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Abstract— High speed machining (HSM) is a technology 

employed in various industries and is characterised by high 

flexibility regarding geometrical forms, high productivity as 

well, as improved workpiece surface quality. In order to 

exploit the full potential of HSM, the most significant 

challenges which must be overcome are the frequent process 

disruptions and the high tool wear rates.  

This paper outlines a feasibility study of improving the 

efficiency in the utilisation of HSM by developing an 

innovative tool wear monitoring system interconnected with 

an intelligent adaptive control system. The tool wear 

monitoring system would achieve accuracy and reliability 

on an unseen level for the on-line quantification of tool wear 

by integrating indirect measurement methods, sophisticated 

wear models and intelligent computational methods. 

The adaptive control system connected with the machine 

tool will use the tool wear information in order to determine 

the most appropriate moment for tool change while 

balancing maximum workpiece quality and maximum tool 

life. The optimised use of tools will enable stable workpiece 

quality and significant cost savings. Through the real-time 

adaptation of cutting parameters, an optimised tool change 

can be achieved despite varying process parameters.  

The proposed system will be portable and adaptable to 

diverse machine tool controls and machine tools, 

independent of the manufacturer. It will be applicable to 

various workpiece and tool types, with minimised learning 

effort required due to the use of intelligent descriptors to 

describe the wear influencing variables. The system would 

enable end-users to efficiently use HSM technology. Its 

benefit in the form of improved process capability and 

additional cost savings could be quite vital in future projects 

within the automotive mould and die industries.  

 

Index Terms—Tool condition monitoring, high speed metal 

cutting, adaptive control system, artificial neural networks 

 

I. INTRODUCTION 

A. Technical Quality 

Worldwide, manufacturing industry is undergoing 

significant changes. The globalisation of the industry as 

well as constantly decreasing product life-cycles and 

increasing product customisation has put enormous 
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pressure on European manufacturing industry in recent 

years. European manufacturers must acquire a 

competitive advantage in production technology in order 

to withstand these pressures, in particular the pricing 

pressure of Asian competitors. This, and the never ending 

financial uncertainties has motivated the ‘ManuFuture’ 

platform to establish the Factories of the Future Research 

Association which supports the public-private partnership 

on future manufacturing technologies, and aims to 

develop innovative technologies which enable a 

competitive and sustainable manufacturing in Europe. 

Typical work programmes have included topics such as 

“Towards zero-defect manufacturing”, encompassing the 

development of technologies which enhance the 

capability of manufacturing processes and thus represent 

a step towards zero-defect manufacturing. 

A major factor which significantly reduces the 

capability of machining processes is tool wear, as it 

influences the cutting edge geometry thereby determining 

the quality of the produced part. The tool wear and hence 

the tool life is influenced by several factors originating 

from the workpiece, the workpiece material, the cutting 

parameter, the machine tool and the cutting tool itself. 

Some of these influences are subject to fluctuations 

which can be very difficult to control (e.g. material 

inhomogeneity). Therefore, in large-batch production, 

considerable fluctuations in tool life can be observed 

although the controllable machining conditions remain 

unchanged for each part. In contrast to this, the 

machining conditions have to be adapted to each specific 

machining task in single-item production. In this case, an 

accurate prediction of tool life is even more difficult as 

there is limited knowledge of the effect of the new cutting 

conditions on tool wear.  

If a cutting tool is used beyond a certain tool life 

specification, the workpiece quality will deteriorate. Tool 

wear may then lead to: 

 Reduction of geometrical and dimensional 

accuracy due to cutting edge displacement as well 

as tool and workpiece displacement as a result of 

increased process forces, 

 Deterioration of surface quality through impaired 

cutting edge geometry, 
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 Formation of undesired residual stresses in the 

workpiece surface layer through increased 

mechanical and thermal loads. 

 Alteration of surface layer structure through 

increased process temperatures. 

