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Abstract—Path planning remains a critical research area in
mobile robotics, yet current approaches often suffer from
suboptimal path quality, limited sampling efficiency, and
inadequate adaptability across diverse operational scenarios.
To address these issues, this paper proposes an improved
algorithm combining Artificial Potential Field (APF) and
Restricted Path Time (RRT*) approaches. This algorithm
employs an optimization model that combines dynamic
sampling with potential field guidance, constructing a
two-stage dynamic sampling mechanism. During sampling,
candidate nodes with Gaussian noise are generated along the
resultant force direction. Finally, path cost comparison and
parent node reselection are performed within the dynamic
optimization radius to ensure asymptotic optimality of the
path. Experimental results show that in complex maps, path
length is reduced by 33.41% and 26.64%, respectively, and
planning time is reduced by 21.36% and 86.32%,
respectively; in narrow passages, path length is reduced by
49.6% and 49.8%, respectively. The results confirm the
effectiveness of the two-stage dynamic sampling mechanism,
which not only preserves the probabilistic completeness of the
RRT* algorithm but also adaptively adjusts the sampling
strategy, improving both planning length and time.

Keywords—artificial potential field, Restricted Path Time
(RRT¥) algorithm, path planning, dynamic sampling

I. INTRODUCTION

With the continuous development of artificial
intelligence, mobile robots have been widely used in
various industries, the military, and service sector. Path
planning is a core component of autonomous mobile robot
navigation [1]. The key to path planning is to efficiently
avoid obstacles and find a better path. Therefore, related
algorithms have always been a research hotspot. Existing
methods can be roughly divided into three categories: (1)
geometric model algorithms, such as Dijkstra [2], A* [3],
Probabilistic Roadmap (PRM) [4], Rapidly-exploring
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Random Tree (RRT) [5]; (2) swarm intelligence
algorithms, such as ant colonies [6], genetic algorithms [7],
Genetic  Algorithm-Particle =~ Swarm  Optimization
(GA-PSO) [8]; (3) self-learning algorithms, such as
Q-learning [9] and deep learning [10]. To this end,
researchers have proposed improved methods such as
Restricted Path Time (RRT*) [11], Informed RRT* [12]
and Informed RRT*-Connect [13], which have made
progress in terms of speed and path quality. Among them,
the RRT series based on random sampling has attracted
widespread attention because of its ability to adapt to
complex environments. The PRM algorithm in geometric
models performs well in global path searches in
high-dimensional spaces, but lacks adaptability in
dynamic environments. The PSO algorithm [14] in swarm
intelligence offers advantages in global optimization and
complex environment search, but its convergence speed
and stability are inferior to sampling-based methods.

Despite significant progress in the field, contemporary
algorithms continue to face two fundamental challenges:
(1) achieving an optimal balance between solution quality
and computational efficiency; and (2) maintaining
convergence stability in geometrically constrained
environments such as narrow passages or dynamically
evolving scenarios. In response to these issues, this article
proposes an improved RRT* algorithm (APF-RRT*) that
combines artificial potential fields to improve convergence
efficiency and path optimality.

The main innovations and contributions of this paper are
as follows:

(1) Introducing Artificial Potential Field (APF)
guidance during the sampling process to make the
search more directed and efficient;

(2) Constructing a dynamic sampling and rewiring
optimization mechanism to improve path quality
while maintaining asymptotic optimality;
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(3) Conducting multi-environment simulation
experiments to verify the superior performance of
the proposed APF-RRT* algorithm in both
convergence speed and path smoothness.

