to collect the information and learn the maze, it

finds all possible routes and solve the problem using the

shortest one. Result of experiments show the robot can

explore the maze and map it, Robot also can find the

shortest path to destination point with 80% success rate.

Index Terms—flood fill algorithm, pledge algorithm, path

finding, maze

I. INTRODUCTION

One of important features of mobile robotics is

autonomous navigation. It is the ability of the robot to

independently move to target location without being

controlled. There are many algorithms have been

developed for this purpose, each of them is having their

own strengths and weaknesses.

Autonomous navigation is an important feature of

mobile robotics. It allows the robot to independently

move from a place to target location without a tele-

operator. There are several techniques and algorithms

have been developed for this purpose, each of them

having their own advantages and disadvantages [1-7].

As an autonomous robot, Path Finding Robot uses

structured techniques and controlled implementation of

autonomous navigation which is preferable in studying

specific aspect of Flood Fill Algorithm and Pledge

Algorithm [1]. This research discusses implementation of

a small size mobile robot designed to solve a maze based

on the both algorithms.

Robot maze problems are based on decision making

algorithm that is very important field of robotics. Mobile

robot has path finding task to solve a maze in the least

time possible and using the shortest way [2]. It must

navigate from a corner of a maze to the center as fast as

possible [3].

The robot knows where the starting and target location,

but it must look all information about the obstacles to

achieve target location. The maze is composed of 25

square cells, where the size of each cell is about 18 cm x

18 cm. The cells are arranged to form a 5 rows x 5

columns maze. One cell at its corners is a starting

location and the target location is at the center of the

maze. Only one cell is opened for passing. Maze walls

and support platform’s requirements are provided in the

IEEE standard.

II. LITERATURE REVIEW

A. Breadth First Search

Breadth First Search is a search algorithm that begins

at the root node and explores all the neighboring nodes

until it finds the goal. It needs large memory space. It

discovers few solutions and at least one has shortest path.

All nodes obtained by expanding a nearest neighbor node

in First In First Out queue. Breadth First Search works

poorly when the solutions have long path. It has large

space complexity.

B. Depth First Search

Depth First Search is an algorithm for searching a

graph or tree data structure uses Last In First Out queue.

It is simple to implement, starting at the root node and

goes as far as it can down in path, and then backtracks

until it finds an unexplored path, and then explores the

new one, until it finds the target. Depth First Search’s

problem it requires large computing power, for small

increase in map size, runtime increases exponentially [7].

C. Heuristic Function

Heuristic function is a function that is using all

mapping information to inform the search about the right

direction to a goal. It maps problem state descriptor to a

number which represents degree of desirability. It plays

vital role in optimization problem [8].

D. Genetic Algorithm

Genetic algorithm is inspired by natural evolution to

find approximate optimal solution. Advantages of

Genetic algorithm are it solves problem with multiple

solutions. But it needs very large input and data.

Problems of Genetic algorithm are certain optimization

cases cannot be solved due to poorly known fitness

function. It is not able to assure constant optimization

response times because of the entire population are

improving [9].

Manuscript received July 10, 2018; revised April 26, 2019.

633

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

E. A* Algorithm

A* is one of most popular methods for finding the

shortest path in a maze area. It is developed as

combination heuristic approaches like Best First Search

(BFS) and formal approaches like Dijkstra’s algorithm. It

is an algorithm which cost associated with each node is

calculated using admissible heuristic likes BFS. It follows

its path with lowest known heuristic cost. Likes BFS that

needs large memory requirement to store its drawback

information, A* also needs the large memory too for the

same reason because entire open list is to be saved [4].

F. Flood Fill Algorithm

Flood fill algorithm that also known as seed fill

algorithm, is an algorithm that determines the area

connected to a given node in a multi-dimensional array.

This algorithm needs all information of maze and proper

planning [3]. It is used widely for robot maze problem.

The Flood fill algorithm gives values to each node that

represents the distance of the node from the center. It

floods the labyrinth when it reaches a new cell or node.

This algorithm requires continue update [11].

G. Wall Follower Algorithm

Wall follower algorithm is used left or right-hand rule.

Robot detects its left or right side on the wall at the start

of the maze, and then starts moving. Never lose left or

right-side detection. It works for a simply connected

maze.

H. Pledge Algorithm

The pledge algorithm is designed for circular obstacles

and has an initial direction to move forward. The robot

will run in the main direction until it finds obstacles.

When the robot finds an obstacle, the robot will use a wall

follower search method and will avoid obstacles by

prioritizing the right or left side. It will calculate total turn

and try to return to initial direction (total turn count is “0”)

[8].

III. HARDWARE DESIGN

This research is using miniQ 2WD robot chassis as

robot base construction. Fig. 1 is the chassis of the robot.