In either case additional reworks, customer complaint 

or scrap occur. Due to these problems, the tool life 

fluctuations are statistically analysed and a very early 

pre-set time for tool change is chosen. Hence, the full 

application potential of most of the tools is not utilised. 

Instead, the additional consumption of tools and the loss 

of time due to frequent tool changes lead to high 

production costs. A recent review of on-line tool 

condition monitoring is presented in Ref [1]. 

The problems related to tool wear basically apply to all 

machining processes. However, these problems are 

present to a high degree in High Speed Machining (HSM) 

processes, which can be defined as machining with 

significantly higher cutting speeds and/or feed speeds 

compared to conventional machining. HSM is 

characterised by a high flexibility toward geometrical 

forms, high productivity, as well as likely to improve 

surface quality and geometrical accuracy.  The potential 

and advantages HSM processes is significantly higher 

than currently being exploited by the manufacturing 

industry. For example, it was estimated by Ref.[2] that 

productivity increases of up to 500 % could be achieved 

if the full potential of HSM were utilised. The most 

significant challenges which must be overcome in order 

to exploit the full potential of HSM are the reduced 

process reliability and capability, due to high tool wear 

rates. These occur due to the extremely high loads placed 

on the tool during the HSM process, which result in 

increased process temperature and demanding process 

dynamics compared to conventional machining [3].  

HSM is widely defined as machining with significantly 

higher cutting speeds and/or feed speeds compared to 

conventional machining. Increased cutting speed can be 

utilised to increase the material removal rate at a constant 

under formed chip cross-section and thereby reducing 

cycle time.  If the increased cutting speed is utilised to 

decrease the un-deformed chip thickness at a slightly 

increased material removal rate, the workpiece surface 

quality can be improved and consequently manual rework 

avoided [4]. Moreover, an improved surface quality can 

often be observed through the change of the chip 

formation mechanism at higher cutting speeds. 

Hence, tool wear must be monitored and controlled in 

order to “approach” the goal of zero-defect 

manufacturing and simultaneously exploit the full 

potential of HSM. However, statistical monitoring 

methods reach their limits, particularly if single-item 

production processes are to be controlled. Therefore, on-

line tool wear monitoring by intelligent and reliable 

sensor systems combined with an on-line process control 

become a necessity. This is in line with the ManuFuture 

proactive initiative which stipulates the development of 

condition monitoring systems as a primary research 

objective [5]. It thereby maintains the manufacturing 

process at maximum performance despite the many 

influences of the machine, the workpiece, the process and 

the tool itself. A monitoring reliability of more than 95 % 

is targeted in order to comply with sophisticated 

industrial requirements. Existing tool wear and tool 

condition monitoring systems are not capable of 

determining tool wear with this reliability in an industrial 

environment and therefore do not represent a solution for 

HSM process monitoring and zero-defect manufacturing 

[6]. 

The need for such a technology has been demonstrated 

by factory suppliers and end-users in the automotive, 

aerospace, electrical and optical industries, with various 

technological roadmaps and market studies evaluating the 

implementation of adaptive and intelligent production 

processes as a top priority. The development of high 

performance applications was found to be a further 

priority for these industries. Ref. [7] reported that 86.4 % 

of surveyed enterprises intended to establish adaptive, 

intelligent and/or high performance processes in their 

production. It is therefore clear that there is a demand for 

this technology and that such a technology will enable the 

European manufacturing industry to secure its global 

position in the manufacturing market.  

B. Objectives 

This paper outlines a feasibility study on the 

development of an innovative on-line tool wear 

monitoring system and a controller which is capable of 

adapting the HSM process in real-time, taking the current 

state of tool wear into consideration. This innovative 

System called Monitoring and Adaptive Control System 

(MACS) is envisaged to be developed for high-speed 

finish milling processes which present the most 

demanding challenges and exhibit the most significant 

benefit. The tool wear information shall be used for: 

a) Precise determination of the most appropriate 

moment for tool change, balancing maximum tool life 

and maximum workpiece quality, thus enabling stable 

workpiece quality with best possible use of tools, 

b) Control of cutting parameters in order to assure 

the implementation of a tool change at the most 

appropriate moment, 

c) Real-time adaptation of the tool trajectory for 

the compensation of the cutting edge displacement due to 

tool wear. 