II. RELATED WORK

In the development of search path technologies,
LaValle [15] first proposed the RRT algorithm. It is based
on the sampling path planning algorithm and satisfies the
need to efficiently find feasible paths from the starting
point to the target point in a high-dimensional and complex
constraint space. The main emphasis is on feasibility, the
disadvantages of poor search path quality and long search
time. Kuffner er al [16] proposed the RRT-Connect
algorithm to solve the disadvantages of long search time.
It introduces bidirectional fast expansion technology and
builds a search tree simultaneously from the start point and
the end point, thereby significantly reducing the search
time. It only shortens the search time, cannot guarantee the
quality of the search path, and lacks engineering
application significance. Karaman [11] and LaValle [15]
proposed the RRT algorithm to improve the path quality,
which introduces asymptotic optimality through rewiring
and maintains probabilistic completeness. However, a
large number of samples is required to obtain a
high-quality path, resulting in slow convergence speed and
large memory consumption. Jeong ef al. [17] proposed the
Quick-RRT* algorithm to address the disadvantages of
RRT, which solves the problem of slow convergence speed
by introducing a dynamic step size method. However, the
ability of Quick-RRT* to maintain parameter optimality is
weakened, and rapid extension may skip potential low-cost
neighborhoods. Jeong ef al. [17] have also adopted an
interdisciplinary combination method to obtain a better
path solution. By combining force field modeling from
physics with sampling-based motion, and integrating local
strategies with global sampling, an artificial potential field
and sampling algorithm was developed. However, local
minima may occur. In summary, RRT uses a one-way tree
search, resulting in moderate convergence speed. While
simple to implement, it suffers from poor path quality and
cannot guarantee optimality. The RRT-Connect algorithm
improves search efficiency through a two-way tree search,
achieving faster convergence, but its path quality remains
poor. In contrast, Quick-RRT* employs a dynamic step
size and a target-oriented guidance strategy, improving
convergence speed, path quality, and optimality to some
extent, but overall, there is still room for improvement.

Currently, mainstream improved RRT algorithms can
be broadly categorized into several core ideas: First,
represented by RRT*, these algorithms introduce
asymptotic optimality guarantees through reconnection
mechanisms, continuously improving path quality while
ensuring feasible solutions. Second, represented by
RRT-Connect and Informed RRT*, these algorithms
improve search efficiency in high-dimensional spaces
through bidirectional expansion and ellipsoidal domain
sampling. Finally, there are algorithms emphasizing deep
combinations of system dynamics and constraints, such as
Linear Quadratic Regulator Rapidly-exploring Random
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Tree (LQR-RRT), which consider dynamic constraints and
control costs during expansion to generate more perfect
paths. Although these improvements have achieved good
performance across different environments and runs, they
still have shortcomings in specific situations: Most
algorithms fail in narrow channels due to strategy failures
and severe “blind” search phenomena, making it difficult
to guarantee consistently high-quality solutions.
Additionally, relying on a single strategy may perform
well in a specific scenario but fail to meet the needs of
multiple scenarios. To address these shortcomings, this
paper adopts a hybrid sampling strategy to enable
operation in multiple scenarios, compensating for the lack
of scenario adaptability in traditional RRT* improved
algorithms.

III. RRT* ALGORITHM INTEGRATED WITH APF

A.  Algorithm Principle

RRT* is an enhanced variant of the RRT algorithm that
converges towards an increasingly optimal solution over
time. Its core principle is to converge the path cost to the
optimal through rewiring ( Tyewire ) and parent node
reselection mechanisms. In a newly generated x-node, a
circle with a defined radius is used to compare the
distances of each point enclosed in the circle to generate
the shortest route, as shown in Eq. (1), to calculate the
neighborhood radius 7, . The purpose of the rewire
function is to detect nodes in existing trees, check the
lengths of paths, compare different routes, and compare
path costs to obtain the solution that yields the minimum
cost of the search tree connection as shown in Egs. (2)
and (3). The RRT* algorithm will find a better path cost as
the number of iterations increases, as depicted in Fig. 1.

T, = min (y (@)?n) (1)
C(xnew) + C(xnew'xi) < C(xi) (2)
parent(x;) = Xnpew 3)

Fig. 1. Schematic diagram of new node expansion of the RRT*
algorithm.