It consists of a robot chassis with 122mm diameter, a

couple wheels, a piece of ball caster and a couple Direct

Current (DC) motors which have gearbox and also DC

motor bracket.

Figure 1. 12WD miniQ robot chassis.

Figure 2. Mobile Robot from side view.

This maze robot also has a couple pieces rotary

encoder. Rotary encoder attached to the DC motor to

calculate the rotation of the wheels. It is shown in Fig. 2

[12]. Fig. 3 is shown the block diagram of design of

whole hardware system and the flowchart of main

program can be seen at Fig. 4.

Figure 3. Maze robot’s block diagram.

It has three infrared sensors to detect front, right and

left position of the maze wall. This maze robot uses

driver L293D to control the speed and rotation of a DC

Motor [13]. It also has rotary encoder that has a job to

calculate the rotation of both wheels. Push button is used

to start the robot.

Robot system would drive DC motors to move the

wheels. It would control the robot to move forward, turn

to the left or right, and rotates reverse [14]. This maze

robot has an AT Mega 324 microcontroller to respond the

input signal and run the actuator based on processing

algorithms [10]. All status and information are displayed

on the Liquid Crystal Display (LCD) 16 x 2 at Figure 5.

The maze designed for the robot to solve is of the size

of 5×5 cells as shown in Fig. 6. The actual maze

constructed, as shown in Fig. 7, has a physical size of

about 1.32 m
2
. The maze was designed so that it will have

two paths for it to be solved. One of the paths is longer

than the other. The robot (Fig. 2) must decide which one

of the paths is shorter and solve the maze through that

path.

634

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

Figure 4. Flowchart of the main program.

Figure 5. Mobile robot from above view.

IV. ALGORITHM

There are several algorithms that can be implemented

to solve the maze cases. One of the suitable algorithms to

search goal in the middle of the maze is Flood-fill

algorithm. In this case, flood-fill algorithm was chosen to

solve the maze due to its simplicity but efficient [3].

Figure 6. The layout of maze.

Figure 7. The maze arena.

Together with the flood-fill algorithm that is used to

find the fastest way to reach the destination, a pledge

algorithm is used to determine the priority of the direction

taken when the robot finds the same priority value based

on the flood-fill algorithm. The pledge algorithm will give

the +1 value to the ‘Turn’ variable every time you turn

right and -1 value every time you turn left. The goal is to

achieve the goal by prioritizing the smallest possible

‘Turn’ variable value. So that every time the pledge

algorithm finds an intersection, the turn decision that is

taken is to reduce the ‘Turn’ variable value of the rotation.

This pledge algorithm is used to help flood-fill algorithms

so that they have smarter decisions [5].

Artificial Intelligence program has two-dimensional

memory array to map the maze’s arena which has size of

5x5. The memory array is used to store information in

each cell walls of the maze and each cell value

information. The robot’s positions in the program are

expressed by the coordinates (row, column). The

movement of the robot in the array is done to position the

robot as in Figure 8.

The coordinates of the line will increase 1 when the

robot moves one cell to the South. On the other hand, it

will be reduced by 1 when the robot moves to the North.

The column will be reduced by 1 when robot moves to

the West, and it will be increased by 1 when robot moves

to the East. Robot has already information about the

initial orientation, the initial position, the size of the maze

and the location of the maze’s outer walls.

635

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

The Flood fill algorithm has four main steps: the first

is wall data updates, second is cell value updates, the

third is the smallest neighbor cell calculation, and the last

is moving to the smallest neighbor cell.

Figure 8. Robot’s Array Movement

A. Wall Data Update

Robot will check its environment, any walls in its three

directions: right, left and front directions. The robot will

also detect the distance of any obstacle of its three

directions. Anyone exceed 20 cm is updated as “wall” on

its respective side. Flowchart in the Figure 9 describes the

wall data update mechanism.

The maze robot also needs to know which direction it

is facing so it knows where to go: north, east, west or

south. Table 1 describes the relation of robot orientation

and wall sensor detection. The robot has an initial

orientation when it starts at the beginning and will

continue to track changes in direction.

TABLE I. ROBOT ORIENTATION AND WALL DETECTION

Robot

Orientation

Wall Sensor Detection

Right Front Left

South West wall South wall East wall

West North wall West wall South wall

North East wall North wall West wall

East South wall East wall North wall

B. Cell Value Update

Update cell values (refill each cell with a new value)

serves to adjust the value in each cell wall position that

has been updated by the robot. Values stored in a 2-

dimensional array of 5x5 memory cells. Update cell

values is done using the flood fill algorithm.

