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Abstract—This paper compares attitude estimation methods 

that use microelectromechanical systems–attitude heading 

reference system (MEMS-AHRS) for underwater vehicle 

(UV) navigation. Although MEMS-AHRS is a cheap, 

lightweight, small, and easy-to-use instrument for attitude 

determination, the yaw estimate using the AHRS is not as 

reliable as the estimates of roll and pitch. This is because 

yaw estimation depends primarily on the magnetic field 

measurement, and the magnetic field measurement of the 

AHRS is vulnerable to magnetic interference induced by the 

vehicle and instrument itself and the environment 

surrounding the vehicle. This paper compares four major 

approaches: nonlinear explicit complementary filter 

(NECF), extended Kalman filter (EKF), sine rotation vector 

(SRV) method, and complementary filter (CF). The methods 

are tested through experiments in a test tank. The results 

show that the errors in yaw show notable differences 

between the methods. NECF and SRV show an 

improvement over the EKF and CF. This paper provides a 

practical comparison of the underwater attitude estimation 

methods through experiments, and the results can be used 

as a reference to be compared with other methods to be 

developed. In addition, this can help adapt the methods 

appropriate for a specific underwater application. 

 

Index Terms—Attitude estimation, underwater vehicle, 

attitude heading reference system, gyro, magnetic field. 

 

I. INTRODUCTION 

This paper compares attitude estimation methods that 

use microelectromechanical systems–attitude heading 

reference system (MEMS-AHRS) measurement instead 

of high-end and high-priced inertial measurement units 

(IMUs). The methods to be compared are for underwater 

                                                           
Manuscript received November 3, 2017; revised January 13, 2018. 

navigation. Most widely used methods, such as extended 

Kalman filter (EKF), complementary filter (CF), 

nonlinear explicit complementary filter (NECF), and a 

new method called the sine rotation vector (SRV) method, 

which combines part of NECF and EKF, are compared. 

The comparison is focused on the statistical analysis of 

the estimation error: mean, standard deviation, peak to 

peak, and maximum of the error. A set of measurement 

data from an experiment in a test tank are used for the 

application of the methods. 

The attitude, which is usually represented by roll, 

pitch, and yaw, is essential information along with 

velocity of the vehicles for navigation of underwater 

vehicles (UVs) or underwater robots. This paper 

compares attitude estimation methods that use MEMS-

AHRS. MEMS-AHRS is cheaper in price, lighter in 

weight, smaller in volume, and more convenient to use 

than inertial navigation units that utilize mechanical gyros 

or fiber optic gyros (FOGs). AHRS provides three 

measurements: two field measurements of magnetic field 

and gravity and an angular rate measurement. The AHRS 

provides these measurements in the instrument coordinate 

frame. The measured gravity field depends on the roll and 

pitch of the instrument, and the measured magnetic field 

depends primarily on yaw. The measurement of the 

angular rate is useful in calculating incremental changes 

of the attitude. Since the magnetic field measurement of 

the AHRS is vulnerable to magnetic interference induced 

by the vehicle itself and the environment surrounding the 

vehicle, the estimated yaw based on the AHRS 

measurement is less reliable than the estimate of roll and 

pitch.  

Interference of the magnetic field is one of the most 

critical issues when using a magnetometer for attitude 

estimation. Although many methods have investigated the 
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estimation of the bias of the magnetic field measurement 

[1], it is still hard to estimate and compensate for the bias 

because of the following: the bias and interference 

depend on environmental aspects, which vary with time 

and place, and bias is in all directions, that is, it is in the 

north, east, and Earth-centered directions. The methods to 

be compared in this research use magnetic field 

measurements, for which the bias is partially 

compensated using a Kalman filter (KF). 

Attitude estimation has been studied for about a 

century in the field of aerial and space vehicle navigation. 

These researches have been adapted and developed for 

the navigation of UVs. Many of the attitude estimation 

methods for underwater robots and vehicles use KF, 

specifically extended KF (EKF), in which the angular rate 

is used for the prediction of attitude and the gravity and 

magnetic field are used for correction of the predicted 

attitude. In the correction stage, the gravity and magnetic 

field are converted to Euler angles, that is, roll, pitch, and 

yaw, to calculate the innovation for the correction [2, 3]. 

