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Abstract—This paper presents localization of a mobile 

firefighting robot. Sensors that have been widely used for 

the localization in the past have shown limitations under fire 

environments due to low visibility and high temperatures. 

The extended Kalman filter was designed to accurately 

estimate position and orientation of the robot using relative 

distances to walls or objects surroundings. In addition, data 

from a Frequency-Modulated Continuous-Wave (FMCW) 

Radar, Inertial Measurement Unit (IMU) and encoders that 

are capable of withstanding fire environments were fused to 

localize the robot in indoor fire environments. For its 

validation, an experiment was conducted in a 2 m × 4 m 

area. The experimental results showed that the proposed 

localization method was reliable.  

 

Index Terms—firefighting robot, localization, multi-sensor 

fusion, fire environments, mobile robot 

 

I. INTRODUCTION 

Fighting fires is one of the most strenuous and 

dangerous activities that humans perform. The use of 

robotics is currently of interest to the military and many 

public organizations, especially to the US fire department. 

Due to the dangers of firefighting, the application of 

robotics is ideal; a robot designed for firefighting activities 

will not only avoid firefighters from exposure to 

conditions produced by a fire but also allow for conditions 

to be monitored in the area close to the fire. In addition, 

the robot can serve as a tool used by firefighters in helping 

to reduce the tasks that the firefighter is required to 

perform. The robot will also be capable of achieving tasks 

that are not possible by humans. To make the robot 

accomplish these tasks, the robot will need to navigate on 

its own and build maps of its surroundings. In order for 

effective navigation and accurate map-building, position 

and orientation of the robot must be first known. 

Localization is one of the most essential competences 

applied to a firefighting robot [1]. Hence, localization 

techniques have constantly received research attention in 

robotics, and as a result, great advances have been 

developed on this area. Unfortunately, the sensors that had 

been widely used for localization such as CCD camera, 

LIDAR, and sonar, did not function due to dense smoke 

and high temperature caused by the fire. However, 

2.4GHz FMCW Radar (12mm wavelength) was able to 

work properly under smoke-filled environment [2]-[4]. 

                                                           
Manuscript received May 27, 2015; accepted November 2, 2015. 

Also, Inertial Measurement Unit (IMU) and encoder 

worked properly as well because they were installed 

inside of robot. 

To date, there have been many localization methods. 

All these methods of localization can be categorized into 

two areas: the relative and the absolute [5], [6]. The 

relative (local) method estimates position and the 

orientation of the robot by integrating information 

produced by sensors mounted, while the absolute (global) 

method allows the robot to search its location directly 

from the mobile system domain [7]. These methods 

generally build upon navigation beacons, active or passive 

landmarks, map matching or Global Positioning System 

(GPS) [7]. 

A. The Absolute Localization Method 

Outdoors, GPS is commonly used for navigation of 

vehicles to help find its destination and current location. 

However, this sensor is only able to function under the 

existing GPS network. To overcome this limitation, indoor 

GPS, called a geometric beacon has been studied. This 

beacon can be both dependably monitored in consecutive 

sensor measurements and accurately shown in a concise 

geometric parameterization [8] 

B. The Relative Localization Method 

Use of visual odometer [9] from vision sensors such as 

CCD camera approximates a robot’s position and 

orientation. Point features on image are matched between 

pairs of frames and linked into image trajectories at image 

frame rate. Then, estimation of the camera motion is 

approximated by the feature tracks. This successive 

process produces estimates of position and orientation 

from visual input [9], [10]. Use of point clouds provided 

by light detection and ranging sensor (LIDAR) has been 

widely researched due to its accuracy and high sampling 

rate. One of the scan matching techniques using LIDAR 

sensor, Iterative Closest Point (ICP) algorithm generates 

information of position and orientation by scan-matching 

the actual environment features [11]. Furthermore, these 

techniques have been developed for Simultaneous 

Localization and Mapping (SLAM) [12]. Using standard 

Polaroid sonar sensors is also implemented to localize the 

robot creating feature-based stochastic maps [13]. 