Updating the cell value subroutine to function by

resetting the previous cell value, then giving a value of

255 in each cell, then filling in the values of these cells in

stages, the initial value 0 to all cells filled in with the

value. The cells that will be updated are the current level

array while the neighboring cells will be entered in the

next level array. After the value filling process is

complete, the cells in array next level will be moved to

the current level array to do the next value. The update

process will be complete if the array cell next level is

empty.

C. The Smallest Neighbor Cell Calculation

Subroutine determines the smallest neighbor cell that

functions to find neighboring cells that have the smallest

value. The search for the smallest neighbor cell is done

based on priority, so that if there is more than one

neighbor cell that has the smallest value, then the cell

selected is a cell that has a higher priority.

Figure 9. Flowchart for updating wall location at each cell

Prioritization is arranged based on the movement of

the robot moving forward one cell has the first priority,

the second priority is to move one cell to the right, while

the third priority is to move one cell to the left, and the

fourth or last priority is to move one cell backwards. For

example, if a robot faces the East, then the East cell has

the first priority, the two South has the priority cell, the

cell has the third priority North and the Western cell has

the fourth priority as in Figure 10. If the robot faces the

East, the East cells have the first priority, South cells

have a second priority, North has third priority cells, and

Western cells have a fourth priority.

Figure 10. Priority of Neighbor cell

D. Moving to the Smallest Neighbor cell

Program subroutines move the robot to the smallest

neighboring cells, after the robot finds neighboring cells.

To move to a cell, the robot must know the location of the

cell. Next, the robot will move to the cell by observing

636

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

orientation. For example, if the South cell is the smallest

cell and the orientation of the robot is facing west, then

moves to the position of the cell, the robot must turn left,

then move forward as in Fig. 11. If the South cell is the

smallest cell and the orientation of the robot is facing east,

then moving to the position of the cell, the robot must

rotate to the right, then move forward.

Figure 11. Moving to smallest neighbour cell.

V. RESULTS AND DISCUSSION

In this experiment, Robot will learn to find the shortest

path from the starting cell (line 4, column 0) to the

destination cell (row 2, column 2) and then back again to

the initial cell. The initial orientation of the robot is

facing the North.

The maze simulator program aims to facilitate the

observation on how the flood fill algorithm. Figure 12 is a

view maze simulator program. Maze blue wall is a wall

that position known to the robot. While the maze walls

are colored orange wall position is not known by the

robot.

Figure 12. Simulation search path to cell (2,2), Turn = 0

First experiment, Robot will perform a search of the

initial cell lines (4.0) to the destination cell (2, 2). Flood

fill algorithm simulation results when a search of the cell

lines (4, 0) to the cell (2, 2) are shown in Figure 12to 22.

Figure 13. Simulation search path to cell (2,2), Turn = 0

Figure 14. Simulation search path to cell (2,2), Turn = 0

Figure 15. Simulation search path to cell (2,2), Turn = 0

Figure 16. Simulation search path to cell (2,2), Turn = 0

Figure 17. Simulation search path to cell (2,2), Turn = 1

Figure 18. Simulation search path to cell (2,2), Turn = 1

637

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

Figure 19. Simulation search path to cell (2,2), Turn = 2

Figure 20. Simulation search path to cell (2,2)), Turn = 1

Figure 21. Simulation search path to cell (2,2)), Turn = 2

Figure 22. Simulation search path to cell (2,2)), Turn = 3

The second experiment is an attempt to find the path of

the robot to the starting point of the experiment 1. The

robot spins to look for the direction of the starting

position. If the robot gets more than one possible initial

direction, then the south direction will be set as the first

direction. If there is only one choice, then the initial

direction of the robot position is directed at the open wall.

In this second experiment, the robot gets East as the

starting direction. This robot trip can be seen in Figures

23 to 28.

Figure 23. Simulation search path to cell (2,2)), Turn = 0

Figure 24. Simulation search path to cell (2,2)), Turn = 1

Figure 25. Simulation search path to cell (2,2)), Turn = 2

Figure 26. Simulation search path to cell (2,2), Turn = 2

Figure 27. Simulation search path to cell (2,2), Turn = 2

638

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res

Figure 28. Simulation search path to cell (2,2), Turn = 1

After the robot updates the wall data while running a

search on the first experiment and travels home in the

second experiment, the robot has enough data to find the

fastest path to the destination in the cell (2,2). All robot

search and back home information make the robot can

find the shortest path the cell (2.2) on third experiment. It

can be seen in Table II.