The CF method, which utilizes the long-term robustness 

of the gravity and magnetic field measurement and short-

term accuracy of the angular rate, also uses the Euler 

angles converted from the measurements. 

Other methods using unscented Kalman filter (UKF) 

and cubature Kalman filter (CKF) have also been used for 

attitude estimation. UKF derives sigma points from a 

covariance matrix to approximate the probabilistic 

distribution of state. Sigma points are propagated by a 

state transition model. The propagated sigma points are 

transferred to measurement points using a measurement 

model. These propagated sigma points represent the 

probability distribution of the predicted state. The sigma 

points and the measurement points are used to calculate 

the covariance matrix of the predicted state and predicted 

measurement. Similar to UKF, CKF uses cubature points 

to approximate the probability distribution of state 

variable. CKF also propagates cubature points and 

calculates the predicted observation by applying the 

measurement model to the propagated cubature points. 

Then, it calculates covariance matrices using the 

propagated cubature points and measurements [4, 5]. 

UKF has been used for underwater navigation [6]. CKF, 

which is a more recent development than UKF, is applied 

for attitude estimation of spacecraft [7, 8, 9]. 

Approaches that use field measurements represented 

as the field vector in a rectangular instrument coordinate 

system without converting to Euler angles are the NECF 

[10, 11] and SRV method [12]. SRV utilizes the EKF 

approach, whereas NECF uses the observer approach for 

attitude estimation. 

This paper compares the performances of the four 

methods: EKF, CF, NECF, and SRV. UKF and CKF are 

extensions of KF for use with nonlinear state transition 

models and measurement models. They are generally 

more suitable to deal with the nonlinearity of the state 

transition and measurement than EKF; non-Gaussian 

probability distribution can also be dealt with more 

appropriately by UKF and CKF than by EKF. 

Nevertheless, EKF has been widely used for attitude 

estimation in underwater applications. Moreover, the 

performance of EKF is usually comparable to that of 

UKF and CKF in many applications; therefore, EKF is 

used for comparison in this research [13, 14]. NECF is 

one of the widely used methods for attitude estimation for 

underwater as well as aerial applications [10, 11], and 

adaptation of NECF is also widespread [15, 16]. SRV is 

used for comparison since it calculates the SRV from the 

field measurement to find the innovation that will be used 

at the correction procedure of EKF application. It takes 

advantage of using field measurements like NECF and 

inherits the robustness of the KF approach, which has 

been proved by a huge amount of variety applications of 

KF approaches for over fifty years since the KF came 

into existence in 1960. 

Section II describes these methods briefly, Section III 

compares the performances of the methods through 

experiments, and Section VI concludes the paper with 

suggestions for further development of the research. 

II. ATTITUDE ESTIMATION METHODS 

A. Nomenclature 

The notations that are used in this paper are listed 

below. 

𝜼1(𝑡) Location of a UV at time 𝑡 in reference 

coordinate frame; 

𝜼1(𝑡)  =  [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡)]𝑇. 

𝜼2(𝑡) Attitude at time 𝑡 represented by roll, pitch, 

and yaw of a UV in reference coordinate 

frame; 𝜼2(𝑡)  =  [𝜙(𝑡) 𝜃(𝑡) 𝜓(𝑡)]𝑇. 

𝝂1(𝑡) Velocity of a UV at time 𝑡 in UV coordinate 

frame; 𝝂1(𝑡)  =  [𝑢(𝑡) 𝑣(𝑡) 𝑤(𝑡)]𝑇. 

𝝂2(𝑡) Angular rate of a UV at time 𝑡  in the UV 

coordinate frame; 

𝝂2(𝑡)  =  [𝑝(𝑡) 𝑞(𝑡) 𝑟(𝑡)]𝑇. 

𝒙(𝑡) Attitude estimated for the time 𝑡; 

𝒙(𝑡)  =  [�̂�(𝑡) �̂�(𝑡) �̂�(𝑡)]𝑇. 

𝒙−(𝑡) Attitude predicted for the time 𝑡; 

𝒙−(𝑡)  =  [𝜙−(𝑡) 𝜃−(𝑡) 𝜓−(𝑡)]𝑇. 