B.  APF Algorithm Principle

The APF algorithm is an established way to plan a path.
Its core idea is to guide a mobile robot to avoid obstacles
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and reach a target point by simulating a “potential field” in
physics. The algorithm has two potential fields,
gravitational Uge(q) and repulsive Uy, (q) fields. The
target point makes the gravitational field, which pulls the
robot toward it. The obstacle produces a repulsive field
that pushes the robot away. If ¢ is the robot’s current
position, Eqs. (4) and (5) are the gravitational potential
field and the gravitational functions, respectively.

Ugee (@) = %ka X dz(q: ngal) 4)

Fae = _VUatt(Q) = kg X (ngal - Q) ©)

In Eq. (1), k, represents the gravitational gain
coefficient, and d(¢,qg0q,) shows the distance from the
robot’s current position q to the goal in Euclidean space
Qgoar- As the robot searches in space, the function is
directly related to the distance between the robot and the

| Start |

obstacle. The function for the repulsive potential field
Urep(q) and the repulsive function F.,(q) are shown in
Egs. (6) and (7), where k, represents the repulsive gain
coefficient, d(g,q,ps) is the distance from the robot to the
obstacle, and d, represents the repulsive influence range
threshold.

e 1y

e = 2 0,4 < d

Urep(q) = (6)
0 if.d(q' qobs) > do

1 1

Frep = ker (d(q,qobs) T do

1
) X dz(‘mobs) X Vd(q, qobs) (7)

The robot’s total force is the vector sum of all the forces
that push it away and gravity, as shown in Eq. (8).

Fiotar = Fage + ZF;‘ep ®

!

| Initializo APF-RRT* | —'l Non-target bias sampling

Completely random sampling

Target bias sampling with a
probability of 5%

APF sampling with a —>| with a probability of 47.5%
probability of 47.5%

}

Directly generate nodes

Randomly select a node from
the current tree

Randomly generate new

near the target point

nodes

Calculate the attraction and repulsion,
and generate new nodes along the
direction of the resultant force

NO

Check if the new

!

node is available

Add random noise

YES

heck if the new node
is available

Join RRT* tree

NO

Check whether the goal is
achieved

Check whether the goal is
achieved

END

Fig. 2. Dynamic sampling strategy program flow chart.
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C. RRT* Algorithm Optimization Integrated with APF
1)  Dynamic sampling strategy

In this study, influenced by an artificial potential field
and a consequent force Fiytq;, the robot will move in the
direction of X4,q;. If the force that pushes the robot away
from the barrier is stronger than the force that pulls the
robot toward the obstacle, it will not reach the target point.
In response to this phenomenon, the current approach
adopts a hybrid sampling strategy. First, target bias
sampling is directly performed with a probability of 5%,
forcing the algorithm to explore in the target direction,
accelerating convergence, and avoiding the inefficiency of
pure random sampling. Second, a non-target configuration
search is performed with a probability of 95%, in which
APF-guided sampling and completely random sampling
are included in a non-target bias. Finally, APF-guided
sampling with a probability of 47.5% is used to randomly
select a node from the current tree, calculate the
gravitational and repulsive forces it receives, create
additional nodes in the direction of the force that results,
and add random noise to avoid falling into local minima.
If the target bias or APF guidance is not met, random
sampling with a probability of 47.5% is performed as
shown in Fig. 2. To ensure the algorithm’s capability to
explore unknown areas and avoid missing feasible paths,
these two algorithms adopt a dynamic balance, which not
only ensures global exploration but also accelerates
convergence to feasible paths. Combining the two
algorithms achieves the synergy of “guidance” and
“randomness”, making APF-RRT* a more robust and
efficient path planning algorithm in situations with
complex environments, high real-time requirements, and
dynamic obstacle scenarios.