Nonetheless, in case of a fire, the above sensors cannot be 

operated properly; a GPS network is useless indoors due 

to the lack of signals from satellites, and the beacon could 

burn out or would not adequately function if its power 
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source is damaged. In addition, LIDAR (0.905 μm 

wavelength) cannot detect any features under dense smoke 

environments produced by fire because smoke blocks light 

[14]. The data from sonar sensor varies depending on the 

temperature which causes a number of errors during 

localization. 

With these limitations of sensor, it was challenge to 

find sensors which can function properly under fire. A 

long wave infrared camera is able to see though smokes 

where a LIDAR sensor is not able, and a FMCW Radar 

(12mm wavelength) sensor is able to provide distance 

information between obstacle and the robot under high 

temperature while ultrasonic sensor is not. Even though an 

IMU sensor is affected by temperature, this sensor is 

protected by frames of the robot and all measured data are 

fully able to be compensated. Because this sensor still 

function under fire environment, as long as the IMU 

sensor runs at less than maximum and more than 

minimum of temperature range. 

This paper provides description about the Extended 

Kalman Filter (EKF) based localization for firefighting 

robots by fusing data from IMU, FMCW Radar, and 

encoders. The proposed method was developed for 

Shipboard Autonomous Firefighting Robot (SAFFiR) 

[15]-[18], an autonomous humanoid firefighter, but to 

validate the method, it was first tested on a four-wheel 

skid-steering mobile robot platform. 

II. FUNDAMENTALS 

A. Mobile Robot Platform 

The mobile robot platform in Fig. 1 was built to 

validate the proposed method before applying it on the 

humanoid robot SAFFiR [15]-[17]. The dimension of the 

platform was 0.54 meter in length and 0.56 meter in width 

to accommodate missions indoors where the doors and 

hallways are narrow. In addition, four high torch DC 

motors were installed to support various sensors and the 

suppression equipment for firefighting tasks. For the robot 

to autonomously control the DC motors, a microcontroller 

(Arduino Uno) and a servo controller were used which 

allowed the robot to move up to 40 cm/sec. To reduce the 

payload, the frame was built with aluminum. For a forty 

minute runtime, the robot was equipped with a 24V 

battery to power the DC motors and three 12V batteries 

for the sensors. 

B. Sensors 

The Inertial Measurement Unit (3DM-GX3-25) in Fig. 

1 was installed inside of the robot, which provides 

information about three-axis accelerometer and three-axis 

gyroscope at a sampling rate of 100Hz. This information 

is useful for motion determination of the robot and makes 

localization accurate. Although an IMU has good short-

term precision and a high sampling rate, it includes 

serious errors in long-term usage due to the drift and the 

algorithm of integration [19], [20]. Thus, additional 

secondary sensors are needed to complement IMU to 

construct its system for drift compensation during the 

long-term measurement [21]. 

 

Figure 1.  Mobile robot platform (left), inertial measurement unit 
(center), and FMCW radar (right) 

The FMCW Radar used in this work is Sivers IMA 

RS3400, which uses 1.5 GHz bandwidth, 2.4 GHz carrier 

frequency with 12 mm wavelength. This sensor plays a 

role as a complementary sensor during the localization. 

This sensor measures position at each time stamps and 

produces linear velocity of the robot. The power spectrum 

is produced by applying windowed Fast Fourier 

Transform (FFT) and is processed by a cell average 

constant false alarm rate [22] to automatically detect 

peaks. Then, a quadratic least square is used to estimate 

relative distance and velocity from the peaks. This radar 

can measure up to 75 meters with sampled points of 1500, 

which is enough long indoors. This sensor is installed in 

front of the mobile robot. While the radar generates 

accurate information to estimate distance and linear 

velocity of the robot during the go-straight motion, it does 

not when the robot turns. To solve this problem, an 

additional sensor, encoder is required. 