𝒂(𝑡) Acceleration measured in the instrument 

coordinate frame; 

𝒂(𝑡) =  (𝑎𝑥(𝑡),  𝑎𝑦(𝑡),  𝑎𝑧(𝑡))
𝑇

. 

𝒂𝑢𝑛𝑖𝑡(𝑡) Normalized acceleration measurement; 

𝒂𝑢𝑛𝑖𝑡(𝑡) =  (𝑎𝑥(𝑡),  𝑎𝑦(𝑡),  𝑎𝑧(𝑡))
𝑢𝑛𝑖𝑡

𝑇

=  
𝒂(𝑡)

‖𝒂(𝑡)‖
. 

𝒎(𝑡) Magnetic field measured in the instrument 

coordinate frame; 

𝒎(𝑡) =  (𝑚𝑥(𝑡),  𝑚𝑦(𝑡),  𝑚𝑧(𝑡))
𝑇

. 

𝒎𝑢𝑛𝑖𝑡(𝑡) Normalized magnetic field measurement; 

𝒎𝑢𝑛𝑖𝑡(𝑡) =  (𝑚𝑥(𝑡),  𝑚𝑦(𝑡),  𝑚𝑧(𝑡))
𝑢𝑛𝑖𝑡

𝑇

=  
𝒎(𝑡)

‖𝒎(𝑡)‖
. 

𝑹𝑠
𝑤  Rotation matrix that converts a vector in the 

UV coordinate system into a vector in the 

reference coordinate system. It is represented 

in terms of 𝜙, 𝜃, and 𝜓 of the UV. 

𝑹𝑤
𝑠  Rotation matrix that converts a vector in the 

reference coordinate system into a vector in 

the UV coordinate system; 
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𝑹𝑤
𝑠 =  𝑹𝑠

−1𝑤 = 𝑹𝑠
𝑇𝑤 . 

B. EKF for Attitude Estimation 

EKF is one of the prevalent approaches for attitude 

estimation. The state 𝒙(𝑡)  to be estimated and the 

measurement 𝒛(𝑡) for the application of EKF consist of 

roll, pitch, and yaw, as shown in 

 𝒙(𝑡) = 𝒛(𝑡) = [𝜙(𝑡) 𝜃(𝑡) 𝜓(𝑡)]𝑇.            (1) 

To predict the attitude, the differential equation (2), 

which requires an angular rate measurement, is integrated 

with time. 

�̇�(t) = 𝑝(𝑡) + 𝑞(𝑡) 𝑆𝜙(𝑡) 𝑇𝜃(𝑡) 
+𝑟(𝑡)𝐶𝜙(𝑡) 𝑇 𝜃(𝑡) 

�̇�(t) = 𝑞(𝑡) 𝐶𝜙(𝑡) − 𝑟(t) 𝑆𝜙(𝑡)          (2) 

�̇�(t) = 𝑞(𝑡)
𝑆𝜙(𝑡)

𝐶𝜃(𝑡)
+ 𝑟(𝑡)

𝐶𝜙(𝑡)

𝐶𝜃(𝑡)
 

In Eq. (2), C, S, and T represent cos, sin, and tan, 

respectively. 𝑝(𝑡) , 𝑞(𝑡) , and 𝑟(𝑡)  are measured by the 

AHRS in the sensor coordinate frame. To use Eq. (2) for 

prediction of attitude at time 𝑡𝑘 , the attitude 𝒙(𝑡𝑘−1) , 

which is estimated at time 𝑡𝑘−1, is used. 

The gravity and magnetic field measurement is 

converted to roll and pitch for use in the calculation of 

innovation in the correction step of the EKF by 

                        𝜙(t) = 𝑎𝑡𝑎𝑛2(−𝑎𝑦(𝑡), −𝑎𝑧(𝑡)), 

𝜃(t) = 𝑎𝑡𝑎𝑛2(𝑎𝑥(𝑡), √𝑎𝑦
2(𝑡) + 𝑎𝑧

2(𝑡)).            (3) 

The magnetic field measurement 𝒎(𝑡)  is used to 

calculate yaw as follows: 

 𝜓(𝑡) = 𝑎𝑡𝑎𝑛2(− 𝑚𝑦 (𝑡)𝑤 , − 𝑚𝑧 (𝑡)𝑤 ),           (4) 

𝒎(𝑡)𝑤 = [ 𝑚𝑥 (𝑡)𝑤 𝑚𝑦 (𝑡)𝑤 𝑚𝑧 (𝑡)𝑤 ]
𝑇

= 𝑹𝑠
′𝑤 𝒎(𝑡) . 

