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Abstract—In this paper, a relatively optimal controller 

(ROC) is designed for stabilisation of ball and beam module. 

It is a nonlinear, underactuated bench mark system with 

two degrees of freedom. The controller has a dynamic 

structure and is designed by solving a convex optimisation 

problem. All the constraints associated with the system are 

incorporated for controller design. The performance 

analysis of closed-loop system under the effects of 

parametric uncertainties, external disturbances and 

perturbations in initial conditions are incorporated.  

 

Index Terms—nonlinear, underactuated, optimal control, 

stabilisation, parameter variation, disturbance 

I. INTRODUCTION 

The 2 degrees of freedom (DOF) Ball and beam is an 

ideal platform for testing newly developed control 

strategies. Its nonlinear and underactuated nature can be 

considered as a challenge in control perspective. The 

fundamental concept of the ball and beam system can be 

applied to various problems, such as horizontal 

stabilization of an airplane during landing and in 

turbulent airflow, balancing goods carrier robots, etc. 

In literature, several methodologies have been 

extensively used for the stabilisation and control of the 

ball and beam system. A family of semi-global stabilising 

output feedback controller is presented in [1]. Robust 

stability can be achieved with this controller. In [2], a 

control law based on approximate input-output 

linearisation is derived for the ball and beam system and 

it is compared with the control law derived using 

Jacobian approximation. Self-recurrent neural networks 

based adaptive controllers to stabilise the ball and beam is 

presented in [3]. The result with this controller is 

compared with the Linear Quadratic Regulator (LQR) 

method. A class of asymptotically stable proportional-

derivative (PD) controllers is derived in [4], for the 

regulation of the ball and beam system. Experimental 

results are shown to illustrate the control system’s 

stability and performance. In [5], a nonlinear controller is 

developed using state-dependent Riccati equation 

technique.  

Though several works have been reported, very few 

papers considered the constraints in the system while 

performing the controller design. Receding horizon 

approach is a constrained optimisation method, but the 
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necessity of solving an optimisation problem online 

makes the controller design complex. Relatively Optimal 

Controller (ROC) is another constrained optimal 

controller which overcomes the disadvantages of the 

receding horizon control. The first work on ROC was 

reported in 2003[6], in which the controller was 

introduced for discrete-time systems. An open loop 

optimisation problem was solved and the solution was 

utilised for designing a dynamic feedback controller. The 

initial condition of the dynamic compensator was 

assumed to be zero and zero terminal constraints was 

considered in this paper. In the next paper on ROC [7], 

the closed-loop poles were assigned in desired locations. 

The zero terminal constraint in [6] was neglected in [7]. 

A static piecewise-affine solution was given in [8], in 

which a state feedback controller was designed by 

suitably partitioning the state space into polyhedral sets. 

And a comparison of the static and dynamic compensator 

was also given. In [6], [7], and [8] the controllers were 

designed for discrete-time systems. ROC for continuous 

time system was presented in [8]. And output feedback 

ROC along with Youla- Kucera parameterization was 

presented in [10]. In all the papers on ROC, the system 

used to test the effectiveness of controller is a cart-pole 

system.  

This work focuses on the derivation of the state space 

model of a ball and beam system from its transfer 

function model, and its stabilisation using a relatively 

optimal controller (ROC). The controller is a dynamic 

one, which gives optimum response for nominal initial 

condition and stabilises the system for any other initial 

conditions near to the nominal initial state. The unique 

feature of ROC among constrained optimal control 

methodologies is that it doesn’t utilise online 

optimisation technique. The convex optimisation problem 

considering all system constraints can be easily solved 

using the MATLAB. Hence, the design and 

implementation of ROC is simple and less time 

consuming compared to other methods. The performance 

of the system for parameter variations, external 

disturbances and perturbations in initial conditions is 

analysed as a part of this work.  

This paper is organised as follows:  system description 

and mathematical model are discussed in section II, the 

control problem is discussed in section III, section IV 

explains the controller design, results and discussions are 
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described in section V and section VI gives the 

conclusions of the work presented in this paper. 

II.  SYSTEM DESCRIPTION 

Ball and beam is a benchmark system available in 

most of the control laboratories. It is used for testing 

newly synthesised control methods. Since it is nonlinear 

and underactuated, it is a challenge for control engineers 

to develop control strategies for the same. 

It has a steel rod in parallel with a nickel chromium 

wire wound resistor, which forms the track on which the 

metal ball is free to roll. The ball acts similar to a wiper 

in a potentiometer, hence the voltage at the steel rod is 

used to find the ball position. When coupled to the 

SRV02 plant, [11] the DC motor drives the beam such 

that the motor angle controls the tilt angle of the beam. 