The MACS will thereby significantly improve the 

process capability and productivity at end-user sites 

through: 

 Improvement of dimensional and contouring 

accuracy, 

 Improvement of workpiece surface integrity, 

 Decrease of production time, 

 Decrease of machine tool downtime, 

 Decrease of tooling costs, 

 Avoidance of rework and scrapped workpiece, 

 Avoidance of tool breakage. 

The scope of the envisage system as well as a 

summary of its technical content is listed in Table 1.  
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TABLE I.  SCOPE OF MACS 

 

II. CASE STUDY APPLICATIONS 

HSM is widely used in aerospace, automotive, medical, 

mould and die industries. MACS envisages these 

application fields through active participation of industry 

end-users.  As tool wear exerts significant influence on 

the workpiece quality, tool wear monitoring becomes 

highly important. The mould/die and automotive industry 

would gain the most from the MACS, hence these two 

sectors have been the focus during the evaluation phase 

of the MACS.  

A. HSM in Mould/die and System Concept 

The ManuFuture initiative identified the tooling 

industry as a key technology sector, since product 

innovations strongly dependent on innovations and 

developments on mould, dies and tools [8]. This sector 

manufactures moulds, dies and special tools for the 

production of almost all industrial products which find 

application in automotive, aircraft, electronics, household, 

equipment goods and micro-devices. Seven thousand 

European companies (95 % of them SMEs) with more 

than 100.000 employees achieve an average annual 

turnover of €13 billion in this sector [9]. Besides the 

pricing pressure, the tooling industry is faced with 

increasing demands for customisation, accuracy and 

delivery time.  A high percentage of all moulds and dies 

are manufactured in single-item production. This fraction 

amounts to 99 % in companies that specialise in the 

production of large moulds and dies. This creates a 

demand for manufacturing technologies that enable a 

more reliable, flexible and faster manufacturing of high 

quality mould and dies. 

The central theme of the development focuses on 

embedding MACS within the machine tool (Figure 1). 

 

Figure 1. Concept of the Monitoring and Adaptive Control System. 

1) Tool wear montoring 

Due to the confined accessibility to the cutting edge 

during a milling operation, direct on-line measurement of 

tool wear is not possible in most cases. Since on-line 

measurement is essential for the real-time control of the 

cutting process, indirect on-line measurement of tool 

wear must be incorporated. Indirect on-line measurement 

requires the continuous monitoring of the cutting 

operation by sensors and the correlation of these signals 

with the tool wear by intelligent computational methods. 

Investigations in the field of on-line tool wear monitoring 

show that it is not sufficient to regard a single sensor 

signal if different manufacturing conditions are to be 

considered [5]. Hence, multiple sensor signals will be 

applied for the on-line measurement. Examples of 

measuring signals which can be measured and correlated 

with the tool wear are cutting force, torque, spindle drive 

current, vibration, acoustic emission, sound and 

temperature. Additional sensors for the off-line 

measurement of product quality in terms of dimensional 

accuracy and surface integrity will be applied to the 

machine tool in order to automatically create quality 

related data. This quality control data is required for the 

adaptation of the machining process.  

2) Sensor technology 

There are a large number of sensors currently available 

in the market. Their sensitivity to tool wear differs, 

depending on sensor type and on the manufacturing 

process. The effectiveness of different sensors, such as 

dynamometers, strain, vibration and acoustic emission 

sensors, microphones, thermocouples and infrared 

pyrometers will be evaluated after which, the most 

appropriate sensor technology for tool wear monitoring in 

high speed milling operations will be established. The 

application of tactile, optical and laser sensors is foreseen 

for the measurement of the product quality. The demand 

for high cost-efficiency of the system will be considered 

as a primary selection criteria of the sensor technology. 

