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Abstract—This paper presents sliding fractional order 

control for a single flexible link manipulator. This control 

strategy takes advantage the robustness of the fractional 

order control and the sliding mode technique. Fractional 

calculus is introduced to sliding mode control to design a 

fractional order sliding mode surface. Lyapunov theory is 

used to prove the asymptotical stability of the closed-loop 

system. The proposed controller is compared against the 

classical PD controller. The simulation results show that the 

proposed sliding fractional order has smaller error and 

more robustness comparing to the conventional PD control. 
 

Index Terms— Flexible manipulator, fractional control, 

sliding mode, stability 

I. INTRODUCTION 

In recent years, the critical usage of robotic arms in 

many industrial applications such as welding and 

painting, and in some scientific experiments such as 

space discovery, has made controlling these arms a major 

research area [1-4]. Robotic arms are not just used as an 

entertainment luxury device as in the past decades. 

Today, robots have actually replaced humans in 

operating iterative and dangerous missions which 

humans do not have the capabilities to do either due to 

some size limitations, or due to the extreme 

environments of experiments such as deep depth of the 

sea, or outer space. Two kinds of manipulators are used: 

rigid robot and flexible robot. Flexible link manipulators, 

have the potential for a prosperous future in the fields of 

modern industry, defense, and space applications. 

Flexible link manipulators have many advantages 

compared to heavy and rigid manipulators. Indeed, 

flexible robots have lower energy consumption, small 

actuators, higher payload to weight ratio and safe to 

operate with human due to low inertia [1].  

Due to highly coupled nonlinear and time varying 

dynamic, the flexible link manipulator motion tracking 

control is one of the most important challenging 

problems. The Euler–Bernoulli beam theory and the 

assumed modes method are presented in [2] to develop 

the equation of motion of flexible link manipulators. 

Many control strategies have been developed for flexible 

link manipulators. In [3, 4], the authors raised some 

challenges encountered for dynamic modeling and 

control of flexible link manipulators. 
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A simple linear system approach presented in [5, 6] 

was developed to control a single-link flexible robot. In 

[5] LQG was used for the controller design, where in [6], 

the stable factorization technique was adopted instead. In 

[7], a composite control system based on sliding mode 

control, and neural network was proposed.  A control 

system was proposed in [8] which was based on a 

position-velocity-acceleration feedforward controller and 

a PID controller for each joint. The independent joint 

controller recompenses the static and dynamic couplings 

that exist between the joint while guaranteeing a perfect 

trajectory tracking.   

In [9], a control system based on non-dimensional 

version of the Euler-Bernoulli beam equation beam 

equation has been proposed. The authors had also 

invented a new technique to overcome a time-dependent 

frequency equation by using a differential version of the 

frequency equation.   

A novel adaptive distributed control system for 

multiple flexible links manipulators was proposed in [10]. 

The system was invented to deal with the tracking 

control problem in the joint space, and to reduce 

vibrations of the links. The stability of the system was 

proved using Lyapunov approach. Moreover, the control 

system was applied on a two-link flexible link 

manipulator, and showed an improved result over the 

non-adaptive control versions. 

Podlubny had invented the Fractional-order PID 

controllers for the first time in [11]. From that time, and 

the fractional-order PID controllers have become a major 

research area in the literature. The fractional-order PID 

control system operates by adding the external fractional 

regulation parameters λ, μ, which can be expressed as 

PIλDμ. This addition adds more flexibility and robustness 

to the controlled system, and can assist boosting the 

overall system’s performance at the same time. 

In [12], the authors implemented a control system 

scheme that is a combination of a fuzzy logic controller, 

and a fractional PID controller, with an automatic 

parameter tuning method. The idea was to allow all the 

five parameters of fractional-order PID controller to vary 

during operation.  

A hybrid system that consists of a fractional PID, and 

the sliding mode control strategy was proposed in  [13]. 

The swarm optimization (PSO) technique was 

implemented to determine the design parameters. The 

proposed scheme was implemented on a single flexible 
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link manipulator, and showed some outstanding results 

comparing to other similar schemes presented in the 

literature. 

