
 

 

 

 
 

 

  
 

 

  

 

International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 2, April 2016

© 2016 Int. J. Mech. Eng. Rob. Res. 109
doi: 10.18178/ijmerr.5.2.109-114

Semantic Expansion of Auto-Generated Scene 

Descriptions to Solve Robotic Tasks  
 

Marco A. Gutiérrez 
RoboLab, University of Extremadura, Cáceres, Spain 

Email: marcog@unex.es 

 

Rafael E. Banchs 
HLT Dept., I2R, A*STAR, Singapore 

Email: rembanchs@i2r.a-star.edu.sg 

 
 

 

Abstract—When a robot is facing object description based 

tasks, such as “bring me something to drink water”, it has to 

semantically relate the concepts on the task with the objects 

it is able to find. This work expands the semantic scope of 

words in automatically generated scene descriptions and a 

given task in order to find a proper match for the robot task. 

An encoder-decoder pipeline that unifies joint image-text 

embedding models with multimodal neural language models 

is used to generate scene descriptions. Then the semantics of 

those descriptions are extended through word vectors. We 

improve our previous work by expanding the dimension of 

the object description by adding the option of negating 

characteristics of the searched object. Finally we show that 

we are able to find objects that are in the scene and where 

not directly referred in the task or labeled by the robot 

using different words.  
 

Index Terms—object search, semantics, deep neural 

networks, robotics vision 

 

I. INTRODUCTION 

Object searching tasks for robots in unknown 

environments remains a challenge for the robotics 

research community. Being able to make a robot 

successfully perform full pick and place tasks is one of 

the main objectives of many roboticists. One of the key 

parts of it is the ability of the robot to properly match the 

information regarding the object to find with the objects 

found in in the scenes surrounding it. Properly 

performing the match between the information and the 

objects found can help robots perform these tasks in a 

more natural way.  

Numerous ways exist for object detection and 

recognition on scene images. Deep neural network based 

image labeling and, lately, image description generation 

are on the state of the art for scene images  understanding. 

Big advances have been done in this field as recent works 

like [1]-[3] prove. These works make use of deep neural 

networks in order to produce somewhat accurate 

descriptions of the image scene. However these captions 

are usually short and, even though in the case they 

provide accurate descriptions, they do not fully express 
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all the information that is contained in the scene. On top 

of that, same things can sometimes be expressed with 

different words or people may differ on how they call 

something that shows up on a certain scene, specially 

since words can have multiple degrees of similarity [4]. 

For these reasons we can not solely rely on the words on 

these descriptions as atomic units that give us all the 

information we need to match a certain object query. In 

order to extend the information contained on these 

generated sentences semantic relations between words 

can be exploited. 

There is a wide range of research works in the field of 

the analysis of words semantics relations. Works such as 

[5]-[8] are just an example of some of the most common 

works in this research area. Some approaches exploit 

manually created ontologies or taxonomies like WordNet 

[9] or Freebase [10]. As stated in [11], these works are 

ontologies that are manually created and maintained in 

order to provide a means for establishing semantic 

relations between words and because of that  sometimes 

its further development can be very costly. In 

consequence, only a determined domains have a suitable 

ontology, limiting the applicability of similarity measures 

based on one of them. On the other hand word vectors are 

a good and fast way to capture semantic relations 

between words [12], specially when trained over big 

corpus containing a large amount of words. This makes 

them easily trainable in the needed semantic scope so the 

info better matches the application. In our design we 

decided to handle semantic relations between words by 

measuring the distance among the word vector 

representation of those words. 

The system presented here weights the semantic 

relations between a description based search task issued 

to the robot and scene automatically generated 

descriptions in order to improve the possibilities to find 

an object matching the user needs. Our system is even 

able to handle descriptions that include negations, such as 

“find an animal that does not bark”. First, the task is 

analyzed using the Natural Language Toolkit (NLTK) [13] 

in order to select the key words on it and differentiate 

negative requirements from positive ones. The neural 

network encoder-decoder pipeline described in [14] is 

used in order to generate captions that describe scenes 
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from images. Then pre-trained word vectors helps finding 

semantic similarities between words using the skip-gram 

model described in [12]. A similarity weight is calculated 

using the cosine distance in the vector space between the 

selected words from the descriptive task and the ones in 

the image generated descriptions. Results are sorted by 

their calculated similarity weight, the best ones would be 

the ones with the highest similarity value. This process 

allows the expansion of the semantic domain of the 

words on the image generated captions. The system is 

able to find things that are not explicitly noted in the 

description sentences. Even in the case of querying for 

something that is not on the image dataset, the output will 

still be semantically more relevant than a random 

ordering of the images.  

II. SYSTEM DESIGN 

The goal of our system is to look for scenes that 

contain the information that is described in the task the 

robot is given. It accepts descriptive tasks in the form of 

“get me something to drink water” or even with negative 

parts like “bring me an instrument with no strings”. 

When the robot receives a task the system semantically 

analyzes the sentence detecting the main positive words 

and the negative ones from the description. It obtains the 

word vector representations of these words and calculates 

an average of these vectors by weighing appropriately the 

negative vectors and the positive ones. Also, as shown in 

Fig. 1, the system contains a multimodal encoder-decoder 

pipeline that generates the descriptions for the scenes. 