3) Adaptive control system 

The adaptive control unit of the MACS uses the tool 

wear and workpiece quality data of the tool wear 

monitoring system in order to optimise the machining 

process. 

4) Interface between MACS and machine tool 

The interoperability between the MACS and different 

machine tools and machine controls is an important issue 

for the aspired broad exploitation of the system. The 

control unit and the user interface of the MACS are 
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connected to an external card-based industrial computer 

which is connected to the programmable logic controller 

of the machine tool. This allows the bidirectional 

transmission of signals for the optimisation of the 

machining process. The advantages of such a system 

compared to a CNC integrated solution are the facile 

adaptability to different production systems, the high 

portability and the modular expandability of 

functionalities through the installation of additional plug-

in cards. 

B.    Automatic Tool Wear Diagnosis 

Approximately 2.3 million people are directly 

employed in the European automotive industry of which 

about 45 % can be apportioned to automotive suppliers. 

The turnover of the European automotive industry 

amounted to €550 billion in 2005 [9].  As of 2015 [10], 

the turnover generated by the automotive sector 

represents 6.5% of EU GDP while the industry has ripple 

effects throughout the economy, supporting a vast supply 

chain and generating an array of business services.  

According to the European Automobile Manufacturer’s 

Association’s facts, the following two points are clear: 

Creating skilled jobs- 

 12.2 million people - or 5.6% of the EU workforce 

- are employed in the sector. 

 The 2.3 million high-skilled jobs in automotive 

manufacturing represent 7.7% of the EU's 

manufacturing employment. 

Manufacturing in Europe- 

 Vehicle manufacturing is a strategic industry in 

the EU, where 18.4 million cars, vans, trucks and 

buses are manufactured per year. 

 Automobile manufacturers operate some 296 

vehicle assembly and production plants in 26 

countries across Europe. 

The automotive industry is not only a large customer 

for high speed machined moulds and dies but also applies 

the HSM technology for the manufacturing of engine 

components (engine block, cylinder head). Furthermore, 

innovative materials such as metal matrix composites and 

reinforced plastics find their way into automotive 

industry due to their excellent stiffness to weight ratio. 

These materials are difficult to machine with 

conventional cutting speeds. High speed machining offers 

advantages for these applications due to a change of the 

chip formation mechanisms at higher cutting speeds. 

HSM also allows the economical machining of hardened 

materials resulting in the substitution of other machining 

technologies, such as die-sinking electrical discharge 

machining and grinding, and bypassing the subsequent 

hardening to complete the manufacturing process.  

Intelligent hybrid systems, such as fuzzy logic and 

neural networks have widely been tested in laboratory for 

the detection of tool wear based on a set of input 

parameters [11, 12]. However, the reported diagnosis 

approaches work in laboratory environments but not as 

industrial application due to the insufficient availability 

of input values in current approaches that is, the input 

values are not suited or comprehensive enough to 

describe the entire tool wear diagnosis problem. In 

practice, this means that the developed systems function 

reasonably well with the data recorded in the laboratory 

test but they do not function within an industrial 

environment [6, 13, 14]. In addition, the training and 

tuning of these systems in industrial sites would be 

extremely time consuming if all the possible tools, 

workpiece materials and corresponding cutting conditions 

(over a thousand possible combinations) were to be 

covered.  

The innovation adopted in the MACS focuses on an 

approach that can be used in the industry in different or a 

wide number of machining environments. In order to 

achieve this goal, the “Advanced Intelligent Design of 

Complex Systems” method is applied (Figure 2), as this 

is most suited to solutions of general optimisation 

problems.  The method specifies the transformation of so-

called primitive descriptors into intelligent descriptors 

and creates a sophisticated database for automatic tool 

wear diagnosis. The transformation is steered by means 

of experts so that their knowledge is inherent in the 

intelligent descriptors. The intelligent descriptors will be 

extracted from sensor signals and extended for the first 

time by additional machine tool, cutting tool and 

workpiece material related descriptors in order to allow 

accurate tool wear monitoring in industrial applications. 

