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Abstract—Flexible joint single-link manipulator is a 

nonlinear system with many applications in industry such as 

car assembly plant, beer factory. However, this manipulator 

has many disadvantages including unknown parameters, 

external disturbances as well as holonomic constraint force. 

In order to overcome these challenges, many researchers 

employ the disturbance attenuation control scheme. It was 

hard to obtain the asymptotic stability in closed system due 

to the influence of disturbances. Moreover, the attraction 

region was also estimated exactly because of no knowledge 

of disturbance influence. This paper presents an external 

disturbance observer (DO) for flexible joint single-link 

manipulator. Moreover, the arbitrary small attraction 

region is obtained by using the suitable parameters. The 

main result of this paper is proposed based on theoretical 

analysis of differential equations without any traditional 

Lyapunov stability analysis. Furthermore, several 

explorations that depend on parameters are given out. 

Offline simulation results pointed out the high effectiveness 

of the proposed methods.  

 

Index Terms—disturbance observer (DO), sliding mode 

control (SMC), single-link manipulator, flexible joint 

 

I. INTRODUCTION 

Almost all industrial systems are affected by external 

disturbances, such as manipulator control systems and 

robotic systems [1]. Because of removing disturbances 

that probably cannot be measured, we estimate them to 

design sliding mode control based on disturbance 

observer (DO) [2]. However, authors in [2] have not 

discussed about the arbitrary small attraction region by 

using the suitable parameters. In [3], the proposed 

controller ensures the improvement of disturbance 

attenuation. In contrast, the reduction of computation 

amount is the important task. Besides, external 

disturbance mentioned depends only on time. Our work 

uses the sliding mode control to absolutely obtain 

arbitrary small attraction region based on the suitable 

parameters. In [1], the flexible joint is a phenomenon 

including a loose connection between the motor and the 

link in the installation, or because of the material's 

substantial twisting properties, which results in a different 
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angle of rotation of the motor and the arm. Soft couplings 

are an important accessory in pipe design that connects 

the parts together to ensure the stability of the operating 

system. In addition, the coupling also functions to 

significantly reduce the load, while preventing overload 

[4, 5, 6]. Many control schemes have been utilised based 

on robust adaptive control without estimating disturbance 

[7-11]. Moreover, we explore the influences of 

parameters to obtain results. The paper is organised as 

follows: In the second section, we focus on problem 

statements. In the next sections, we pay attention to 

design the proposed controller for single-link manipulator 

and explore the influences of the parameters. In the fifth 

section, we present the simulation results providing 

evidences for these theoretical analyses. The final section 

offers a brief conclusion. 

II.     PROBLEM STATEMENT 

Consider that a class of nonlinear system is described 

as follows [2]: 
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Here,  1 2
...

T n

n
x x x x   is the vector of state variables, 

u  is the control input, and y  is the output signal. 

The external disturbance ( , ) 1,2,..., 1
i

d x t i n   does not 

depend on control input, while the disturbance  ( , , )
n

d x u t  

depends on u . The functions ( ), ( )a x b x  are continuous 

functions and   0;b x x  . 

Assumption 1: Every disturbance is continuous and 

satisfying the inequalities: 

( , )
1,2,..., ; 0,1,...,

j

i

j

d d x t
i n j r

dt
    
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The control objective is to find the control input to 

obtain that the output signal converges to attraction 

region in the presence of external disturbances. 

III. EXTERNAL DO BASED CONTROL 

Initially, we concentrate on designing the DO as 

described: 

The system (1) is affected by disturbances 

( , ) 1,2,..., 1
i

d x t i n  . We implement the observer to 

estimate disturbances based on the following formulas as 

described in [2]: 
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On the other hand, towards the component ( , , )
n

d x u t , 

the corresponding observer has been pointed out [2]: 
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where 
ijp

 
is auxiliary variable and 

ijl  is the arbitrary 

positive constant ensuring that the matrix, 

1

2
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has all eigenvalues belonging to the left side of the 

complex coordinate plane. 