2)  Collision detection optimization

The efficiency of collision detection in path planning
algorithms has an important impact on real-time
performance. This paper adopts a hierarchical collision
detection framework and an adaptive step size adjustment
strategy. Compared with the traditional stepwise
interpolation method, the algorithm must point-by-point
check collisions between line segments and obstacles. This
has high computational complexity. In the collision
detection operation, the distance field pre-calculation and
the Bresenham-ray method are combined to achieve
two-stage detection. In the course detection stage, the
distance field is used to quickly determine the safe distance
near the endpoint of the line segment. If it is greater than
the threshold, the possibility of collision is directly
excluded. In the fine detection stage, the Bresenham
algorithm is employed to generate accurate grid
coordinates for high-risk areas, avoiding the performance
loss caused by floating-point operations as shown in
Algorithm 1.

Second, in complex environmental conditions, fixed
step sizes are prone to computational redundancy or
detection omissions. A dynamic step size adjustment
method is proposed to address this limitation. A smaller
step size is used in areas with dense obstacles to ensure
detection accuracy. A larger step size is employed in free
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space to improve traversal efficiency. The step size
parameter is automatically changed based on the density
of local obstacles, which strikes a compromise between
safety and efficiency, while significantly improving the
computational efficiency of the APF-RRT* algorithm.

Algorithm 1: Line Segment Collision Detection

Data: node; = [y, x,]: Start point coordinates (y, x).

node; = [y, x5]: End point coordinates (y, x).

map: 2D occupancy grid map, where 2 denotes an obstacle.
param: Structure containing parameters, e.g., param.resolution.
Result: flag: Boolean value; TRUE if collision detected,
FALSE otherwise.

1 Function is_collision(rnode;, node,, map, param)

2 flag — TRUE *Assume collision until proven otherwise

3 dy « nodey(1) — node (1) *y-coordinate difference dx «
node,(2) — node,(2) *x-coordinate difference < atan2(dy,
dx)*Angle of the line segment

4 distance < Hnodel - nodeZH 2 *Euclidean distance n_step <
[distance/param.resolution] *Number of steps for scanning

5 for i «< 0 to n_step do

6 current y < nodei(1) +i - param.resolution - sin(6)

7 current_ x < nodei(2) + i - param.resolution - cos(0)

8  *Check for out-of-map boundaries if current x <1
current x > size(map, 2) current_ y < 1 current_y >
size(map, 1) then

9 return TRUE *Path extends beyond map limits

10 end

11 *Check for collision with an obstacle if

map(round(current y), round(current x)) ==

then

12 return TRUE *Obstacle detected at current point

13 end

14 end

15 flag « FALSE *No collision found along the entire path return

fla

16 end

D. Computational Complexity Analysis

To comprehensively evaluate the proposed APF-RRT*
algorithm, this section analyzes its time complexity. For
each expansion in the RRT algorithm, the algorithm
randomly generates a node and connects it to other nodes
in the tree. The computational complexity of this process
depends on the number of nodes in the tree. Due to the lack
of an optimization mechanism, the RRT algorithm has a
time complexity of O(N), where N is the number of
iterations. Each expansion requires checking for obstacles,
and the path is not optimal, requiring multiple iterations to
find a better path. Secondly, the RRT* algorithm improves
upon the basic RRT algorithm by gradually optimizing the
path through a rewiring mechanism. Each time a new node
is expanded, neighboring nodes must be recalculated and
the parent node reselected, increasing the computational
effort for each expansion. Therefore, the RRT algorithm
has a time complexity of O(N log N), where N is the
number of nodes in the tree. As the number of nodes
increases, the computational time of the algorithm grows
logarithmically. Finally, the APF-RRT* algorithm
combines an Artificial Potential Field (APF) with RRT*,
guiding the growth of the search tree through attractive and
repulsive forces. In each iteration, in addition to checking
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neighboring nodes, the attractive and repulsive forces on
each node are calculated, resulting in a time complexity of
O(N log N + M), where N is the number of nodes and M is
the APF computation overhead for each node. Although
APF-RRT* increases the potential field computation, it
accelerates convergence through a guided sampling
strategy, avoiding the inefficiency of pure random
sampling.

two-dimensional space. The size of the simulation map is
a 40x40 grid. Three scene maps are set, a simple map, a
complex map, and a narrow channel to ensure the accuracy
of the experiment. The simulation scene is shown in Fig. 3.
Simulation parameters of different algorithms are set
uniformly to ensure data accuracy, as shown in Table 1.