The rotation matrix in Eq. (4) is given in terms of 

𝜙(𝑡) and 𝜃(𝑡), which are calculated by Eq. (3). 

𝑹𝑠
′𝑤 = [

𝐶𝜃(𝑡) 𝑆𝜙(𝑡)𝑆𝜃(𝑡) 𝐶𝜙(𝑡)𝑆𝜃(𝑡)
0 −𝐶𝜃(𝑡) −𝑆𝜙(𝑡)

−𝑆𝜃(𝑡) 𝑆𝜙(𝑡)𝐶𝜃(𝑡) 𝐶𝜙(𝑡)𝐶𝜃(𝑡)
].   (5) 

The EKF method uses the state transition model given 

by Eq. (2). The measurement model is modeled by an 

identity matrix since the measurement variable is the 

same as the state variable as indicated by Eq. (1). 

C. SRV Method 

The SRV method uses the cross product of two unit 

vectors to represent the difference of the predicted 

attitude and reference attitude [12]. SRV combines the 

attitude errors detected by the gravity and magnetic field 

measurement using the SRV 𝒓(𝑡) given by 

𝒓(𝑡) = 𝛾−𝑧𝒓−𝑧(𝑡) + 𝛾𝑥𝒓𝑥(𝑡) (6) 

𝒓−𝒛(𝑡)

=  𝑹𝑤
𝑠 (𝑡) [

0
0

−1
]  

× 𝒂𝑢𝑛𝑖𝑡(𝑡) 

𝒓𝒙(𝑡)

=  𝑹𝑤
𝑠 (𝑡) [

1
0
0

]  

× 𝒎′𝑢𝑛𝑖𝑡(𝑡) 

𝒎′
𝑢𝑛𝑖𝑡(𝑡)

= (𝒎(𝑡)  

− 
𝒎(𝑡) ∙ 𝒂(𝑡)

𝒂(𝑡) ∙ 𝒂(𝑡)
𝒂(𝑡))

𝑢𝑛𝑖𝑡

 

𝛾−𝑧 + 𝛾𝑥 = 1 

The SRV 𝒓(𝑡) bears the rotation information from the 

presumed attitude to the measured attitude [12]. 𝒓−𝒛(𝑡) 

stands for the rotation of the acceleration vector from the 

Earth-centered gravity direction. 𝒓𝒙(𝑡)  represents the 

rotation of the magnetic field measurement from the 

north. 𝒓(𝑡) is the linear combination of 𝒓−𝒛(𝑡) and 𝒓𝒙(𝑡) 

and is used to calculate the innovation for the correction 

stage of EKF. The SRV is converted into Euler angles. 

The Euler angles converted from SRV are different from 

those used as innovation in the application of EKF 

described in Section II.B. The innovation represented in 

terms of roll, pitch, and yaw in the EKF is calculated by 

simply subtracting the predicted Euler angles from the 

Euler angles given by Eqs. (3) and (4). 

SRV does not explicitly estimate and compensate for 

the bias and interference of the magnetic field 

measurement. Nevertheless, the SRV method reduces the 

effect of bias and interference. It uses only the northward 

direction of the magnetic field and ignores the east and 

Earth-centered direction components. Therefore, it is not 

affected by bias and interference in these two directions. 

Likewise, it uses only the Earth-centered direction of 

acceleration, thus eliminating the interference affecting 

the acceleration measurement toward the north and east. 

D. CF Method 

The CF method utilizes the long-term stability of the 

gravity measurement and magnetic field measurement. 

To compensate for the short-term instability of these two 

field measurements, the short-term performance of the 

angular rate measurement is used. Information by the 

angular rate measurement is passed through a high-pass 

filter, whereas information by the magnetic field and 

acceleration measurement is passed through a low-pass 

filter. The information from the high-pass filter and that 

from the low-pass filter are joined together to provide the 

attitude estimate. In this study, the attitude output from 

the proprietary CF of the AHRS is also used for 

comparison with other methods. 