Intelligent descriptors are characterised by the fact that 

they include the basic wear determining information. This 

is achieved through features extracted from indirect tool 

wear monitoring sensor signals (such as vibration, 

acoustic emission, cutting force etc.), workpiece material 

parameters (e.g. tensile strength), dynamic response 

(excitation forces/stiffness) of the machine tool-

workpiece-cutting tool system and lubrication. The 

database will be an elementary part of the self-learning 

intelligent hybrid diagnosis system. 

The basic choice of monitoring signals together with 

the choice of signal analysis techniques plays a major role 

in the process of developing the intelligent descriptors. 

The chosen techniques have to be efficient and reliable in 

tool wear monitoring, with attention paid to the time the 

signal analysis takes since due to the progressive 

development of wear the time for diagnosis and prognosis 

of tool wear is limited. The intelligent descriptors must 

also allow the correct recognition of the rapid change in 

wear rate i.e. the dramatic increase of wear which can 

often be observed when the tool reaches its end of life.  

The identification of the intelligent descriptors as well as 

the development of simple, standardised tests for the 

quantification of particularly stiffness/dynamic response 

related values are important issues and require multi-

disciplinary expert knowledge.  

1)  Self-Learning intelligent hybrid system for tool 

wear diagnosis. 

The self-learning intelligent hybrid system of the 

MACS learns from a set of examples which connect the 

intelligent input descriptors with the tool wear (Figure 2). 

A number of intelligent classification methods come into 

consideration for this purpose. The main advantage of the 

intelligent descriptors is that reliable tool wear diagnosis 
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is possible with significantly reduced training effort 

despite the influences emerging from the change of 

workpiece material and type of machine tool or cutting 

tool. The MACS thereby fulfils the practical requirements 

which are claimed when the system is applied in small 

series or even single-batch production with frequently 

changing machining conditions. 

A number of the intelligent descriptors are 

continuously allocated with new values which are derived 

from the sensor signals during the monitored machining 

process. The current state of tool wear can then be 

determined by means of the established classification and 

subsequently be used for the adaptive process control. 

2)  Adaptive control system: capabilities of the MACS 

The adaptive control unit of the MACS is connected to 

the machine control and uses the tool wear data and 

workpiece quality data in order to: 

 Determine the most appropriate moment for tool 

change, balancing maximum tool life and 

maximum workpiece quality, 

 Adapt the cutting parameters in order to assure an 

optimised tool change, i.e. to shift the point of tool 

change if the interruption of the machining process 

for tool change is not allowed at the predicted 

moment, 

 Adaptively control the tool trajectory for the 

compensation of the cutting displacement due to 

tool wear. 

 

 

Figure 2. Tool wear diagnosis through “Advanced Intelligent Design of 
Complex Systems” 

3) Determination of critical tool wear status and 

suitable tool change strategy 

The most appropriate moment for tool change is 

characterised by the achievement of a critical state of tool 

wear at which the workpiece quality criteria can no 

longer be met unless a change of either the nominal 

machining parameters or the tool itself is made. This 

critical state of tool wear according to the wear criterion 

(Flank wear), VBmax must be determined prior to the 

machining process. The said value shall be determined 

from the analysis of both tool wear and achieved surface 

quality data recorded in preliminary machining 

operations by the tool wear monitoring systems. 

Different tool change strategies must be applied 

according to the respective cases. On the one hand, the 

current tool wear state VB can be continuously compared 

with the critical wear VBmax during the machining process. 

The MACS then sends the signal for tool change to the 

CNC as soon as VBmax is reached, in order to prevent the 

degradation of the workpiece quality. A relevant and 

commonly used case is that where tool change is not 

allowed (or recommended) before the completion of a 

machining cycle in order to avoid marking the workpiece 

surface through the tool change. However, the tool may 

reach a critical wear status during the course of the 

current operation. This means, that the time of tool 

change must be shifted through the adaptation of 

machining parameters (e.g. feed-rate, depth of cut, etc.). 