The system generates five description candidates for each 

scene. An average of the cosine distances between the 

vector representations of adjectives and nouns from these 

descriptions and the vector representing the description is 

calculated for each of the scenes. Finally the system 

provides a rank of best matching scenes according to their 

weight value. The selected scenes contain the objects that 

are most semantically related to the words on the 

description contained in the task. 

 

Figure 1. System's architecture 

A. Multimodal Encoder-Decoder Pipeline 

The system contains an encoder-decoder pipeline that 

automatically generates descriptions for the scenes. The 

encoder (see Fig. 2) is learned with a joint image-

sentence embedding where sentences are encoded using 

long short-term memory (LSTM) recurrent neural 

networks [15]. Image features from the top layer of a 

deep convolutional network trained from the ImageNet 

classification task [16] are projected into the embedding 

space for the LSTM hidden states. A pairwise ranking 

loss is minimized in order to learn to rank images and 

their descriptions.  

 

Figure 2. The deep convolutional network (CNN) and long short-term 
memory recurrent network (LSTM) encoder. It is in charge of learning a 

joint image-sentence embedding. 

As Fig. 3 shows, for decoding, the Structure-Content 

Neural Language Model (SC-NLM) described in [14] is 

used, which takes into account the content in the 

sentences. It is a multiplicative neural language model 

where the attribute vector is an additive function of the 

embeddings. These embeddings are conditioned on the 

embedding vector for the description computed with the 

LSTM. Allowing the system to make use of large 

amounts or monolingual text to improve the quality of the 

language model. Since the embedding vectors share a 

joint space with the image embeddings, the SC-NLM can 

also be conditioned on image embeddings after the model 

has been trained.  

 
Figure 3. Structure-content neural language model decoder in charge of 

generating words for the scene description one at a time. 

The final output of this pipeline generates are the top 

five most reliable descriptions for a scene. This is run for 

each one of the scenes that are in the dataset. 

B. Word Semantics Relationships 

In order to measure the semantic relationships between 

words we selected a neural network based tool, since they 

perform better than Latent Semantic Analysis (LSA) [17] 

for preserving linear irregularities among words and in 

terms of computational cost when trained over large 
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datasets [4], [18]. We use an improved version of the 

Skip-gram model [12] to find word representations that 

predict the surrounding words in a corpus. Our system 

was trained using the negative sampling [19] technique 

instead of the hierarchical softmax, so it tries to 

differentiate data from noise by means of logistic 

regression. Semantic relations on the words of the 

training data are encoded in a word vector space. The 

semantic relation between words is measured by the 

cosine distance between their vector representations. 

These semantic relationships are used to extend the scene 

descriptions word meanings when the robot search task is 

being performed. 

C. Word Matching System 

This is the module in charge of making the semantic 

matching and evaluation between the task and the scene 

descriptions. As the robot receives the task this module 

analyzes it using NLTK. The positive main words are 

separated from the negative ones. For this, a basic 

syntactic analysis of the task is performed along with 

some basic regular expression matching techniques. 

Prepositions, pronouns and determinants are ignored as 

they we do not consider them relevant to the task. Firstly 

the average vector representing the task description is 

obtained by summing up the vector representations of the 

positive words and subtracting the ones from the negative 

words. This leaves us with a vector representation that 

will represent the semantic of the description of the task. 

Then the cosine distance of this vector with the words on 

the scene description is obtained and an average distance 

for all of them is finally calculated. This would be the 

weight of the scene for a specific description in a task, 

and in consequence a representation of how semantically 

similar they are. 
Finally when all scene weights are computed for the 

given task they are ranked by their weight value. The 

output of the system will show the scenes with the 

highest weight, as those are the ones that are supposed to 

have a higher semantic similarity with the description on 

the task. Since they are semantically similar, they should 

be describing similar things. 

III. EXPERIMENTS 

In order to perform the experiments the LSTM encoder 

and SC-NLM decoder of the pipeline described in 

Section II-A have been trained on sentences from both 

Flickr30K [20] and Microsoft COCO [21]. We have 

selected randomly a subset of 1000 images from 

Flickr30K to use them as a dataset for the scene 

description generation. These are the ones being 

considered for a possible selected scene and final match 

with the task description. The vector space word 

representation have been trained on a Google News data 

subset containing about 100 billion words. And the final 

word vector model contains 300-dimensional vectors for 

3 million words and phrases.  

Since a manual interpretation of the contents of an 

image will always be open to criticism of subjectivity 

[22], there is a high difficulty of quantitatively evaluate 

the retrieval effectiveness of our approach. However we 

will perform a manual evaluation on the output to provide 

an approximated quantitative evaluation, providing 

besides the visual output as a support of our experiment 

results.  

For evaluation purposes we have tested the system 

against a direct word to word matching approach. On this 

direct matching approach we will select the positive and 

negative words in the same way we do in our system. 