The ball then travels along the length of the beam. The 

beam is an end actuated one for this work, as the single 

actuator present at the rightmost end of the beam. The 

schematic diagram of the ball and beam module is given 

is Fig. 1.  

L

x





r
Base Load gear

 

Figure 1. Schematic diagram of a ball and beam module 

A. Transfer Function Model 

To derive the mathematical model of the ball and beam 

module, the translational force due to gravity (𝐹𝑡) and the 

rotational force due to torque produced by the rotational 

acceleration of the ball (𝐹𝑟) are considered. 

                    
 𝐹𝑡 = 𝑚𝑔 sin 𝛼                  (1) 

                               

𝐹𝑟 =
2

5
𝑚𝑥̈                               (2) 

where m is the mass of the ball, x is the position of the 

ball and α is the beam pitch in radians. 

Using (1) and (2), and by applying Newton’s second law, 

the equation for acceleration of ball can be obtained as, 

                                 
sin

7

5
gx                                  (3) 

Assuming pitch of the beam α as small, the transfer 

function can be derived from (3) as shown in (4) 
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The relation between servo load angle   and the 

voltage applied to the motor 
mV  is given by the transfer 

function in equation (5). All the parameters are described 

in Table I. 
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B. State Space Model 

Using (4) and (5) and taking
TT xxxxxxx ][][ 4321   , u = [ mV ], 

the dynamics of  ball and beam can be represented in 

state space form  as: 

                  BuAxx      (7) 
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C. Constraints on the System 

The constraints associated with the system are [11] 

𝑉𝑚 ≤ 4𝑉                              |𝑢| ≤ 4 

𝑥 ≤ 0.42𝑚              ie         |𝑥1| ≤ 0.42                        (8) 

−45° ≤ 𝜃 ≤ 45                  |𝑥3| ≤ 45 

The constraints have to be satisfied during the 

operation of the system. 

TABLE I. DESCRIPTION AND VALUES OF PARAMETERS OF SERVO 

AND BALL AND BEAM 

Symbol Parameter description Value Unit 

𝐾𝑡 Motor torque constant 0.00767 𝑁𝑚 

𝐾𝑚 Back EMF constant 0.00767 𝑉/(𝑟𝑑
/𝑠) 

𝑅𝑚 Armature Resistance 2.6 Ω 

 𝐵𝑒𝑞  Equivalent Viscous Damping 0.004 𝑁𝑚
/(𝑟𝑑
/𝑠) 

𝜂𝑔  Gear box Efficiency 0.85 - 

𝜂𝑚 Motor efficiency 0.69 - 

𝐾𝑔 Gear box ratio 14:1 - 
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𝐽𝑒𝑞 Equivalent high gear inertia 0.002 𝐾𝑔 𝑚2 

𝑔 Earth’s gravitational constant 9.8 𝑚/𝑠2 

𝑅 Lever arm offset 1 𝐼𝑛𝑐ℎ 

𝐿 Beam Length 16.75 𝐼𝑛𝑐ℎ𝑒𝑠 

III. PROBLEM FORMULATION 

The objective is to obtain the control input to stabilise 

the ball and beam, i.e. the disturbed system state has to 

reach the operating point as soon as possible with 

minimum expenditure of energy. The performance 

measure to suit this requirement is: 

                          

 



0

2

1
dtRuuQxxJ TT  (9)  

where 𝑄  is positive semidefinite (𝑄 ≥ 0)  and R is 

positive definite (𝑅 > 0). The constraints associated with 

the system are  
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where mm xu 1,  and mx3  are the maximum allowable 

values of 1, xu  and 3x , respectively. The constraints 

listed in (10) must be satisfied during the operation of the 

system. 

IV. CONTROLLER DESIGN 

Relatively optimal control is a feedback control which 

is optimal for a nominal initial condition. The controller 

has a dynamic structure as shown in Figure 2. It can be 

used in applications, where the initial and final conditions 

of the system are fixed. The controller can stabilise the 

system even when the initial condition is non-nominal. 
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Figure 2. Controller structure 

Then the closed-loop system comprising of system and 

controller is given by 
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The controller matrix 𝐾  is designed such that the 

closed- loop system must have stable poles. Let i  be 

the set of closed-loop poles, where 𝑖 = 1,2, …  𝑛 + 𝑞
 
 and 

q is the order of the compensator. By introducing a 

(𝑛 + 𝑞) × (𝑛 + 𝑞)  matrix P with eigenvalues i , the 

desired specifications on the closed-loop poles can be 

incorporated. 