In order to implement such a tool change strategy, the 

progress of the tool wear over time must be predicted. 

4) Dynamical mathematical modelling for tool wear 

prognosis 

Prior to the execution of a machining operation, the 

current tool wear status is evaluated to include 

development of dynamic models featuring initial and in-

situ prevailing tool wear status, machining operation, 

configurable machining parameters as inputs and 

resulting tool wear status and surface quality as outputs. 

Such a model allows the prediction of machining 

parameters thus guaranteeing the successful completion 

of the intended operation without surface quality 

degradation or tool breakage (VBmax is not exceeded).  

In case the pre-process prognosis by the dynamical model 

shows that the machining configuration currently in use 

should lead to unsuccessful machining completion 

whereas another one will not, the latter configuration will 

be adopted for the following operation; otherwise, if there 

is no suitable machining parameter configuration, a tool 

change should be carried out immediately. 

C.  Modelling For Successful Tool Change and 

Machining Operation Completion 

Two different system identification paradigms are 

considered as appropriate for the modelling of the high 

non-linearity associated with high-speed machining 

operations: 

1.  Non-symbolic modelling approach that relies on the 

application of data mining techniques. Data mining or 

knowledge discovery from data encompasses many 

different techniques, such as computer science, numerical 

analysis, and visualization that are used to extract implicit, 

previously unknown, and potentially useful information 

from data. To that purpose several statistical techniques 

predictive models such as artificial neural networks, 

decision trees, and nearest neighbour classification can be 

used. 

2.  Symbolic modelling approach that relies on the 

application of symbolic regression techniques. Symbolic 

regression or symbolic function identification employs 

regression techniques to analyse and model numeric 
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multivariate data sets. It identifies the input variables that 

set up significant changes on relevant output variables, 

whilst yielding a mathematical function and assessing its 

quality and generality. To that purpose symbolic 

regression relies on efficient evolutionary programming 

algorithms that perform stochastic iterative searches to 

estimate potential model expressions. 

These two approaches have proven to be well suited to 

tackling industrial modelling problems where little 

information about the underlying system is available (and 

thus, no assumptions or preliminary model structure can 

be made) and involving handling large multivariate data 

set. 

1)  Dynamical Mathematical Modelling for Tool Wear 

Prognosis 

Non-symbolic models refer to models that are not 

directly human-understandable. Instead of using human-

understandable symbols, they use other knowledge 

formats such as weights, connections, etc. The best 

known data-driven model generation method based on 

non-symbolic modelling approach is artificial neural 

networks (ANN). ANNs are inspired by human brain 

cognitive ability where neurons (i.e. process units) are 

interconnected and grouped in layers. An input layer 

receives input data while an output layer provides output 

data. The main advantages of this approach are: 

 Learning ability: Input-Output patterns are used to 

train the ANN. During the training (estimation) 

phase ANN error is iteratively reduced by using 

different algorithms such as the back-propagation 

method or genetic algorithms. From a 

mathematical point of view an ANN can be 

considered as a complex non-linear mathematical 

expression regressor. Furthermore, ANNs are 

universal approximators and consequently they 

can approximate any continuous function on a 

compact domain to any degree of accuracy. 

 Generalisation: By means of a set of training data, 

the ANN is able to extrapolate or generalise its 

behaviour. This is a very interesting feature in 

order to reduce the data set cardinality as well as 

the number of experiments. 

 Noise-Tolerance: The nature of the ANN 

computational process makes ANN less sensitive 

to input data noise than other data-driven model 

generators. 

The main disadvantages of ANNs are: 

 There are no precise rules to pre-determining 

ANN architecture (number of layers, neurons 

distribution, topology, etc.). A small neural 

network will provide limited learning capabilities, 

whereas a large one will overfit the training data, 

inducing generalisation loss. 

 Heuristic-based approaches are used in order to 

define the most promising ANN architecture. 

 ANN can be considered as a non-symbolic model 

(black-box) in which knowledge is not explicit. 