An end-effector position control of a lightweight 

flexible manipulator using a fractional order controller 

was proposed in [14]. An interesting characteristic of the 

design strategy was that the overshoot of the controlled 

system is independent of the end-effector mass. The 

proposed control system consists of three nested control 

loops. After compensating nonlinear effects, the inner 

loop is responsible for fast motor responses. The middle 

loop reduces the dynamics complexity of the system, and 

minimizes its transfer function to a double integrator. 

Finally, a fractional derivative controller is utilized to 

shape the outer loop into the form of a fractional order 

integrator. 

This paper presents a sliding fractional control for 

single flexible link manipulator. This control strategy 

takes the advantage of the robustness of the fractional 

order controllers and the sliding mode approach in order 

to track the desired trajectory of the robot’s joint and at 

the same time reduce the vibration in the flexible link.  

The rest of the paper is organized as follows. Section 2 

presents system description and modeling. The sliding 

fractional order control strategy is presented in section 3. 

Stability analysis using Lyapunov technique is presented 

in section 4. Simulation results of the proposed controller 

on one flexible link manipulator is given in section 5. 

Finally, the conclusion is presented in section 6.    

II. SYSTEM DESCRIPTION AND MODELING  

A single flexible link manipulator shown in figure 1 is 

used in this paper to test the proposed control strategy. 

The system consists of a motor, a flexible link, and a 

payload. The angle of the motor 𝜃(𝑡) is denoted as 𝑞𝑟(𝑡), 

has an inertia and damping coefficient Im and bm, 

respectively. The motor generates a torque τ. E is defined 

as the module of Young and Iz as the inertia of z. The 

single flexible arm, supposed uniform, with length L, 

linear density ρ and rigidity EIz. The arm internal friction 

coefficient is ke. The flexible link is modeled as an Euler-

Bernoulli beam and the deformation is assumed to be 

small. The payload has a mass Mc and an inertia Ic.  

The equation of motion of n flexible-link-manipulator 

is given using the Lagrangian formulation as follows [4]: 

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐾𝑞 = 𝐿𝜏 (1)  

 

where M is the mass matrix, K is the rigidity matrix, 𝐶is 

the Coriolis vector. 𝜏 is the applied torque. 𝑞 represents 

the generalized coordinates. Assume that there are totally 

n rigid modes and m flexible modes, thus: 

 𝑀 and 𝐾 ∈ ℜ(𝑛+𝑚)×(𝑛+𝑚) , 𝑞 𝑎𝑛𝑑𝐶 ∈ ℜ(𝑛+𝑚) , 𝜏 ∈ ℜ𝑛 

and 𝐿 = [𝐼𝑛×𝑛 0𝑚×𝑛]𝑇. 

The deformation of the flexible link can be expressed 

as follows: 

𝑦(𝑥, 𝑡) = ∑ ∅𝑗(𝑥)𝑞𝑓𝑗(𝑡)

𝑚

𝑗=1

          (2)  

where 𝑞𝑓𝑗  is the j-th generalized flexible coordinate of 

the flexible link, ∅𝑗(𝑥) is its j-th shape function and 𝑚 is 

the number of the retained flexible modes.  

 

Figure 1. Flexible link robot arm. 

Since the proposed system has one flexible link, the 

number of rigid mode n=1, the dynamical model can be 

written as:  

[
𝑀𝑟 𝑀𝑟𝑓

𝑀𝑓𝑟 𝑀𝑓
] [

𝑞�̈�

𝑞�̈�
] + [

𝐶𝑟(𝑞, �̇�)
𝐶𝑓(𝑞, �̇�)

] + [
0 0
0 𝐾𝑓

] [
𝑞𝑟

𝑞𝑓
]

= [
1
0

] 𝜏   

(3)  

where the subscript r denotes the rigid mode and f 

denotes the flexible mode part.  