TABLE I. EXPERIMENTAL PARAMETER SETTINGS

Name Value Unit
IV. SIMULATION ANALYSIS Trowire 30 grid
. . . e r 0.5 rid
Thev RRT* method is combmed with the ar‘gﬁmal n 20000 frefuency
potential field and evaluated. It is then compared with the Pearget 5% -
original algorithm and other algorithms. This is done to Prandom 47.5% -
verify whether the improved algorithm can more Pron-target 47.5% -
effectively search for the target point and for paths in ]]za 8'2 -
different scenarios. This work solely looks at = -
40 T T T T T T T 40 40 T T T T T T
“l . . 1 1 -
25 125 125 1
15 15 {15} 1
1 . - Il - - Il I |
5F { st 5F ]
0 .;7 1‘0 1‘5 20 25 3‘0 35 40 0 .;7 1‘0 1‘5 2‘0 25 3‘0 35 40 0 .;7 1‘0 1‘5 2‘0 25 3‘0 35 40
(@ (b) (©

Fig. 3. Simulation scene maps. (a) simple map; (b) complex map; (c) narrow passage.

The specific parameters are the starting point (20, 6) and
endpoint (20, 34). The starting point is marked in red, and
the endpoint is in blue. The step size is 30. In the
experiments, if the robot’s search trajectory cannot
intersect the obstacle, a collision results. Since the fast

search tree has a defined degree of randomness, every
40 - 40
351 351
30 F 30 F

25 25

algorithm is tested 50 times in each scene map to ensure
data accuracy. At present, the quantitative indicators are
the search time T/s, path length L/m, and average number
of iterations n/times. These are used as algorithm
performance indicators.

20 -
35}
30t

25

0 5 10 15 20 25 30 35 40 0 5 10 15

@

20
(b)

25 30 35 40 0 5 10 15 25 30 35 40

20
©

Fig. 4. Simulation of simple map comparison. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT * algorithm.

During the random tree algorithm search process, the
red lines in Fig. 4 represent the algorithm planning paths,
and the gray lines show the extended node routes. Fig. 4(a)

illustrates the simulation trajectory diagram for the RRT
algorithm. The search tree makes an excessive number of
path points, and movement toward the goal location is
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slow. Fig. 4(b) is the simulation trajectory diagram of the
RRT* algorithm. The obtained path diagram significantly
reduces the path length, but the path is still curved with
poor convergence.

Fig. 4(c) shows the APF-RRT* algorithm results. There
are fewer duplicate path points, which makes the path
points much smaller. The tree expands toward the goal.
The average length of the search path, the average cost of
the search time, and the standard deviation of the three
algorithms are examined in a simple map to further
compare their search conditions. If the algorithm runs
more than 20,000 times during the simulation, it is
considered a failed search.

As shown in Table II, the better algorithm finds the
shortest path for robot planning, the smallest number of
iterations, and a clear target for the search path. Since the
random tree iterations of the RRT and RRT* algorithms
lack directionality, the iteration directions are scattered,
which causes the failure of these two algorithms. The
improved APF-RRT* method reduces the average path
length by 31.6% and 27.77% compared to the RRT and
RRT* algorithms, and the average iteration time by 50%
and 93.47%, respectively. The algorithm results are closer
to the average values, standard deviations are smaller,
while the target is clearer and more quickly reached
compared with the RRT and RRT* algorithms.

