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Abstract—In this study, a classical problem stagnation point 

flow was revisited by using powerfull enough semi 

numerical analytical technique DQM. A general expression 

of stagnation point flow is obtained. This equation solved 

with differential quadrature method (DQM) and Galerkin 

method. It is seen that obtained results are very closed to 

each other. But using DQM is more practical and faster 

than Galerkin. Because polynomial fitting in Galerkin 

method requires much more time than DQM 

 

Index Terms—component; stagnation point flow, 

differential quadrature method, galerkin method 

 

I. INTRODUCTION 

In recent years, the study of stagnation point flow has 

gained a lot of importance because stagnation point flow 

that is ubiquitous and involves interaction of several 

physical problems. Stagnation point flow is an important 

phenomena since all interactions between solid structures 

and fluid flow involve stagnation point or lines. Knowing 

the rate of change of the physical variables around the 

surroundings of the flow is very important in terms of 

engineering. Velocity decrease but highest heat transfer 

and highest pressure occur around the surroundings of the 

flow. According to this, the shape of the structure or 

selection of material may change. Some sectors that play 

an important role in the stagnation point flow are 

electronic, hydrodynamic and aerodynamic [1]. Many 

flow and heat transfer problems such as microelectronics 

cooling design, heat transfer in atmospheric reentry, heat 

exchanger, drag reduction, prediction of skin friction 

problems that are encountered in engineering applications 

are stagnation point flow nature [2]. 

In both theory and practice, the analysis of stagnation 

point flow is very important. Hiemenz (1911) first 

examined the two-dimensional flow of a fluid toward a 

fixed plane wall. Hiemenz demonstrated that Navier 

Stokes equations could be reduced to third order nonlinear 

ordinary differential equations as obtained in stagnation 

point flow section. Then the stagnation point flow has 

been successfully applied to the numerous problems that 

include different physical conditions. 

In this study, first governing equations of the stagnation 

point flow are obtained and the equation is solved by two 

different numerical techniques. One of them is differential 
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quadrature method that is very powerful technique and the 

other one is Galerkin method. In conclusion, each 

numerical method results are compared according to their 

results which show that results obtained from DQM and 

Galerkin are very close to each other. 

II. MATHEMATICAL MODELLING OF STAGNATION 

POINT FLOW 

The geometry of stagnation point flow equation is 

shown in Fig. 1. Initially this problem was studied by 

Hiemenz (1911). Hiemenz investigated that thanks to 

modification of the potential flow solution and by using 

similarity solution that decrease the number of variables, 

stagnation point flow can be analyzed by Navier Stokes 

equations [3].  

 

Figure 1. The geometry of stagnation point flow 

Complex potential function near stagnation point is as 

in equation (2.1), 

2( )F z Uz                          (2.1) 

where z x iy  , U is magnitude of the velocity. If z is 

substituted in the equation (2.1), the equation is 

rearranged and the stream function and velocity potentials 

can be extracted from equation as seen in equation (2.2) 

and (2.3). 

2Uxy                      (2.2) 

2 2=U(x -y )                        (2.3) 

Correspondingly velocity components are calculated in 

equation (2.4) and (2.5) 

     2u Ux
x y

  
  
 

                  (2.4)  
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y x

  
    
 

                     (2.5) 

For an inviscid, incompressible and steady flow along 

the same streamline, Bernoulli’s Equation given in 

equation (2.7), 

  2

0 0

1

2
p V p V                   (2.7) 

where 0p and 0V are pressure and velocity at stagnation 

point, and  is the density. At the stagnation point 0 0V  . 

If velocity is substituted into equation (2.7), distribution of 
the pressure is found as in equation (2.8). 

2 2 2

0 2 ( )p p U x y                (2.8) 

From the above mentioned equation pressure 

distribution and velocity, satisfy both potential flow 

problem and equations of motion for a viscous, 

incompressible fluid exactly. But for potential flow, 

viscous shear terms in the Navier Stokes equations are 

zero. In order to satisfy no-slip boundary condition, 

viscous shear terms are required. For this reason Hiemenz 

attempted to modify potential flow theory that provide 

both satisfy the equation of motion for a viscous, 

incompressible fluid and no slip boundary condition. 

For this reason x component of the velocity is taken as 

equation (2.9) to satisfy the desired conditions.   