𝑞𝑟 ∈ ℜ𝑛 are the generalized coordinates associated to 

the movement of the rigid part, and 𝑞𝑓 ∈ ℜ𝑚  are 

associated to the flexible part. Let define the desired 

trajectory associated to the rigid part, its first and second-

order derivatives be 𝑞𝑟𝑑(𝑡), �̇�𝑟𝑑(𝑡)  and �̈�𝑟𝑑(𝑡) 

respectively, and 𝑞𝑓𝑑(𝑡) ,  �̇�𝑓𝑑(𝑡)  and �̈�𝑓𝑑(𝑡)  associated 

to the flexible part. In the rest of this paper, two flexible 

modes for link is considered, i.e. m=2. 

The dynamical equation of motion of the flexible 

manipulators has the following properties: 

P1:  𝑀, 𝑀𝑟𝑟 , 𝑀𝑓𝑓and 𝐾𝑓𝑓 are symmetric positive definite 

matrices. 

P2: There exists a matrix 𝐻(𝑞, �̇�) ∈ ℜ(𝑛+𝑚)×(𝑛+𝑚) such 

that 𝐶(𝑞, �̇�) =  𝐻(𝑞, �̇�) �̇�  and ∀𝑥 ∈ ℜ𝑛+𝑚 , 𝑥𝑇(�̇� −

2𝐻)𝑥 = 0. 

III. SLIDING FRACTIONAL ORDER CONTROL STRATEGY  

In this section, a sliding fractional order controller is 

designed for flexible link manipulator. First, the 

dynamical model (3) can be written in terms of two 

equations as follows: 

 

𝑀𝑟�̈�𝑟 + 𝑀𝑟𝑓�̈�𝑓 + 𝐶𝑟 = 𝜏   (4)  

𝑀𝑓𝑟�̈�𝑟 + 𝑀𝑓�̈�𝑓 + 𝐶𝑓 + 𝐾𝑓𝑓𝑞𝑓 = 0 (5)  

 

From equation (5), we can write: 

 

�̈�𝑓 = −𝑀𝑓
−1[𝑀𝑓𝑟�̈�𝑟 + 𝐶𝑓 + 𝐾𝑓𝑞𝑓] (6)  

 

Inserting (6) in (4), we obtain 
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𝑀𝑟
∗�̈�𝑟 + 𝐶𝑟

∗ + 𝐾𝑓
∗𝑞𝑓 = 𝜏   (7)  

 

where 𝑀𝑟
∗ = 𝑀𝑟 − 𝑀𝑟𝑓𝑀𝑓

−1𝑀𝑓𝑟 ; 𝐶𝑟
∗ = 𝐶𝑟 − 𝑀𝑟𝑓𝑀𝑓

−1𝐶𝑓 ; 

𝐾𝑓
∗ = −𝑀𝑟𝑓𝑀𝑓

−1𝐾𝑓. 

 

Define the sliding surface as follows: 

𝑠𝑟 = 𝐾1𝑒𝑟 + 𝐾2𝐷−𝜇𝑒𝑟 + 𝐾3𝐷𝛼𝑒𝑟 + �̇�𝑟   (8)  

where 𝑒𝑟 = 𝑞𝑟 − 𝑞𝑟𝑑, and 𝑒𝑓 = 𝑞𝑓 − 𝑞𝑓𝑑 are the error 

signals for joint angle and flexible coordinates 

respectively. 𝐷−𝜇𝑒𝑟 is the integration rate to a fractional 

order integrator and 𝐷𝛼𝑒𝑟  is the fractional order 

derivative term. 𝜇 and 𝛼 are additional free parameters. 

𝐾1, 𝐾3 and 𝐾3 are positive gain parameters. 

Note that in the proposed design 𝑞𝑟𝑑(𝑡), �̇�𝑟𝑑(𝑡),  �̈�𝑟𝑑(𝑡), 

𝑞𝑓𝑑(𝑡), �̇�𝑓𝑑(𝑡), and �̈�𝑓𝑑(𝑡) must be carefully chosen to 

satisfy the control objective (𝑞𝑟 , 𝑞𝑓) = (𝑞𝑟𝑑 , 0). 