Consider a behaviour generated by the autonomous 

system in (11) as: 

                              𝛾̇(𝑡) = 𝑃𝛾(𝑡)                                  (12) 

                                  𝛾(0) = 𝑟                                     (13) 

where (𝑃, 𝑟) is a controllable pair.  

The solution of system described in (12) can be written 

as 

                                   
  ret Pt                              (14) 

Since, 𝛾(𝑡) contains all the behaviours of the closed-

loop system and (𝑃. 𝑟)is controllable, the state and input 

variables of closed-loop system can be written as 

                 𝑥(𝑡) = 𝑋𝛾(𝑡);  𝑢(𝑡) = 𝑈𝛾(𝑡)                     (15) 

where 𝑋 and 𝑈 are real constant matrices of appropriate 

dimensions.  

Using (12) and (15) in (7), 

                    𝐴𝑋 + 𝐵𝑈 = 𝑋𝑃,  𝑋0 = 𝑋𝑟                      (16) 

The performance index in (8) can be rewritten as 

shown below 

                                  WrrJ T                               (17) 

Where 

                    

  dteRUUQXXeW PtTTtPT

 


0            

(18) 

As W is in the form of solution of Lyapunov equation, 

it can be rewritten as an inequality as shown in (19), 

which is a convex constraint. 

                 0)(  RUUQXXWPWP TTT          (19)  

The constraints in (10) can also be written in terms of 

X and U as follows 
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Hence, a convex optimisation problem can be 

formulated as in (21). 
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The solution of this convex optimisation problem 

results in the optimum value of J along with a solution set 

(𝑋, 𝑈, 𝑊). 
Assume, there exists a Z such that  

           tZtz                                 (22) 

Z is of appropriate dimension and it must satisfy 
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X   and  0Zr                           (23) 

The equation for compensator matrix can be obtained 

by using (15) and (22) in the compensator dynamics 
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This dynamic compensator stabilises the system with 

minimum expenditure of energy, satisfying all the 

constraints associated with it. Simulation results and 

further analysis are covered in section V. 

V. RESULTS AND DISCUSSIONS 

The state space model of the ball and beam system can 

be obtained by substituting the values of parameters 

given in Table 1. 
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It is assumed that, initially, the ball is at 12 cm from 

the end and the beam is horizontal, with servo load angle 

zero. Hence, the initial condition is 

 Tx 00012.00   

The constraints associated with the system are listed in 

(8). 

For designing the controller to stabilise the ball and 

beam system, a quadratic performance index is chosen as 

in (9). Where  5.25.211diagQ  ,  1R  

The desired pole locations are taken as that of two 

Butter worth filters of order 4 and 5, with cut off 

frequencies 8 and 4, respectively. 

The controllable pair (𝑃, 𝑟) is chosen as: 
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A convex optimisation problem is formulated as in (21) 

and its solution is utilised to calculate the compensator 

matrix. The poles of the compensator are 

(−29.3653, −3.3386 ± 9.3474𝑗, −1.0119 ± 4.4867𝑗)
 

implying that the compensator itself is stable. The closed- 

loop poles of the system are obtained close to the desired 

poles. 

A. System Response for Different Initial Conditions 

The simulation results obtained for ball and beam 

system with the designed ROC is shown in Figures 3-7. 

Two non-nominal initial conditions are considered for 

analysis along with nominal initial conditions. 

They are 

 Tx 00012.00    

 Tx 00873.0009.001   

 Tx 00873.0013.002   

 
Figure 3. State trajectory (X1-X2) for different initial conditions 
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Figure 4. State trajectory (X3-X4) for different initial conditions 
 

 

Figure 5. Input trajectory for different initial conditions 

                

Figure 6. Ball position trajectory for different initial conditions 

 

Figure 7. Servo angle trajectory for different initial conditions 

From the plots given in Figure 3-7, it is clear that the 

system is optimally stabilised in less than 6 seconds by 

satisfying all the constraints. The controller has taken the 

ball from the nominal initial position of 12cm to the 

origin (midpoint). Though the controller is designed for 

nominal initial condition, it guarantees stability for non-

nominal initial conditions also, which are close to the 

nominal one.  

B. System Response for Parameter Variations 

No mathematical model is perfect, because it is derived 

by taking some assumptions or approximations. Hence, it 

is required to analyse the controller performance for 

parameter variations. The system model can be rewritten 

as in (26), by incorporating the effect of parameter 

deviations. 

                       
   udBBxdAAx                   (26) 

where dA  and dB  are % changes in parameter matrices 

𝐴 and 𝐵. 

The responses obtained with the different percentage 

changes in matrix 𝐴 of the system are shown in Figures 

8-12. Figure 8 and Figure 9 show the phase portrait for 

two planes. Figures 10-12 show the variations of input 

voltage, the position of the ball, and servo angle with 

respect to time. 