Many domain applications are not compatible with 

this fact. 

2)  Symbolic Regression 

Many science areas are increasingly searching for 

models that fit specific data sets. The model in question is 

usually a mathematical expression with a set of 

coefficients (parameters) that have to be determined. In 

the best scenario, the model is known and the problem 

can be reduced to find this set of coefficients that fit data 

in an optimal way. 

Curve fitting is considered a mathematical problem in 

which a curve fits a set of points. This process is carried 

out by applying mathematical methods such as least 

squares, or alternatively it can be reduced to a classical 

interpolation problem when the function has to perfectly 

fit the points. 

If initial data have been experimentally obtained, an 

inevitable error in the measurement process has to be 

assumed. The way in which the impact produced by this 

error can be mitigated is by carrying out repetitive 

measurements so that a statistical analysis can be 

performed. Thus, there exist statistical techniques, like 

regression analysis, that provide the model parameters 

taking into account the error that can be present in data. 

Besides, other statistical techniques like lack-of-fit test 

provide an estimate of suitability of the evaluated model 

through a fitness value which considers measurement 

errors. 

The technique that allows the searching of both the 

coefficients that best fit data and the model itself is 

known as symbolic regression. Symbolic regression is 

based on concepts known some decades ago, although the 

symbolic regression term is relatively recent [14, 15]. The 

first symbolic regression approaches were based on 

extensions of classical regression methods, and were 

called stepwise regression methods. In these methods, the 

targeted mathematical function is iteratively modified by 

adding and removing mathematical terms [16, 17]. 

Stepwise regression methods are supported by statistical 

concepts like regression analysis. So, initil data need to 

satisfy statistical requirements imposed by the statistical 

tests used to validate generated models. Other symbolic 

regression methods include data-driven heuristic model 

generation. This method is inspired by human cognitive 

process employing heuristic rules in order to drive the 

search process to find a mathematical expression that best 

fit data [18]. 

Both stepwise regression methods and data-driven 

heuristic approaches are only able to obtain limited 

models in terms of mathematical complexity. A priori 

information about the searched model is needed in order 

to state the more complex mathematical expressions 

search [19]. In addition to this, most of these methods 

require an exhaustive initial data set, coming from a 

factorial experiment design, where all the possible 

coupled variable modifications have to be considered. 

Advances in information technologies have allowed 

the use of more sophisticated search techniques like 

evolutionary computation. By means of evolutionary 

computation the search problem, inherent in symbolic 

regression, can be faced avoiding the existing constraints 

in other approaches. Nowadays, evolutionary 

computation use has been a revolution in the symbolic 
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regression domain. Its use has been extended to a great 

number of domains, from purely mathematical domain to 

engineering and industrial applications. With its help, 

symbolic regression can be considered as a very 

promising useful tool to assist scientists in the physical 

laws deduction process. 

The main advantages of the evolutionary symbolic 

regression approach are: 

  Free data format: no restrictions are imposed 

regarding the initial data format. On the contrary, 

in other statistical approaches repetitions are 

required or other statistical considerations: 

Gaussian error distribution, constant error 

deviations etc. 

 Free form model search: by using evolutionary 

computation and especially grammar-guided genetic 

programming, is possible to define the model searching 

space. Grammar definition supports the type of 

mathematical expression to take into account. 

   Searching ability: evolutionary computation has 

demonstrated being the best technique when 

solving optimization and search problems in 

complex search spaces and in problems where no 

direct solving methods are available. Efficient 

search space exploration skills together with local 

extrema avoidance are two main virtues of this 

approach. 

   Although this approach has an important 

computational cost, its performance improves that 

of most of other data-driven model generation 

methods. 

   During the best model search process, besides the 

best-fit method other restrictions and objectives 

can be considered: penalize complex expression 

(parsimonious criterion), derivability conditions, 

etc. 

Both, symbolic and non-symbolic modelling 

approaches are evaluated and the most suitable approach 

chosen. 