From the sliding surface (8), we can write:  

�̇�𝑟 = 𝐾1�̇�𝑟 + 𝐾2𝐷1−𝜇𝑒𝑟 + 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟 + �̈�𝑟  (9)  

 

Let us propose the following control law: 

𝜏 = 𝐶𝑟
∗ + 𝐾𝑓

∗𝑞𝑓 + 𝑀𝑟
∗ [�̈�𝑟𝑑 + 𝐾1�̇�𝑟 + 𝐾2𝐷1−𝜇𝑒𝑟

+ 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟 + 𝐾𝑟𝑠𝑔𝑛(𝑠𝑟)] 

(10)  

where 𝐾𝑟  is a positive gain parameter. 

The error dynamics are obtained by inserting the 

control law (10) in the new dynamical model (7) as 

follows: 

 

�̈�𝑟 + 𝐾1�̇�𝑟 + 𝐾2𝐷1−𝜇𝑒𝑟 + 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟

+ 𝐾𝑟𝑠𝑔𝑛(𝑠𝑟) = 0 
(11)  

 

IV.  ANALYSIS  

The goal is to drive the tracking error asymptotically 

to zero for any arbitrary initial conditions and 

uncertainties. To achieve this objective, the Lyapunov 

theory is used. 

The second derivative of the tracking error can be 

expressed as follows:  

�̈�𝑟 = �̈�𝑟𝑑 − �̈�𝑟 = �̇�𝑟 − 𝐾1�̇�𝑟 − 𝐾2𝐷1−𝜇𝑒𝑟

− 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟  

(12)  

The acceleration term of the rigid part �̈�𝑟  can be 

obtained from (12) as 

�̈�𝑟 = −�̇�𝑟 + �̈�𝑟𝑑 + 𝐾1�̇�𝑟 + 𝐾2𝐷1−𝜇𝑒𝑟

+ 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟 

(13)  

Using equation (13), the equation (7) can be written as:  

𝑀𝑟
∗ [−�̇�𝑟 + �̈�𝑟𝑑 + 𝐾1�̇�𝑟 + 𝐾2𝐷1−𝜇𝑒𝑟

+ 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟] + 𝐶𝑟

∗ + 𝐾𝑓
∗𝑞𝑓

= 𝜏  

(14)  

From equation (14), the time derivative of the sliding 

surface can be written as  

�̇�𝑟 = −𝑀𝑟
∗−1[𝜏 − 𝐶𝑟

∗ − 𝐾𝑓
∗𝑞𝑓] + �̈�𝑟𝑑 + 𝐾1�̇�𝑟

+ 𝐾2𝐷1−𝜇𝑒𝑟 + 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟 

  

(15)  

Now, let consider the following positive Lyapunov 

function 

𝑉(𝑡) =
1

2
𝑠𝑟

2  (16)  

 

Take the time derivation of 𝑉(𝑡) to get: 

�̇�(𝑡) = 𝑠𝑟 �̇�𝑟 

         = 𝑠𝑟 (−𝑀𝑟
∗−1[𝜏 − 𝐶𝑟

∗ − 𝐾𝑓
∗𝑞𝑓] + �̈�𝑟𝑑 + 𝐾1�̇�𝑟 +

𝐾2𝐷1−𝜇𝑒𝑟 + 𝐾3
𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟) 

= 𝑠𝑟 (−𝑀𝑟
∗−1[𝜏 − 𝐶𝑟

∗ − 𝐾𝑓
∗𝑞𝑓] + �̈�𝑟𝑑 + 𝐾1�̇�𝑟

+ 𝐾2𝐷1−𝜇𝑒𝑟 + 𝐾3

𝑑

𝑑𝑡
𝐷𝛼𝑒𝑟) 

Using the control law (10), the final version of �̇� 

becomes: 

�̇�(𝑡) = −𝐾𝑟𝑠𝑟𝑠𝑔𝑛(𝑠𝑟)  (17)  

 

𝐾𝑟  is positive definite, in which clearly �̇�(𝑡) < 0 . 