 
Figure 8. State trajectory (X1-X2) for variations in state matrix 

 

Figure 9. State trajectory (X3-X4) for variations in state matrix 

269

International Journal of Mechanical Engineering and Robotics Research Vol. 8, No. 2, March 2019

© 2019 Int. J. Mech. Eng. Rob. Res



 
Figure 10. Input voltage trajectory for variations in state matrix 

 
Figure 11. Ball position trajectory for variations in state matrix 

 

Figure 12. Servo angle trajectory for variations in state matrix 

From the plots, it is observed that the settling time is 

increased with the increase in parameter variation. Up to 

16 % of variation in matrix 𝐴  of system model in (7), the 

system performance is not affected. Settling time remains 

same as in the case with 0 % parameter variation. Up to 

80 %, constraint satisfaction and stabilisation are 

achieved but it is not optimal.  

System responses for input parameter variations ( dB ) 

in percentage are shown in Figure 13-18. Figure 13 and 

Figure 14 show the phase portrait for two planes. Figures 

14-18 show the variations of input voltage, position of 

ball, and servo angle with respect to time. 

 

            Figure 13: State space (X1-X2) for variations in input matrix 

 

Figure 14.State space (X3-X4) for variations in input matrix 

 

Figure 15. Input trajectory for variations in input matrix 

From figures given above, it is clear that up to 15 % 

change in input parameter matrix, the system performs 

satisfactorily. All system constraints are satisfied during 

the operation. The module gets stabilised within 6 

seconds. For parameter variation above 15 %, system 

constraint on servo angle is violated and decaying 

oscillations appear in the response. Hence settling time 

increases. 
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Figure 16. Position trajectory for variations in input matrix 

 

Figure 17. Servo angle trajectory for variations in input matrix 

From the figures given above, it is clear that up to 15% 

change in input parameter matrix, the system performs 

satisfactorily. All system constraints are satisfied during 

the operation. The module gets stabilised within 6 

seconds. For parameter variations above 15 %, the system 

constraint on servo angle is violated, and decaying 

oscillations appear in the response. Hence the settling 

time increases. 

C. System Response for Disturbance 

The performance of the ball and beam system is 

affected by external disturbances, like wind, sudden 

movements, etc. It has a great influence on the system 

responses. Considering the worst case where disturbances 

exist in both channels, the system dynamics can be 

rewritten as, 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐷𝑛                   (27) 

where 𝐷𝑛 = [𝑑1(𝑡) 0 𝑑2(𝑡) 0]𝑇  represents the 

effects of disturbance present in the system.  𝑑1(𝑡) and 

𝑑2(𝑡) are random noises as shown in Figure 18, which 

exist for 5 seconds in two axes. 

 

Figure 18. Disturbance in the system 

 

Figure 19. Input trajectory with disturbance 

 

Figure 20. Position trajectory with disturbance 

 

Figure 21. Servo angle trajectory for input parameter variations 

The input required in the presence of disturbances and 

its effects on the system response are shown in Figures 

19-21.It is clear from the figures that, though the settling 

time increases, the controller is able to bring the system 
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back to stability. All system constraints are obeyed 

during the operation.  

D. Pole Locations of the System 

The pole locations of open loop and closed-loop 

system are given in Figure 22. The poles of open loop 

system are  1.35,0,0,0  . The open loop system is 

unstable due to the existence of multiple poles at the 

origin. The ROC is designed by considering the desired 

locations of closed-loop poles. From figure 22, it is found 

that the closed-loop system’s poles are merged with that 

of the poles of two Butterworth filters, which are the 

desired locations. Stability is assured as all closed-loop 

system poles are on the left half side of s-plane. 

 
Figure 22. Pole locations of the open loop and closed-loop systems 

VI. CONCLUSION 

In this paper, an existing ROC is proposed for the ball 

and beam module. The stabilisation of the system is 

performed with minimum expenditure of energy while 

satisfying all the system constraints. Since the closed- 

loop poles are fixed at the design stage of controller; 

stability is ensured even in the presence of parametric 

uncertainties, external disturbances as well as 

perturbations in the initial condition. The simulation 

results illustrate that, without violation of constraints, the 

closed-loop system can accommodate a worst case of 

state and input parameter variations of 80 % and 15 %, 

respectively. Furthermore, no instability or constraint 

violation is observed even under the effect of random 

disturbances of small magnitude and duration. From the 

analysis, it is also found that ROC guarantees stability for 

non-nominal and optimal stability for nominal initial 

conditions. Hence, it is suitable for continuous time 

systems having dynamics similar to the ball and beam 

module. 
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