E. NECF Method 

NECF uses the angular rate, in which the bias is 

compensated for attitude estimation. It uses the magnetic 

field and gravity vector for the estimation and 

compensation of the bias [10, 11]. NECF uses the 

observer described by Eqs. (7) through (10). 

�̇̂�𝑠
𝑤 = �̂�𝑠

𝑤 (𝝂2(𝑡) − �̂� + 𝑘𝑝𝝈)
×

(7) 
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�̇̂�

= −𝑘𝑏�̂�

+ 𝑘𝑏𝑠𝑎𝑡𝜟(�̂�)

− 𝑘𝐼𝝈, 

where |�̂�(0)| < 𝜟, 𝑠𝑎𝑡𝜟(�̂�)≔�̂� min (1, 𝜟/|�̂�|), and 

𝝈 = ∑ 𝑘𝑖𝒇𝑖 × �̂�𝑠
𝑇𝑤 𝒇0𝑖

𝑛
𝑖=1             (8) 

In Eq. (8), 𝑘𝑃,  𝑘𝐼 ,  𝑘𝑏 , and 𝑘𝑖  denote positive 

gains, �̂�𝑠
𝑤 (0) ∈ 𝑆𝑂(3) , and 𝜟 > |𝒃|, where 𝒃  is the 

constant bias. 

𝒇1 =
�̂�

|�̂�|
, 𝒇01 = [0 0 − 1]

𝑇
, 

𝒇2 =
�̂�𝑎

|�̂�𝑎|
, 𝒇02 = [1 0 0]

𝑇
, (9) 

�̂� = 𝒂(𝑡) − (𝝂2(𝑡))
×

𝝂1(𝑡) − �̇�1(𝑡).        (10) 

In Eq. (7), 𝑹𝑠
𝑤  represents the rotation matrix, which 

can be converted to Euler angles and vice versa. 𝝂𝟐(𝑡) is 

the angular rate measured by the AHRS. It requires at 

least two field measurements whose inertial values 𝒇01 

and 𝒇02 are known and are not collinear with each other 

[10, 11, 13]. 𝒇1  and  𝒇2  are the measurements 

corresponding to 𝒇01  and𝒇02 . In this research, 𝒇1  is the 

measured acceleration and 𝒇2  is the measured magnetic 

field, which are normalized. It is assumed that the 

magnetic field north coincides with true north. 𝑘1 and 𝑘2 

are the weights to the belief on acceleration and magnetic 

field measurement. In general, magnetic field 

measurements are more vulnerable to distortion than 

acceleration measurements. So, 𝑘1  has a higher value 

than 𝑘2. Usually, 𝑘1 is over 0.9 and 𝑘2 is below 0.1, and 

𝑘1 + 𝑘2 = 1. 
Equation (10) describes the compensation of 

acceleration measurements to calculate pure gravity by 
subtracting the proper acceleration of motion from the 
acceleration measured by the AHRS. 𝒂(𝑡) represents the 
acceleration measured by the AHRS, which includes 
proper acceleration as well as acceleration due to gravity. 
𝝂1(𝑡)  represents the velocity measured by DVL, and 
𝝂2(𝑡) is the angular rate measured by the AHRS. It is 
assumed that Earth is flat locally, and the North East 
Down (NED) coordinate frame is inertial in the local 
workspace, even though the NED is not inertial 
rigorously. 

III. PERFORMANCE EVALUATION THROUGH 

EXPERIMENTS 

The methods are tested using a set of measurement 

data, which is sampled through an experiment for which a 

remotely operated UV equipped with an AHRS and a 

high-end FOG navigates in a test tank. The attitude 

provided by the high-end FOG is used as a reference to 

compare the performances of the methods. The error of 

the estimated attitude from the reference is statistically 

analyzed using the mean, standard deviation, peak to 

peak, and maximum of the error. Trajectory estimation 

depends on the attitude and the velocity of the vehicle. 

Although the trajectory error is due to the uncertainty of 

both the attitude and the velocity, it is regarded that the 

trajectory estimation error is a partial indication of the 

performance of the attitude estimation. Thus, analysis on 

the trajectory error is also included to show the 

performance of the attitude estimation method indirectly. 