Then for the positive words we will add a value of 1 to 

the overall scene weight if the word in the task 

description appears on any the scene generated 

descriptions, otherwise 0 will be added. For the negative 

words we will subtract 1 if the there is a match between 

the negative word and any word from the scene generated 

descriptions. The same way as with the positive ones 

nothing will be subtracted if the word is not found in the 

descriptions. This measures basically the number of 

words shared among the description in the task and those 

from the scene minus the negative words they share. 

Finally these computed weights would represent the 

similarity between the scene and the description on the 

task, the higher the value the more similar they are 

supposed to be.  

 
a man in a black apron is working on a grill. 
a man wearing a black shirt is cooking. 

a man with cooking on the ground with his machine. 
a young man in a black shirt is cooking on a large grill. 

a man is in his left hand. 

Figure 4. Top result of the task “find me a barbecue pit”. Note that the 
words “barbecue pit” do not appear in the generated captions but 

probably due to the high semantic relation with the word “grill” (0.583 

cosine distance) we are able to find it. 


For the quantitative results we have evaluated the top 

five results for six search tasks on both approaches 

manually giving a score of 1 for correct matches, 0.5 to 

partially correct matches and 0 to totally wrong matches. 

We obtained a total score of 25 for our system against a 

score of 10.5 for the direct match approach, showing the 

benefits of our semantic expansion approach. We show 

here a visual excerpt of the obtained results and add some 

comments on them for a more specific evaluation.
1
 

Fig. 4 shows the top result, a basic example of the 

robot process of the task “find me a barbecue pit”. Not 

                                                           
1Due to space limits we can only show some results here, for a wider 

overview of all the ones used in the evaluation please refer to: 

http://magutierrez.com/description-based-tasks. 
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any of the scene generated descriptions show the word 

“barbecue” among their results. The reason why the 

system is able to select that picture is due to the high 

semantic relation between the words “barbecue” and 

“grill” (cosine distance of 0.583 of their correspondent 

word vectors representations). In the same way Fig. 5 

shows results on different descriptive tasks that had no 

words for direct matching so the result on the alternative 

is a total random selection of scenes. However on those 

pictures our system is still able to provide us with a scene 

that can match the description from the task. These 

examples show that even though the description 

generation system is not reflecting the same words as in 

the task description we can still match them due to their 

existing semantic relation represented in the word vector 

space. 

In Fig. 5 we show the results from the two options 

tested, our system and the direct match approach. Results 

are displayed ordered by similarity score from left to 

right, keeping the results from our solution on the top row, 

while the lower one corresponds to the direct match 

approach output. On the first task (Fig. 5a) our system is 

able to relate the words “strings” and “instrument” with 

names of instruments with strings. However on the direct 

approach only the word instrument is matched from the 

scene descriptions so even the fact that some guitars are 

shown as a result is pure coincidence as it could have 

been any other instrument. On the second task (Fig. 5b) 

the system gets more confused. However is still better as 

it can relate the word “drink” with some liquids or 

drinking situations. Even though, in this case it is not a 

great result it is still better than a totally unrelated scene 

such as some of the results on the direct match approach. 

Some of the errors here are also due to some errors in the 

automatically generated scene description.  

 
(a) Task: “Find an animal that barks” 

 
(b) Task: “Find something that floats in water” 

Figure 5. Tasks that had none words in common with any of the scene generated descriptions  

 

 
(a) Task: “Find an instrument with strings” 
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(b) Task: “Bring me a drink with alcohol” 

Figure 6. First row from left to right of each tasks are our system results compared to the direct match approach on the second row 

Fig. 7 uses the novel introduced negation part on the 

description from the task. This example task is “find a 

sport with no ball”. The first results are good as the 

system relates some sport with the word ball and its able 

to discriminate them. It gets some confusion though and 

there is clearly room for improvement. However we 

found out that we can take the weighted distance value as 

a reference on how much we can trust the result since 

when bad results are obtained this weighted distance 

value is usually very low. Please refer to the online 

results in order to take a better look at the insights of the 

word matches. 

 
Figure 7. Task: “find a sport with no ball” 

IV. CONCLUSIONS AND FUTURE WORK 

Our system processes tasks issued to a robot to search 

and find objects by its description and look for its 

matches from different scenes. We use word 

representations in vector spaces to expand the semantic 

scope of the descriptions and improve the matching 

between them. It has been proved that our system is able 

to properly obtain scene relations to a certain descriptive 

task using the semantic relations between the descriptions 

and the robot search task. The system can even provide 

meaningful results when queried with words that don't 

even directly appear on the scene descriptions. On the 

other hand some results might not be accurate enough 

sometimes due to not very accurate semantic relations 

and other times due to errors on the scene descriptions. 

Therefore there is room for improvement on both sides. 

We could take into account the value of the cosine 

distance and discard the results when values are too low, 

as we observed that low values always correspond to very 

bad matches. Also new deep learning techniques can be 

applied for the scene description generation in order to 

improve this part of the system. Dynamically selecting 

the most important parts of the description on the task can 

provide an improvement as we can give them a different 

weighs on the semantic matching algorithm. Other word 

semantic relation techniques can be tested in order to 

look for a better semantic matching between the task and 

the scene description. 
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