Remark 1: We absolutely adjust the speed of observer 

error by selecting the eigenvalues. 

Remark 2: It is necessary to ensure that the time of 

convergence of sliding surface is finite. The fact is 

described based on the following example: 

We consider the system as follows: 
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Ax Bs

dt

ds
Cx Ds
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where: , , ,
n n n r r n r r

A B C D
   

    , s is the sliding surface. 

Selecting A  is Hurwitz matrix and A B

C D

 
 
 

 is not Hurwitz 

matrix. We obtain that although s  converges to 0 in 

infinite time,  x does not converge to 0. 

In [2], the sliding surface has been selected: 

1 1
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and the modified sliding surface: 

*
(0)

t
e


  


 

 

where   is arbitrary positive constant. 

From the estimation (2) and (3), the control input has 

been proposed in [2]: 
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The stability analysis has been proved in [2]. We 

obtain that: 2 i i i

i

mi

PE
e




 , where  

...
r

i i i ie d d d 
  

, 
iQ  is 

a given positive defined matrix ,
mi  is the smallest 

eigenvalue of 
iQ  and 

iP  is the solution of the equation: 
T

i i i i iD P PD Q   . Let 

1

2
max

i i i

i
mi

PE 



                             (5) 

Therefore, 1ie   for all i . 

IV. MAIN RESULTS 

Firstly, we propose the analysis of parameters’ 

efficiency on control system as follows: 

• The term *1

( )
l

k
b x




 guarantees the chatter reduction 

combined with selecting suitable value 
sk  described as 

follows: 

* 1

2

s

l

A nB k

k

 
 

 
   

where A  is defined as the sum of coefficients ( )j

i
d  
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   
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.
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B  is the maximum value among the coefficients  ˆ j

id . 

• The selections of positive constant numbers 

 1,2,..., ; 1,2,...,
ij

l i n j n   in order to obtain the matrix 
i

D  

have all eigenvalues that are far from imaginary axis. It 

can be clearly seen that the higher distance would 

certainly increase the convergence speed of estimation 

errors. 

• The increasing of coefficient 
ic  increases the 

convergence speed. However, the chatter of modified 

surface goes up respectively. 

Remark 3: The above conclusions can be proved 

easily and they will be illustrated clearly in the first case 

of the next section. In [2], the authors put forward to deal 

with the uncertain systems by transforming 

( ) ( ) ( , , )
nnx a x b x u d x u t    with    ,a x b x containing uncertain 

components and control signal u  contains the external 
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unmeasured disturbance to ˆ ˆˆ ˆ( ) ( ) ( , , )
nnx a x b x u d x u t    with 

   ˆˆ ˆ, ,a x b x u  that are measured signals and: 

ˆ ˆˆ ˆ( , , ) ( ) ( ) ( , , ) ( ) ( )
n n

d x u t a x b x u d x u t a x b x u     . 

Following this method, the authors have to know full 

information of the parameter of the system and it is clear 

that the bound region of state may be large. Therefore, we 

construct a new control law for the class of partly 

unknown systems below: 
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                 (6) 

where the parameter   is unknown vectors and  , ,nd x u t  

included uncertain parameters and disturbance of system. 

Similar to (1), (2), (3), we choose: 
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The control law is defined: 
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with the adaptive law of   designed as follows: 

  *ˆ a x                                         (8) 

and   is a positive number. 

As with (5), we can prove that: 1ie  . 

Consider Lyapunov function    *
2
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From (8), we have: 
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 Since the bound of 
ie  and assumption 1, there exists 

a finite number   such that: 
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 

1 1 1 1
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Therefore: 
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If we choose k  , we have: 

 1/22 2 2

dV dt
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Integrating (9) over the time interval 0 t   we 

obtain: 

   
 

1/2 1/2 0
2 2

t
V t V

k 
  


. 