The experiment uses an AHRS (LORD MicroStrain 

3DM-GX4-25), a FOG (Advanced Navigation, Spatial 

Fog), and a DVL (Teledyne RD Instruments, Navigator 

Doppler Velocity Log). DVL measures the velocity of the 

vehicle in the coordinate frame of the DVL. The velocity 

from the DVL is used for trajectory estimation after it is 

converted to the velocity in the NED coordinate frame 

using the attitude estimate. According to the manual for 

the AHRS, the gyro bias instability is 10°/hour, 

acceleration noise density is 100μg/√Hz,  and 

magnetometer noise density is 100 μGauss/√Hz [17]. In 

case the internal CF is used, the attitude accuracy will be 

±0.5° in the static status and ±2.0° in the dynamic status. 

The FOG provides roll and pitch with an accuracy of 

0.01 ° and heading with an accuracy of 0.25° secant 

latitude if only north seeking is used without the GNSS 

aid [18]. Since the remotely operated vehicle (ROV) is in 

the test tank and submerged underwater, GNSS sensing is 

not available. 

The DVL that pings an acoustic signal of 600 kHz 

from a four-beam Janus array provides a velocity 

measurement in which the standard deviation of error is 

0.3 cm/s at the speed of 1.0 m/s [19]. The standard 

deviation increases as the speed increases. The DVL can 

measure the speed when the bottom is within the range of 

0.7–90 m from the sensor array. 

 

 
(a) 

 
 (b) 

 
(c) 

 

(d) 

Figure 1.  ROV used for the experiment and the test tank. (a) ROV rear 

view, (b) ROV front view, (c) bird’s eye view of the test tank, and (d) 

side view of the test tank. 
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Figure 2.  Trajectory of the navigation for the experiment. 

An ROV equipped with sensors navigates in a test tank 

for an hour through a 297 m trajectory. Fig. 1 depicts the 

test tank and the ROV used for the experiment. Fig. 2 

shows the trajectory of navigation. The ROV navigates in 

a triangular trajectory and is controlled manually to 

follow the trajectory. Although the triangular trajectory is 

not precisely traced, it is carefully adjusted so that the 

final location is the same as the initial location. Therefore, 

the last location can be used as the ground truth location, 

which can be used for the evaluation of the trajectory 

estimation method. The dead-reckoning error at the final 

location can be a measure of the attitude estimation 

performance. 

The ROV navigates counterclockwise three 

circulations and turns back and navigates in the reverse 

direction for three circulations. This navigation repeats 

five times. Table I shows the mean and standard 

deviation of the attitude error in roll, pitch, and yaw. In 

Table I, CF represents the CF algorithm implemented by 

the authors, and CF-AHRS indicates the algorithm 

implemented internally for the AHRS. The attitude by 

CF-AHRS is the attitude output provided by the AHRS 

itself. Fig. 3 depicts the error in yaw estimate with time, 

and Fig. 4 depicts the error in roll estimation. 

Table II shows the distance error of the estimated 

location at the final location of the trajectory. Fig. 5 

shows the trajectory estimated using the attitude by 

NECF and the velocity measured by DVL (in blue). Fig. 

5 also shows the trajectory calculated using the attitude 

by FOG (in orange) for comparison. When the NECF was 

used, the estimated location was found to be 1.372 m 

away from the true location at the final destination. The 

deviation was 1.499 m and 2.312 m for the SRV and EKF, 

respectively. CF and AHRS-CF result in a larger 

estimation error in location at the destination than NECF, 

SRV, and EKF. The level of the position error at the 

destination coincides with the level of the attitude error. 

Specifically, the standard deviation of yaw error has more 

relevance with the position error than the mean of yaw 

error. Although the mean error of roll and pitch of the 

SRV is worse than that of CF and CF-AHRS, the 

difference is less than the difference in standard deviation 

of yaw error. In addition, it is remarkable that although 

the mean error of yaw of SRV and NECF is larger than 

that of CF and CF-AHRS, the position error is far better 

than that of CF and CF-AHRS. 