TABLE II. ALL ROBOT EXPERIMENTS

Routes Number

of steps

First
run

(4,0) (3,0) (2,0) (1,0) (2,0) (3,0)
 (3,1) (3,2) (3,3) (2,3) (2,2)

10

Return
home

(2,2) (2,3) (3,3) (3,2) (3,1) (3,0)
 (4,0)

6

Second
run

(4,0) (3,0) (3,1) (3,2) (3,3) (2,3)
 (2,2)

6

Wall map data will be updated when the robot go to

cells that have not been visited before. Flood fill algorithm

will update the value of the cell based on the position of

the wall that has been mapped out by the robot. Robots

always perform movement to neighboring cells which

have the smallest value. If there is more than one

neighboring cell that has the smallest value, then the cell

selection will be done on a priority basis. Go forward has

first priority, turn to the right has the second priority, turn

to the left has a third priority, and move backwards has a

fourth priority.
The value is changed in accordance with the position

of the wall that has been mapped out by the robot. Cell

values represent the cell distance to the destination cell.

VI. CONCLUSION

This design and implementation of the robot is a study

about the ability to equip a small mobile robot with the

ability to learn how to navigate in unknown environment

based on its own decisions. The flood-fill algorithm was

found to be an effective tool for maze-solving of a

moderate size. For the robot to make its decisions it relies

on inputs from several sensors, namely the ultrasonic

range sensors and wheel rotation decoders.

The robot has successfully able to map the maze in the

first, return home and second runs. In its second run it

reaches its target cell through the shortest route it has

mapped in the previous first run and return home.

Future works may include to studying the robot’s maze

solving capability in a larger, more complex maze and

more combination of algorithms. It is also need better

object sensor, such as a wide laser range finder, for better

search.

REFERENCES

[1] Bekti, Samudra Harapan, “Pencarian shortest path

dinamikdenganalgoritma bellman based flood fill dan
implementasinya pada robot micromouse,” Institut Teknologi

Bandung, 2009.

[2] Elshamarka, Ibrahim and Abu Bakar SayutiSaman, “Design
and implementation of a robot for maze-solving using flood-fill

algorithm,” Universiti Teknologi Petronas, 2012.

[3] Tjiharjadi, S. and E. Setiawan, “Design and implementation of
path finding robot using flood fill algorithm,” International

Journal of Mechanical Engineering and Robotics Research, vol.

5, no. 3, July 2016, pp. 180-185.
[4] Tjiharjadi, S., M. C. Wijaya, and E. Setiawan, “Optimization

maze robot using A* and flood fill algorithm,” International

Journal of Mechanical Engineering and Robotics Research,
vol. 6, no. 5, September 2017, pp. 366-372.

[5] I. Elshamarka and A. B. S. Saman, “Design and
implementation of a robot for maze-solving using flood-fill

algorithm,” International Journal of Computer Applications,
vol. 56, no. 5, pp. 8-13, October 2012.

[6] A. Ansari, M. A. Sayyed, K. Ratlamwala, and P. Shaikh, “An

optimized hybrid approach for path finding”, International
Journal in Foundations of Computer Science & Technology

(IJFCST), vol. 5 no. 2, pp. 47-58, March 2015.

[7] K. Sharma and C. Munshi, “A comprehensive and comparative
study of maze-solving techniques by implementing graph

theory,” IOSR Journal of Computer Engineering, vol. 17, no. 1,

Ver. IV, pp. 24-29, 2015.

[8] R. K. Sreekanth, “Artificial intelligence algorithms,” IOSR
Journal of Computer Engineering (IOSRJCE), vol. 6, no. 3

September-October, 2012.

[9] Cook, David., Intermediate Robot Building. New York: Apress.
2010.

[10] Mazidi, M. Ali, S. Niami, D. S. Niami., The AVR

Microcontroller and Embedded System. New Jersey: Prentice
Hall. 2011.

[11] B. Thomas, Embedded Robotics. Berlin: Springer. 2006.
[12] Rizqiawan, Arwindra, Sekilas Rotary Encoder.

http://konversi.wordpress.com/2009/06/12/sekilas-rotary-

encoder/, Juni 2014.
[13] S. Paul, Practical Electronics for Inventors. New York:

McGraw-Hill. 2000.

[14] G. W. Lucas, A Tutorial and Elementary Trajectory Model for
the Differential Steering System of Robot Wheel Actuators.

[Online]. Available:

http://rossum.sourceforge.net/papers/DiffSteer/, Juni 2014.

Semuil Tjiharjadi is currently serves as vice

rector of capital human management, assets and
development. He is also Lectures in Computer

Engineering Department. His major research on

Robotics, Computer automation, control and
security. He has written several books, To Be a

Great Effective Leader (Jogjakarta, Indonesia:

Andi Offset, 2012), Multimedia Programming
by SMIL (Jogjakarta, Indonesia: Andi Offset,

2008), Computer Business Application

(Bandung, Indonesia: Informatics, 2006) and so on. The various

academic bodies on which he contributed as: Head of Computer
Engineering Department, Member: Senate of University, Member:

APTIKOM, Member: MSDN Connection, Member: AAJI.