Consequently,  V t  can reach zero in a finite time 
st  

that is bounded by:  
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V
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V. SIMULATION RESULTS 

We implement simulations in the two cases: 

In the first case, we consider the flexible joint 

manipulator being described by the following equations: 

   1 1 1 2

2 2 1

sin K 0

( )

Iq MgL q q q

Jq K q q u

    


  
            (11) 

where ,I J  are the inertia moments of joint, motor, 

respectively. M  and L  are the mass and length of link. 

K  is the stiffness of the joint. 

We give transformation from (1) into (11) by using: 

1 1
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                                      (12) 
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z z z z
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   (13) 

Remark 4: The conditions of system    x f x g x u   

to be transformed into the parametric strict-feedback form 

can be found in [12]. 

In order to obtain (1), we define:  

3 4
1 2 3 4 1 2( )

T

T Kz Kz
x x x x z z

I I

 
  
 

. 

We get the following equations:  
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1 2
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.                  (14) 

However, because the manipulator is affected by 

external disturbance and uncertainties, therefore we 

obtain new dynamic equations: 
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where 0.1 0.1     is described by parameter error, v  is 

the external disturbance of input. Define: 
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Based on the general design in (4), we obtain the 

control input as follows: 

Step 1: Select the DO 

We can implement the order 2 or 3 DO and the order 3 

is better. Thus, we obtain the result: 
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Step 2: Sliding Surface and control input 

The sliding surface and modified sliding surface are 

selected as follows: 

1 1 2 2 3 3 4 3 2 2

ˆˆc x c x c x x c d d        

*

1 1 2 2 3 3 4 3 2 2
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The control input is obtained: 
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We have                     *
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2
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l
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We absolutely obtain arbitrary small attraction region 

by using the suitable parameters. 

Step 3: Algorithm 

Find the parameters of (1) 

Estimate the disturbance of input 

Select 
21 22 23 41 42 43, , , , , 0l l l l l l   satisfy matrix 

21

22

23

1 0

0 1

0 0

l

l

l

 
 

 
  

 

and 
41

42

43

1 0

0 1

0 0

l

l

l

 
 

 
  

 have eigenvalue belonging the left side 

of complex coordinate plane. 

Select the set 
1 2 3{ , , }s s s  such that each element is positive 

and big enough. From the equations: 

3 2 3 2

1 2 3 21 22 23 41 42 43( )( )( )s s s s s s s l s l s l s l s l s l          
 

We can choose 
21 22 23 41 42 43{ , , , , , }l l l l l l . 

Selected 
4 5 6{ , , }s s s  are positive and big enough. 

From the equation: 
3 2

4 5 6 3 2 1( )( )( )s s s s s s s c s c s c       , we can choose 

1 2 3{ , , }c c c . 

Selecting 0.1, 0sk    , >0   big enough and k 0l   

is bigger than ij, il c . 

Finally, we obtain the control law. 

Simulation results based on parameters (Table I) as follows: 

TABLE I. THE PARAMETER OF SYSTEM 

I J M G L K 

Inertia 
moment of 

joint 

Inertia 
moment 

of 

motor 

Mass 
of 

Link 

Gravity Length 
of Link 

Stiffness 

2.kg m  
2.kg m  kg  2.m s  

m  N.m/rad 

1 2 1 10 2 100 

 

A. Change the Parameter ijl  

The estimation errors in 2d  and 4d  are reduced when 

eigenvalues of iD  matrix change. Because in [2], we 

have the following equation: 

 r

i i i i ie De E d                                (18) 

The estimation error in 2d  and  4d  are reduced if the 

eigenvalues less than 0 and far from imaginary axis. 
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Figure 1. Result of change 
ijl  

21 41 22 42

21 41 22 42

1 100, 20

2 100, 1875

l l l l

l l l l
 

 
B. Change of the Parameter ci 

If the set of parameters c makes the polynomial’s root 

less than 0 and far from imaginary axis, the 
~ ~

*

2 4 1, , ,d d x  

comes to the domain of attraction fast. The domain of 

attraction is less. 