As shown in Figs. 3 and 4 and Tables I and II, the 

estimation errors in roll and pitch are comparable with 

each other, whereas the error in yaw estimation shows a 

remarkable difference. Although the means of attitude 

error are comparable, the standard deviation of the error 

shows distinctive differences. In particular, the standard 

deviation of the yaw error proves that NECF and SRV 

show an improvement over the EKF and CF. While the 

mean of the estimation error in yaw for SRV is larger 

than that for NECF, the standard deviation of the error is 

less than that of NECF. The mean of the attitude error 

could be considered as a bias in estimation. This suggests 

that if bias in estimation can be removed, the SRV will 

provide a more accurate estimation of yaw. The mean of 

the estimation errors by CF and CF-AHRS is comparable 

to that by NECF and less than that of SRV. In addition, 

the standard deviation of the roll and pitch error by the 

methods is comparable to that by NECF. However, the 

standard deviation of yaw error of the CF and CF-AHRS 

methods is the largest among the methods. From the 

comparison, it is suggested that the roll and pitch from 

any of the methods are acceptable. In case of yaw, the use 

of NECF or SRV is preferable. Furthermore, NECF and 

SRV would be superior to others if bias in the yaw 

estimation could be removed. It is supposed that the bias 

can be removed in two ways: the first is by estimating 

and compensating the bias in magnetic field 

measurements and the other is by doing the estimation 

and compensation with respect to the bias in yaw 

estimation itself. 

TABLE I． STATISTICS OF ATTITUDE ERROR OF THE METHODS. 

 

Mean of error (deg.) 
Standard deviation 

(deg.) 

Roll Pitch Yaw Roll Pitch Yaw 

EKF -0.790 0.207 37.879 0.288 0.257 7.646 

CF -0.393 0.084 16.577 0.261 0.241 44.438 

SRV -1.130 1.150 20.236 0.718 0.721 2.125 

NECF -0.413 0.071 17.616 0.202 0.232 5.593 

CF-AHRS -0.755 0.144 16.907 0.275 0.243 34.017 

 
Peak to peak (deg.) Maximum (deg.) 

roll pitch yaw roll pitch yaw 

EKF 1.652 1.765 41.756 1.398 0.889 55.56 

CF 13.057 5.486 359.48 7.195 3.905 179.84 

SRV 3.837 4.204 20.679 2.457 2.195 29.363 

NECF 1.811 1.638 39.815 1.597 0.868 41.503 

CF-AHRS 1.458 1.481 359.40 1.268 0.112 179.87 

TABLE II． POSITION ERROR AT THE FINAL DESTINATION. 

 

Directional error (m) 
Error distance (m) 

x-axis y-axis z-axis 

EKF 2.242 0.199 -0.527 2.312 

CF 32.032 12.722 0.718 34.473 

SRV 1.466 0.170 -0.260 1.499 

NECF 1.227 -0.012 0.613 1.372 

CF-AHRS 42.939 -7.550 -0.651 43.598 
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(a) 

 

(b) 

Figure 3.  Error in yaw estimation compared with the yaw measured by 

FOG. (a) EKF and CF; (b) NECF and SRV. 

 
(a) 

 

(b) 

Figure 4.  Error in roll estimation compared with the yaw measured by 

FOG. (a) EKF and CF; (b) NECF and SRV. 

 

Figure 5.  Estimated trajectory using the attitude by NECF. 

IV. CONCLUSIONS 

This paper presented a comparison of several attitude 

estimation methods through an experiment. The methods 

encompass the NECF method, SRV method, EKF, and 

CF method. In the statistical analysis, methods that use 

field measurements without conversion to Euler angles 

exhibit a robust performance. However, it should be 

noted that the KF application has many variations and the 

KF used in the paper is just one of the variations [20]. In 

addition, the performance of an algorithm depends on the 

parameter values used in each application. 

In further research, it is expected that the methods that 

detect and compensate the distortion in magnetic field 

measurements be involved in the application of the 

attitude estimation methods presented in this paper. 

Another possibility is estimating and compensating the 

bias in attitude, especially in yaw. There is also a need to 

investigate the computational expenses for each method 

to test whether the methods are appropriate for real-time 

applications. Analysis on robustness against the 

measurement noise and instability would help choose a 

proper method because each commercial AHRS exhibits 

different measurement characteristics in the level of noise 

and stability. 
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