III. EXTENDED KALMAN FILTER 

The proposed method uses an IMU, FMCW Radar and 

encoders for estimating orientation and position of the 

robot. The configuration of the system is shown in Fig. 2. 

For sensor fusion, EKF was implemented, which is a 

classic approach to the state estimate problems for a 

nonlinear stochastic system. In addition, it uses discrete 

models with first-order approximation for nonlinear 

systems [23]. The EKF algorithm enables complementary 

compensation for each sensor’s limitations, and the 

resulting performance of the sensor system is better than 

individual sensors. The motion model and the observation 

model in EKF are established using kinematics [24]. 

 

Figure 2.  Configuration of the system 

                   (1) 

As EKF uses discrete models, the first and second lines 

represent motion model and observation model, 

respectively.  is state value that has nine degrees of 
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which has three-axis accelerations and angular rates 

produced from IMU. and are the process and 

observation noises, respectively with assumption that 

these noises follow a Gaussian (or normal) distribution. 

is observation value that includes robot position and 

orientation measured at time of . is similar to an 

identity matrix, but its size is different because only 

information of two-dimension position and yaw angle are 

used. 

 
(2) 

Equation (2) shows the motion model of the EKF 

system. G and R represent the global frame and local (or 

robot) frame, respectively. and are a three-axis 

position and velocity vector based on the global frame. 

is Euler angles; roll, pitch, and yaw. Equation (3) 

describes X-Y-Z rotation matrix, where three-axis 

acceleration data from IMU sensor, which is notated as 

 is transformed from local to global frame. Both 

and are described as and , respectively. 

 
(3) 

The three-axis angular velocity, is transformed to 

Euler angle rates by applying the transformation matrix in 

(4). This transformation matrix makes IMU data suitable 

to use in the global frame. 

 

(4) 

 

 

(5) 

The data from FMCW Radar and encoder play an 

important role in observation model described in (5). The 

velocity calculated by measuring the distance difference 

with respect to the time difference is a linear velocity, and 

it is then applied to update the position of the robot. When 

an obstacle front is present longer than maximum range of 

the radar or when estimated distance suddenly changes 

due to the object, data from the encoders were considered 

instead. Both sensors were used due to their limitations; 

when the robot turns, encoders installed left and right of 

wheel are able to produce distance data at each wheel 

while Radar sensor cannot. In addition, when the robot 

moves forward encoders have slippage errors while Radar 

provides accurate distances. A data fusion technique is 

used to take advantage of both sensors. The robot motion 

is also monitored by angular rates generated from IMU 

sensor. Considering that yaw angle changes when the 

robot turns, if the absolute value of the yaw angle rate is 

greater than a certain threshold, the encoder data are 

calculated for the linear velocity, otherwise the radar data 

are estimated for the linear velocity. 

IV. IMPLEMENTATION AND RESULTS 

The Extended Kalman Filter (EKF) is used to estimate 

the robot position in two dimensions. There are four steps 

as shown in Fig. 3; data acquisition, data filtering, 

calculation, and plotting. First, the data acquisition is 

applied to obtain data from the sensors mounted on the 

robot. Second, a filtering process is conducted with curve 

fitting functions in Matlab [25]. Third, EKF is used to 

estimate the position and orientation of the robot. Finally, 

all of estimated positions and orientations are accumulated 

and plotted. MEX function is designed for EKF code to 

increase its process speed. As a result, this process repeats 

every 0.05 sec. 

 

Figure 3.  The flow chart for EKF in Matlab code 

A. Data Acquisition 

The data acquisition obtains data from the encoder, 

IMU, and radar sensors. The square wave shape generated 

from encoders indicates the rates of wheel rotation. 

Multiplying angular velocity by radius of the wheel yields 

its distance. The resolution of the encoder is 16 pulses per 

a resolution, which is not enough to calculate distance. 

However, using curve fitting gives approximated distance. 