Using Barbalat Lemma [15], the error dynamics resulting 

from the above control law (10) are asymptotically stable 

in the sense of Lyapunov. 

V. SIMULATION RESULTS 

This section presents the simulation results of the 

proposed sliding fraction controller to single flexible link 

manipulator. To show the contribution of the proposed 

control, a comparison with a classical PD type control is 

presented. 

The nominal parameters of the proposed system is 

given in Table 1. 

TABLE I. NOMINAL PARAMETERS 

Parameter name Nominal value 

Motor inertia (Im) 0.02 kg m2 

Beam length (L) 1 m 

Beam linear density (ρ) 0.62 kg/m 

Beam rigidity (EIz) 12.85 N m2 

Payload mass (Mc) 0.3 kg 

 

The PD control law is given by the following 

expression: 

 

𝜏 = 𝐾𝑝(𝑞 − 𝑞
𝑑
) + 𝐾𝑣(�̇�

𝑑
− �̇�)  (18)  

where 𝐾𝑝and 𝐾𝑑 are positive gain parameters.  

The following polynomial function is used to generate 

the desired trajectory of the rigid coordinate. 

 

        𝑞𝑟𝑑(𝑡) =
𝜋

2
(5 (

𝑡

𝑇𝑓
)

3

−
15

2
(

𝑡

𝑇𝑓
)

4

+ 3 (
𝑡

𝑇𝑓
)

5

)        (19) 

for 0 ≤ 𝑡 ≤ 𝑇𝑓 = 7𝑠, and 𝑞𝑟𝑑(𝑡) =
𝜋

4
  for  𝑡 ≥ 𝑇𝑓. 

As mentioned in the previous section that the goal is to 

reduce the link vibration. For this reason, the desired 

positions of the flexible modes are set to zero. 
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Figures (2)-(5) show the simulation of the sliding 

fractional controller.  

 

Figure 2. Tracking trajectory in the joint space. 

 

Figure 3. Joint tracking error. 

 

Figure 4. First vibration mode of the link. 

 

Figure 5. Second vibration mode of the link. 

The simulation results of the PD control are presented 

in Figures (6)-(9). 

 

Figure 6. PD control: joint trajectory response. 

 

Figure 7. PD control: joint tracking error. 

 

Figure 8. PD control: first vibration mode of the link. 

 

Figure 9. PD control: second vibration mode of the link. 
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In the simulation results, Figure 2 presents tracking 

trajectory in the joint space. This good tracking is 

confirmed by Figure 3 which shows the tracking error. 

Despite the different initial conditions, the proposed 

controller track perfectly the desired trajectory. For the 

flexible part, Figures 4 and 5 show the first and second 

vibration mode of the flexible link. According to these 

two figures, we can conclude that the proposed controller 

capable to eliminate the vibration of the flexible link. For 

the PD control, Figures 6 and 7 show the tracking 

trajectory and the tracking error respectively while 

figures 8 and 9 show the first and second vibration mode 

of the link.      

According to the simulation results we can conclude 

that, with the proposed controller, the tracking error of 

the joint is smaller than the one resulting from the PD 

control. These results show the effectiveness of the 

proposed technique, which is based on fractional calculus 

and the sliding mode technique. The proposed technique 

provides improved robustness and more extra parameters 

(𝛼, 𝜇) in the search space than the classical PD. For the 

future work, this proposed controller can be extended to 

the adaptive version.  

VI. CONCLUSION  

In this paper, a sliding fractional order control law was 

presented. The main advantage of this proposed 

controller is the combination of the robustness of the 

fraction controller and sliding mode control. This 

proposed controller was applied to non-minimum phase 

system such as the flexible link manipulator. Compared 

to the classical PD control, the theoretical analysis and 

simulation results show that the proposed sliding 

fractional control achieves better tracking performance 

and capable to eliminate the vibration in the flexible link. 

Asymptotical stability of the closed-loop system has been 

guaranteed by using Lyapunov theory. 
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