3)  Adaptive control of tool trajectory 

Besides the implementation of a timely tool change, 

the tool wear information can also be used as an 

optimisation measure. As the tool wear causes a 

displacement of the cutting edge, the accuracy of the 

machined workpiece dimension and contour is reduced. 

A width of flank wear land of 0.2 mm will cause a 

deviation of approx. 0.035 mm if a cutting tool with a 

clearance angle of 10° and a rake angle of 0° is 

considered. Hence, the tool trajectory must be adapted by 

this amount in order to guarantee the requested geometry 

despite tool wear. If this amendment ought to be realised 

in real-time, comprehensive adaptations in the CNC have 

to be accomplished. The work must particularly focus on 

the look-ahead function of the CNC which processes and 

buffers the following 100 to 150 part program blocks in 

advance in order to maximise machining speed and 

smoothness. As it is not possible to access the already 

buffered data, they cannot be corrected with the current 

tool wear information. Moreover, there is no information 

about the duration of the buffered NC blocks. One way to 

overcome these difficulties is to apply the trajectory 

compensation to the NC code, empty the buffer and 

restart the look-ahead function. If the restart interval is 

small enough, a real-time adaptation of the tool trajectory 

will be possible.  There is, however, still the need for a 

review of the Human-machine interface [20]. 

The participation of a CNC manufacturer is imperative 

due to the profound nature of the adaptations described. 

The work tasks for the development of the adaptive 

control of the tool trajectory would be exclusively led by 

a European HSM machine and CNC manufacturers. 

4)  Innovation beyond state-of-the-art 

In order to achieve an unseen level of accuracy and 

reliabilities in excess of more than 95 % even under 

changing process conditions, parameters must be 

determined which account for the influence of external 

factors on the tool wear monitoring. For example, the 

stiffness of the workpiece clamping system and the 

machine tool, the cutting tool type and material, as well 

as the work material hardness and ductility significantly 

determine the tool wear behaviour and have not been 

explicitly considered in industrial TCMS’s. The 

development of such parameters represents an important 

progress beyond current monitoring systems. These as 

well as further features which will be extracted from 

sensor signals will be transformed into intelligent 

descriptors following the “Advanced Intelligent Design 

of Complex Systems” approach in MACS. Dependencies 

between the features and the tool wear, which can be 

described by theories and models, will be considered in 

this transformation. A universally valid description of the 

wear diagnosis problem is thereby necessary, so that an 

unrivalled diagnosis reliability and accuracy can be 

achieved. The real-time control of the machining process 

on the basis of the current state of wear becomes 

therewith possible for the first time. The MACS proposed 

focuses on the development of control algorithms which 

ensure the implementation of a tool change at the most 

appropriate moment in order to realise the desired 

workpiece quality at maximum tool usage.  

III. CONCLUSION 

This project contains several important new 

developments which overcome the current state-of-the-art. 

These are: 

 A tool wear monitoring system with a new level of 

reliability and accuracy (more than 95 %) for 

industrial environment i.e. working at different 

machining conditions. 

 An adaptive control system which compensates 

for cutting edge displacement due to tool wear and 

determines the most appropriate tool change 

strategy, using the tool wear monitoring system 

and: 

 A tool wear prognosis model. 

 A model for the determination of the critical state 

of tool wear. 

IV. FURTHER WORK SUGGESTION 
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Multisensory systems development increases the total 

number of features which leads to an improved tool wear 

diagnosis accuracy.  The lack of feature robustness at 

changing machining conditions is problematic, therefore 

in order to use an appropriate number of features, feature 

reduction methods need to be improved to include for 

example genetic algorithms.   

A common drawback in the implementation of a HSM 

is that the machine configuration parameters (i.e. spindle 

speed, feed rate, depth of cut, etc.) are usually determined 

either through a relatively static database or based on the 

expertise of the operator. This fact usually leads to 

inefficient operation of CNC-driven systems and efforts 

needs to be focused here to accomplish automatic 

adjustment of operating parameters. 
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