   
'2 ( )u Uxf y                            (2.9) 

The prime denotes the gradient with respect to y. By 

using continuity equation vertical component of the 

velocity is found as in equation (2.10) 

    2 ( )v Uf y                             (2.10) 

Thus continuity equation is satisfied by velocity fields 

for all functions f(y), thanks to modification in the 

potential flow field that is done by Hiemenz. If we lay 

down as a condition that ( )  as yf y y  , the 

potential flow solution is valid far from the boundary. 

Further restrictions on the function f are done by 

following Navier Stokes equations in equation (2.11) and 

(2.12). 

      
2 2

' 2 2

1u u p u u
u v v

x y x x y

     
     

     

   (2.11) 

      
2 2

' 2 2

1v v p v v
u v v

x y y x y

     
     

     

   (2.12) 

It should be noted that 'v  with subscript represents the 

kinematic viscosity that is equal to the 
'v




  and v  

without subscript is the vertical velocity. 

Expressions obtained foregoing for u and v are 

substituted into the equations (2.12) and the equation 

(2.13) is obtained. 

          2 ' ''1
4 2

p
U ff Uvf

y


  


          (2.13) 

Through equation (2.13) pressure distribution is found 

as in equation (2.14). 

2 2 '( , ) 2 2 ( )P x y U f Uvf g x         (2.14) 

If boundary condition ( )f y y for large values of y 

and equation (2.8) are used g(x) and pressure distribution 

are found in equation (2.15) 

 2 2 ' 2 2

0( , ) 2 2 (1 ) 2P x y p U f Uv f U x        (2.15) 

From the equation (2.15), p

x




 is found to substitute 

into the x momentum equation in (2.11) and equation 

(2.16) is found as 

 2 2 2 '' 2 '''

'

1
4 ( ') 4 ( 4 ) 2U x f U xff U x v Uxf


      (2.16) 

After that equation (2.16) is rearranged, equation (2.17) 
is found. 

               
''' '' ' 2( ) 1 0

2

v
f ff f

U
              (2.17) 

On the surface of the plate, the boundary condition 

( ,0) 0u x  requires that '(0) 0f  and the boundary 

condition ( ,0) 0v x  requires that (0) 0f  . In 

addition these boundary condition potential flow is 

y  that is required ( )f y y or 
'( ) 1f y  as 

y  . The boundary conditions are arranged as 

'(0) (0) 0f f   and '( ) 1 as yf y   . 

As a result, thanks to modification that is done by 

Hiemenz, potential flow satisfies both governing 

equations and viscous boundary conditions. Be able to 

solving the equations (2.17) for all kinematic viscosities 

and all flow velocities, eliminating 
2

v

U
parameter from 

the equation is required. For this reason, the following 

change of variables is done with the equations (2.18) and 

(2.19). 

2
( ) ( )

U
f y

v
                            (2.18) 

2U
y

v
                               (2.19) 

The variable   depends on the both   and y . Be able 

to expressed 
''' '' ', ,f f f  in terms of 

''' '' ', ,    we need to 

use chain rule for partial derivatives. According to this 

equations, 
''' '' ', ,f f f  are found as in terms of 

''' '' ', ,    

and substituted into the equation the equation (2.20) is 

derived. 

  ''' '' ' 2( ) 1 0                   (2.20) 

And the boundary conditions are: 
'(0) (0) 0   and 

'( ) 1 as     . 
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III. SOLUTION METHODS 

A. Differential Quadrature Method 

The idea of differential quadrature method is first order 

derivative of a function with respect to a coordinate 

direction is approximated by a weighted linear sum of all 

values in the same domain and along same direction. 

Thanks to this approximation the differential equation is 

reduced to a set of algebraic equations. The most critical 

point of the DQM is computation of the weighting 

coefficients for the discretization of the first and second 

order derivatives. 

Mathematical representation of DQM is in equation 

(3.1).  

1

( ) ( ),    for i=1,2,...,N

i

N

x i ij j

jx

df
f x a f x

dx 

        (3.1) 

where ( )x if x  is the first order derivative of the function, N 

represent the number of grid points in the domain, 

j represents the grid point (i.e number of column), 

i represents the dimension of the problem (i.e number of 

row), ija is the weighting coefficients, jx is the value of 

the grid points, ( )jf x  is the value of the function at 

different grid points. Also calculated weighting 

coefficients ija are different at different locations 

according to coordinate axis. The expressions that are 

used for the calculating the weighting coefficients are 

given in the equation (3.2), (3.3) and (3.4). [4] 

                              (1)

1,

( ) ( )
N

i i k

k k i

M x x x
 

              (3.2) 

                   
(1)

(1)

( )
,  for i j

( ) ( )

i
ij

i J j

M x
a

x x M x
 


        (3.3) 