The IMU sensor provides three-axis accelerometer and 

three-axis gyroscope. However, only x-axis linear velocity 

and z-axis angular rate were picked up to process the EKF 

localization. The radar sensor also produced linear 

velocity of the robot. Three linear velocities are compared 

in Fig. 4. The linear velocity from IMU is increased with 

respect to time because the linear velocity is calculated by 

acceleration with constant values. After long usage, IMU 

accumulates errors. In addition, the radar results in errors 

during the implementation. Although the encoder shows 

relatively stable data, the slippage and miss counts still 

occur. To cope with these problems, curve fitting 

technique in Matlab is used in the data filtering. 

B. Data Filtering 

IMU has linear velocity that accumulates errors for a 

long-time experiment as shown Fig. 4. Thus, data filtering 

is used to handle the problems occurred in the 

measurement. To calculate linear velocity, the filtered data 
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are differentiated with respect to time. Finally, the filtered 

data are translated into linear velocity and then used in 

EKF in the calculation stage. 

 

Figure 4.  The comparison of linear velocities from the encoder, 
FMCW Radar and inertial measurement unit (IMU) 

C. EKF Calculation 

The initial state of the robot is described as (0, 0) in 

Cartesian coordinates. In the motion model, three-axis of 

accelerations and three-axis of angular rates from the IMU 

are used to predict the next position and orientation of the 

robot. In the observation model, linear velocity and 

orientation are used to correct the position and orientation 

predicted in the motion model. The linear velocity is 

determined depending on the robot motion. For example, 

when the robot moves forward, data from the radar sensor 

are prioritized to calculate linear velocity. In contrast, 

when the robot turns, data from the encoder are prioritized 

in order to calculate the velocity. The decision for these 

priorities is calculated from IMU’s angular rates at yaw 

axis. Accelerations and angular rates generated from IMU 

and the determined linear velocity become input values in 

EKF. During the EKF process, a Jacobian matrix is 

created to predict the position and orientation of the robot 

and that is corrected by observations repeatedly. 

D. Plotting 

To validate the proposed localization method, an 

experiment was conducted. The path the robot took was 

indicated as a gray line on the floor. The test-bed was two 

meters in width and four meters in length as shown in Fig. 

5. In addition, the robot was remotely controlled to move 

along the path by an operator. During the experiment, the 

robot moved forward five times, turned left three times, 

and turned right once. After that, it came back to the start 

point. 

 

Figure 5.  The test-bed for the experiment 

Fig. 6 shows the displacement of two encoders and the 

ultrasonic sensor. Displacement differences between the 

encoders exist because slippage and friction occur 

differently on each wheel. Opposite displacement between 

the two encoders exits when the robot turns, this is 

because the right and left wheels need to move in different 

directions to make the turn. The distance on the FMCW 

Radar decreases as the robot moves forward, and this is 

shown as slopes in linear velocity. High deviations and 

non-continuousness are also shown in Fig. 6. Fig. 7 

describes angular velocity, which shows the changes of 

yaw angle providing the number of times and direction of 

turn that the robot has taken. The data from the encoders, 

radar sensor, and IMU are processed in EKF to estimate 

position and orientation of the robot. As a result, Fig. 8 

shows the result of localization, producing less than 2 cm 

difference between start and end position. 

 

Figure 6.  Displacement of both encoders and FMCW Radar 

 

Figure 7.  Euler angles of roll, pitch, and yaw from IMU 

 

Figure 8.  The localization results of the mobile robot 

V. CONCLUSION 

This paper presented the extended Kalman filter based 

localization for a firefighting robot. To withstand the 

conditions caused by fire, FMCW Radar, encoder, and 

IMU sensors were used. During the test, a mobile robot 

was remotely controlled to move along the path. EKF was 

designed to complement each sensor’s drawbacks by 

sensor fusion to obtain accurate position and orientation of 
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the robot. As a result, the localization method shows 

reliable performance resulting in low errors in the test-bed. 
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