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Abstract—This paper suggests enhanced map building 

framework based on the scan similarity. Previous map 

building techniques which are applied various scan 

matching algorithms are usually dependent on the 

geometrical structure of the environment. However, those 

techniques do not consider the property of the scan 

matching algorithms. Our proposed method represents the 

geometrical information of the scan data compactly and 

computes the similarity between scan data to increase the 

accuracy of the map and the estimated robot pose. Through 

the experiments, we compared the result of our proposed 

map building framework with that of the previous one and 

also verified our new approach shows higher accuracy than 

the previous method.  

 

Index Terms—

scan similarity 

 

I. INTRODUCTION 

There have been many researches regarding the 

Simultaneous Localization and Mapping (SLAM) 

problem. Map building and the pose estimation of the 

robot in the map, also known as SLAM, are essentially 

required technique for many robotic applications [1], [2]. 

Typically, SLAM methods are divided into two 

categories according to the information types, sparse 

features and dense point clouds about their surrounding 

environments. The first method which uses the sparse 

features is fast and can build the map with only few 

points. On the other hand, the second method which uses 

the dense point clouds involves many points. As a result 

this method is robust to the measurement noise and can 

build a more accurate map without data association. In 

this paper, we focus on the second method which adopts 

the dense point clouds (or scan) data to build a high 

quality map. 

For the point clouds data registration, the scan 

matching techniques are commonly used. The most 

popular algorithm is Iterative Closest Point (ICP) 

algorithm which is suggested by Besl et al. [3]. This 

algorithm iteratively finds the transformation between 

two scan data until the summation of the distances among 

all corresponding points becomes the minimum. However, 

these corresponding method has discrete characteristics 

thus causing error accumulations as time passes. To 

improve the ICP, A. Segal et al. proposed Generalized-
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ICP (G-ICP) algorithm [4]. This algorithm combines the 

neighbor points for each point in the scan data to make 

cloud sets and calculate the transformation by using the 

covariance matrix of the cloud sets. There are also other 

types of algorithms which are not based on ICP method. 

Normal Distributions Transform (NDT) algorithm which 

is suggested by P. Bieber divides the scan data into grid 

and calculates the normal distributions for the points in 

each grid [5]. The transformation between two scans is 

computed efficiently with the grid representation. E. 

Takeuchi et al. expanded the NDT algorithm to the 3D 

case [6]. A. Diosi et al. developed Polar coordinates Scan 

Matching (PSM) which utilizes the advantage of the polar 

coordinates system of the Laser Range Finder (LRF) [7].  

Also, A. Censi et al. proposed Hough Scan Matching 

(HSM) which uses the Hough transform [8]. 

As mentioned above, many previous scan matching 

algorithms focused on improving the performance of the 

scan matching algorithm itself. However, the results are 

different according to the experimental environments 

even in case of the same algorithm. In this paper, we 

suggest an enhanced map building framework which 

selects the model scan data dynamically by computing 

the similarity of the newly acquired scan and the model 

scan. First of all, we introduce the laser scan descriptor to 

represent the geometrical information of the scan data 

and explain how to compute the similarity between two 

scan data. Secondly, we present the entire map building 

framework, Real-time Backwards Threshold Matching 

(RBTM). Through the experiment, we will verify our 

framework improves the quality of the map and the 

accuracy of the estimated poses of the robot in the map.  

II. ENHANCED MAP BUILDING FRAMEWORK 

A. Scan Similarity 

This subsection introduces a method to represent the 

similarity between two scan data which are acquired by 

the Laser Range Finder (LRF). The curvature function is 

adopted to represent the scan data compactly without loss 

of the geometrical information [9]. As depicted in Fig. 1 

(a), the curvature function is described by (1). 
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here,  represents  the  index  of  the LRF sensing order. 

For a single scan which contains N reflected points, we 
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can calculate N  curvature values 
1   N  . These 

values are defined as a laser descriptor vector and 

described by (2). 
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j i i i ND                      (2) 

Now, the   vector  described  in   (2)  includes  the 

geometrical information of j -th single scan. To compute  

the similarity of the scan data, we calculated the cross 

correlation coefficient with the two laser descriptor 

vectors and this is described by (3). 
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(a)                                                                               (b)                                                        (c) 

Figure 1.  Representation of the curvature value and the can similarity. (a) Geometrical representation of the curvature value. Each curvature value 
consists the laser scan descriptor and this descriptor is used to represent the similarity between two scan data by using the cross correlation. (b) 

Example of the simple environment. (c) Similarity matrix of the example environment. Each ( , )j k element of this matrix represents the similarity 

between the j -th and the k -th scan data. 

To validate our proposed scan similarity comparing 

method, we conducted an experiment for a simple 

environment as depicted in Fig. 1 (b). The similarity 

matrix of the simple environment is described in Fig. 1 

(c). Each ( , )j k  element of this matrix is 
,j kS which is 

between j and k increases because the overlapping area 

between two scan data decreases. From this experiment, 

we could verify that our proposed method is reasonable. 
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Figure 2.  Real-time backwards threshold matching. At the third step, if the similarity cannot exceed user-defined threshold, the matching is not 
performed and move on to the next model data as depicted in the fourth step. 