(2)

(1)

( )

2 ( )

i
ii

j

M x
a

M x
                       (3.4) 

B. Galerkin Method 

Through the method of weighted residual (WRM) a 

solution can be approximated analytically. A weighted 

residual method uses a finite number of functions. The 

method is a slight extension of that used for boundary 

value problems. The basic concept of the WRM is to drive 

a residual error to zero through a set of conditions. To 

obtain the approximate solution for the equation given in 

the differential form, approximation function is selected 

and is substituted to the differential equation. Result that is 

different than the zero is named as residual. This value 

that was obtained is multiplied by the specific weighted 

functions and the resulting product is tried to minimize In 

five steps, WRM can be applied to the problem 

 The trial function is written by expanding 

unknown solution in a set of basis functions 

 The trial function is satisfied the boundary 

conditions and initial conditions. 

 Residual is defined. 

 Weighted residual is set to zero and equations are 

solved. 

 The error is examined by setting up successive 

approximations, and converge is shown the 

number of basis functions increase. 

For the numerical solution of stagnation point flow 

equation, weighted residual method is applied by using 

Weierstrass theorem and trial function is defined as 8
th
 

order polynomial [5]. There are four main categories of 

weighted functions are selected such as subdomain 

method, collocation method, least squares method and 

Galerkin method. In this thesis stagnation point flow 

equation is solved by Galerkin method. 

Use N trial functions for weight functions that is seen in 

equation (3.5) 

;   n=1,2,3...,Nn nw f                  (3.5) 

In the Galerkin method, the trial function is multiplied 

with the function and the integral over the region is taken 

as zero as seen from equation (3.6) [5]. 

       0;   n=1,2,3,...,Nn nw Rd f Rd
 

       (3.6) 

TABLE I. SOLUTION OF THE STAGNATION POINT FLOW EQUATIONS WITH 

DIFFERENTIAL QUADRATURE METHOD. 

 

DQM 

x f f' f'' 

0 0 0 1.232591 

0.5 0.133493 0.495688 0.758308 

1 0.459161 0.777934 0.398013 

1.5 0.887278 0.916461 0.176958 

2 1.36193 0.973461 0.065825 

2.5 1.85444 0.992659 0.020227 

3 2.35256 0.998227 0.005078 

3.5 2.85219 0.999806 0.001032 

4 3.35212 0.999866 0.000169 

4.5 3.85211 0.999661 0.000022 

5 4.35211 1 0.000002 

 

 

Figure 2. Solution of the stagnation point flow equations with 
differential quadrature method and Galerkin method. 
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IV. RESULTS AND DISCUSSION 

Stagnation point flow equation is solved using both 

differential quadrature method and Galerkin method. 

Obtained results are very close to each other for this 

reason graphics overlapped as seen in the Fig. 2. Also 

values of the functions at different locations according to 

both DQM and Galerkin are given in the Table I and 

Table II. 

TABLE II. SOLUTION OF THE STAGNATION POINT FLOW EQUATIONS 

WITH GALERKIN METHOD. 

 
Galerkin Method 

x q q' q'' 

0 0 0 1.246326 

0.5 0.134173 0.495688 0.75537 

1 0.460031 0.77793 0.397656 

1.5 0.888205 0.91646 0.177526 

2 1.363013 0.97346 0.065068 

2.5 1.85548 0.99265 0.019598 

3 2.353483 0.998227 0.056258 

3.5 2.85308 0.999806 0.001296 

4 3.35304 0.999867 -0.00068 

4.5 3.8529 0.999661 0.000384 

5 4.35283 1 -0.00094 

 

As seen from values that are taken from the Table I 

and Table II, values are very close to each other. If two 

methods are compared, DQM is more preferable than the 

Galerkin method. Because polynomial curve fitting 

approach in Galerkin method requires more time than 

DQM. 

V. CONCLUSION 

In fluid mechanics, stagnation point occurs when the 

fluid impinges on a surface of the body. Further 

surroundings of the point is known as stagnation point 

flow. Many researchers put excessive emphasis on 

stagnation point flow that has effects on different kind of 

engineering disciplines such as drag reduction, heat and 

mass transfer near stagnation regions of bodies and so on. 

In this study stagnation point flow equation is solved by 

using differential quadrature and Galerkin method. 

Obtained results show that both of the methods give 

similar results. But using DQM is more practical and 

faster than Galerkin. Polynomial fitting in Galerkin 

method is taking much more time than DQM. 
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