Since we have the following: *
2:T t T       (19) 

Let’s look at the case at the border:  

. .. ...

1 1 2 1 3 1 1 2 (0) tc x c x c x x e         (20) 

The root of the equation (20) is as follows: 

31 2 42

1

s ts t s t s t tx Ae Be Ce De Ee
c

 (21) 

Therefore, in the best case (at the boundary), the output 

signal comes to the neighbourhood of 0 when we select 

parameters to 1 2 3 4{ , , , , }s s s s  that are big. Subsequently, 

1 1 2 3 4c s s s s  is a big number. 

 

Figure 2. Result of change 1c  

1 2 3

1 2 3

1 2 3

1 125, 75, 15

2 1000, 300, 30

3 1000000, 30000, 300

c c c

c c c

c c c

 

C. Change of the Parameter α 

If α becomes large, 
~ ~

*

2 4 1, , ,d d x  will come fast to the 

attractive region. 

We select * (0) te  to have *

2(0) 0 . 

The component te  is selected because 
: lim 0

n t

nt

d e
n

dt

. 

However, if  becomes large, *

(0)
d

dt

 increase and *  can 

be cone large when 0t . 

 

  

Figure 3. Result of change  

D. Change of  kl and ks 

Because of equation (17), we think that if lk  and sk  

increase, 
*

1, x  will come to the attractive domain fast. 

The domain of attraction is less. 
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Figure 4. Result of change of kl and ks 

E. The Degree of the DO 

If we increase the degree of the DO, we will have 

better results. The estimation error in 2d  and  4d  are 

reduced. 

We can find the difference between 2
nd

-DO and 3
rd

-DO 

from Fig. 5. 

 

 

Figure 5. Comparison between 2nd-DO and 3rd-DO 

In the second case, we consider the following system 

being the individual case of nonlinear system (1): 

   

1 2 1

2

1

1

1 2 2

2

( , )

cos

x x d x t

x u

y x

x
x

x
 

 

  






 
  

 



 

where: 
2

1 2 1

1 2

11 12

sin( ) ; (0) 0.1 0 ;

10; 0; 10; 1; 1.

100; 20;

T

l s

d x t x x

k k c c

l l

 

 
Figure 6. The dynamic of modified sliding surface 

 
Figure 7. The behaviour of output signal corresponding to variation of c 

 
Figure 8. The behaviour of input control signal corresponding to 

variation of α 

 

Simulation results show good points of sliding surface 

and input and output (Figs. 6, 7, 8) in our method. In Fig. 

6, the first result shows that when 
lk
 
increases from 10 to 

100, the border of the attraction region of modified 

sliding surface is smaller but the level of chatter goes up. 

The second result describes that when 
1c  increases from 

10 to 1000, the output signal converges to the attraction 
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region faster. The last result is clearly seen that when   
has a significant change from 1 to 100, the chatter of the 

input control will be reduced. 

VI.  CONCLUSION 

This work proposed the sliding mode control law 

based on disturbance observer for single-link manipulator, 

which is a nonlinear system with unknown parameters, 

external disturbances as well as holonomic constraint 

force Thanks to the proposed example, the problem of 

finite time in sliding mode control was mentioned as well 

as the estimation of this time was pointed out by using the 

theoretical analysis of differential equations. Moreover, 

we absolutely obtain arbitrary small attraction region by 

using the suitable parameters. It can be noted that this 

estimation of attraction region enable us to obtain the 

better result than previous work in [11] without any 

traditional Lyapunov stability analysis. We propose a 

new method for partly unknown systems with disturbance. 

Furthermore, several novel estimation technique that 

depend on parameters are given out. Thanks to the 

proposed solution, the tracking problem was determined 

with attraction region estimation. The theory analysis and 

simulation results demonstrate the proposed control 

algorithm.  

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the constructive 

and insightful comments of reviewers to further improve 

the quality of this paper. This work is supported in part 

by the Hanoi University of Science and Technology 

(T2017-PC-105). 