B. Real-Time Backwards Threshold Matching 

This subsection introduces the main contribution of 

this paper which selects the most proper scan which 

shows the least errors when the scan matching algorithm 

is applied. Previous algorithms registered the scan data by 

using the data of the time sequence order. However, this 

is not efficient because of the scan matching property that 

two scan data obtained at different locations cannot be 

aligned perfectly. In other words, there always exist small 

errors when the data are aligned perfectly. In our previous 

work, we showed that these small errors abruptly 

increases when the similarity of the scan data decreases 

under some threshold [10]. By using this property, Real-

time Backwards Threshold Matching (RBTM) is 

developed which varies the scan interval while 

maintaining proper ratio of the overlapping areas between 

two scan data. Basically, uncertainty of the estimated 

robot pose and the map information increases as time step 

increases. To reduce the uncertainty growth, current 

newly obtained scan should be registered with the scan 

which is the nearest to the starting position of the robot. 
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To sum up there are three conditions to make our 

algorithm efficient, 1) the similarity of the two scans 

should exceed some threshold which could guarantee 

successful alignment. 2) there should exist the smallest 

overlapping areas which could also guarantee successful 

alignment. 3) newly obtained scan at the current position 

should be matched with the model scan which is the 

nearest to the starting position of the robot. Fig. 2 shows 

our proposed framework RBTM method. Here, we 

assumed the window size is 4 and this is necessary to 

maintain the smallest overlapping areas. Also, Th  means 

user-defined similarity threshold. 

First of all, when the two data at time step 1 and 2 are 

acquired, the similarity between these two data is 

calculated. If the similarity exceeds the user-defined 

similarity threshold, rotational and translational matrices 

are computed. Secondly, when the scan data at time step 

3 are acquired, the similarity betwen the scan data at time 

step 1 and 3 is calculated and if this similarity exceeds 

user-defined threshold, the first and the third scan data 

are registered. Next, when the scan data at time step 4 is 

acquired, the similarity computation representives are the 

scans at time step 1, 2 and 3 because we set the windows 

size as 4(The winsdow size is set to maintain the smallest 

overlapping areas between two scan data.). As we 

mentioned above, the scan data which are nearest to the 

starting position have the smaller uncertatinty thus the 

comparison start from the scan at the time step 1.  
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Figure 3.  Experimental environment. Detailed specification is 
described in centimeter unit. 

If the similarity between scan 1 and 4 is smaller than 

the user-defined threshold, the registration is not 

performed (see Fig. 2 red line). The following similarity 

computation representative is the scan at time step 2. If 

the similarity between the scans at time 2 and 4 is greater 

than the thrshold, the rotational and translational matrices 

between these two scans are computed and 1,4R , 1,4T are 

updated. These process is iterated whenever new scan 

data is acquired. Till now, the most accurate map building 

scan path is 1,2 and 4. This path can be changed when 

new data is acquired in the future. This is why we named 

our algorithm as Real-time Backwards Threshold 

Matching. 

III. EXPERIMENTAL RESULTS 

Fig. 3 shows the experimental environment. The 

regions described by white color represent empty spaces 

and the regions sketched by gray color represent walls 

where the robot cannot enter. Two circles describe the 

robot at the starting position and the ending position and 

the line in the circle means the heading direction of the 

robot. Dashed line shows the path of the robot. The robot 

moved 1.8 meters along this straight line path. To verify 

the performance of our new proposed framework, we 

compared with the standard ICP method. First of all, the 

maps which are constructed by the two methods are 

plotted in Fig. 4. The black dots represent the map data 

and the red dots represent the estimated robot pose at 

each time step. From Fig. 4, we can verify that the map 

with our new method shows better quality than the map 

with the standard ICP method. The path of the robot in 

Fig. 4 (b) shows straight line but the path in Fig. 4(a) 

shows curved line. 

 
(a) 

 
(b) 

Figure 4.  Experimental results. (a) Result of the map (black) and the 
estimated pose (red) with standard ICP. (b) Result of the map (black) 

and the estimated pose (red) with RBTM ICP. 
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TABLE I.  ERROR COMPARISON BETWEEN STANDARD ICP  

ALGORITHM AND OUR PROPOSED NEW FRAMEWORK METHOD 

Method STD-ICP RBTM 

Final Pose Error (mm) 1076.3 7.423 

 

Secondly, we measured the error between the final 

estimated pose and the final ground truth pose and 

compared with the two methods. The final pose errors are 

calculated and depicted in Table I. From the error data we 

could verify that our proposed method showed smaller 

error. To sum up, as we expected previously, our 

algorithm enhanced the quality of the map and the 

accuracy of the estimated robot pose. 

IV. CONCLUSIONS 

In this paper, we suggested enhanced map building 

framework based on the scan similarity. Previous point 

cloud based registration algorithms did not consider the 

distribution of the scan data which influence the result of 

the registration. To represent a scan data as an 

informative vector, a laser scan descriptor is introduced 

by using the curvature function. With this descriptor, the 

similarity between two scan data is computed by using 

the cross correlation of them. Finally, considering the 

similarity between scans, a new map building framework 

(RBTM) is proposed. The performance is verified 

through the experiment. We compared the proposed 

framework with the standard ICP algorithm and showed 

our newly proposed method enhanced the map quality 

and the accuracy of the estimated robot pose.  
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