REFERENCES 

[1] K. Melhem and W. Wang, “Global output tracking control of 

flexible joint robots via factorization of the manipulator mass 
matrix,” IEEE Transaction on Robotics, vol. 25, no. 2, pp. 428-

437, 2009. 
[2] D. Ginoya, P. D. Shendge, and S. B. Phadke, “Sliding mode 

/control for mismatched uncertain systems using an extended 

disturbance observer,” IEEE Transaction on Industrial 
Electronics, vol. 61, no. 4, pp. 1983-1992, 2014. 

[3] Chen, “Disturbance observer based control for nonlinear 
systems,” IEEE/ASME Transaction on Mechatronics, vol. 9, no. 

4, pp. 706-710, 2004. 

[4] Chen et al, “A nonlinear disturbance observer for robotic 
manipulators,” IEEE Transaction on Industrial Electronics, vol. 

47, no. 4, pp. 932-938, 2000. 
[5] A. Albu-Schäffer, C. Ott, and G. Hirzinger, “A Unified passivity 

based control framework for position, torque and impedance 

control of flexible joint robots,” The International Journal of 
Robotics Research, vol. 26, no. 1 pp. 23 – 39 , 2007. 

[6] S. E. Talole, J. P. Kolhe, and S. B. Phadke, “Extended-state-

observer-based control of flexible-joint system with experimental 
validation,” IEEE Transaction on Industrial Electronics, vol. 57, 

no. 9, pp. 1411-1419, 2010. 
[7] An-Chyau Huang and Yuan-Chih Chen, “Adaptive sliding 

control for single-link flexible-joint robot with mismatched 

uncertainties,” IEEE Transaction on Control Systems Technology, 
vol. 10, no. 5, pp. 770-775, 2004. 

[8] Ming-Chih Chien and An-Chyau Huang, “Adaptive control for 
flexible-joint electrically driven robot with time-varying 

uncertainties,” IEEE Transaction on Industrial Electronics, vol. 

54, no. 2, pp. 1032-1038, 2007. 
[9] C. A. Lightcap and S. A. Banks, “An extended Kalman filter for 

real-time estimation and control of a rigid-link flexible-joint 
manipulator,” IEEE Transaction on Control Systems Technology, 

vol. 18, no. 1, pp. 91-103, 2010. 

[10] Ghahramani et al., “Constrained incremental predictive controller 
design for a flexible joint robot,” ISA Transactions, vol. 48, pp. 

321 – 326, 2009. 
[11] A. Ailon, “Asymptotic stability in a flexible-joint robot with 

model uncertainty and multiple time delays in feedback,” Journal 

of the Franklin Institute, vol. 341, pp. 519 – 531, 2004. 
[12] Marino and Tomei, “Robust stabilization of feedback linearizable 

time varying uncertain nonlinear system,” Automatica, vol. 29, 
pp. 181-189, 1993. 

 

 
PhD. Phuong Nam Dao obtained his doctorate 

degree in January 2013 at Hanoi University of 
Science and Technology (Vietnam). 

Currently, he holds the position as lecturer at Hanoi 

University of Science and Technology, Vietnam. 
His research interests include control of robotic 

systems and robust/adaptive, optimal control. 
He is author/co-author of more than 70 papers 

(Journals, Conferences, etc.) 

 
 

Nguyen Van Huong:  

Place of birth: Hai Duong, Vietnam.  

Date of birth: 21/02/1995.  

Nguyen Van Huong, received a B.S degree in 
Electronic Engineering in 2018 from the Hanoi 

University of Science and Technology, Vietnam. At 
present, he works in research lines such as robotics, 

electric power systems and control systems. 

 

Pham Thanh Loc:
 

Place of birth: Hai Duong, Vietnam.
 

Date of birth: 12/08/1997.
 

Pham Thanh Loc, is a student at Hanoi University 

of Science and Technology, Vietnam and is 
researching robotics and control systems.

 

 

 

 

625

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 4, July 2019

© 2019 Int. J. Mech. Eng. Rob. Res