TABLE II. COMPARISON DATA OF SIMPLE MAP EXPERIMENTAL RESULTS OF THREE ALGORITHMS

Algorithm Performance Indicators Average Value  Standard Deviation Maximum Minimum _ Average Number of Iterations
RRT o 060 06 5% ons 1093
o e

e

In complex maps, obstacles with different shapes are
added, as shown in Fig. 5. The RRT* and RRT algorithms

have large path node redundancy, slow convergence, and
40 - 40 -

35 351

[ [}
30t & |30}

25} 251

search failures. However, the APF-RRT* algorithm is
more efficient and follows a straighter path.

40 -

15 25 30 400 5 10 15

10

20 35
(a)

20 25 30 35 400 5
(®)

Fig. 5. Comparison of simulated complex maps. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT* algorithm.

The experimental data of the three algorithms for
complex maps are shown in Table III. The enhanced
algorithm shortens the average path length by 33.41% and
26.64% compared to the RRT and RRT* algorithms, while
the average iteration time is reduced by 21.36% and
86.32%, respectively. Additionally, in comparison to the

RRT* and RRT algorithms, the proposed approach
exhibits a smaller standard deviation, with its operational
results being more tightly clustered around the mean value.
This characteristic enables more explicit and rapid
convergence toward the target objective.

TABLE III. COMPARATIVE EXPERIMENTAL RESULTS OF THREE ALGORITHMS ON COMPLEX MAPS

Algorithm  Performance Indicators  Average Value Standard Deviation Maximum  Minimum  Average Number of Iterations
RRT T Vi i S ox 1852

RRT* T s 051 3% 1os 1204
w4

Obstacles in narrow channels are added, as shown in
Fig. 6. The first two algorithms have large path node
redundancy and long planning times. This is especially
true for the rewiring of the RRT* algorithm in the search,

which leads to a much longer planning time than for the
other two algorithms for a better path. The improved
algorithm has a short and linear path with fast
convergence.
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The experimental data of the three algorithms in narrow
channels are shown in Table IV. The new approach cuts
the path length by 49.6% and 49.8% compared to the RRT
and RRT* algorithms, and the average iteration time by
30.81% and 605.35% correspondingly. Additionally, the

outcomes generated by our algorithm show a stronger
tendency to gather around the mean, with standard
deviations being more reduced. Furthermore, it features a
more definite targeting direction and attains the objective
at a faster pace.

TABLE IV. COMPARISON OF NARROW CHANNEL EXPERIMENTAL RESULTS USING THREE ALGORITHMS

Algorithm  Performance Indicators  Average Value Standard Deviation Maximum Minimum Average Number of Iterations
RRT T 1% 0 40y 080 14052

RRT* T 25797 10417 S oo 13372
APF-RRT* g 1 15 2508 tex 10571

40 40

351 351

30 30

251 251

20 20

40

351

30

251

20

TP rrrrTT
N

10 15

20

(b)

25 30 40

Fig. 6. Comparison of simulated narrow channels. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT* algorithm.

Secondly, we compared the path lengths and iteration
times of the RRT, RRT* and APF-RRT* algorithms in
different map scenarios through one-way Analysis of
Variance (ANOVA). The results showed that the

differences in path lengths and iteration times between the
algorithms were statistically significant across all three
map scenarios (p < 0.05). The specific F-values and
p values are shown in Table V.

TABLE V. ONE-WAY ANOVA

Path Length Iteration Tim

Map Name Algorithm F-value eg p-value F-value e pe-value
RRT 38.13 4.03x1075 38.12 4.04%107°

Simple map RRT* 39.51 3.2X1075 40.5 2.2%1075
APF-RRT* 29.96 3.5X10°° 32.34 3.2X107°

RRT 46.71 5.33x1078 48.12 5.5%1077

Complex maps RRT* 4738 43%1078 448 1.2x107¢
APF-RRT* 35.01 3.8x1077 34.9 4.1%1077

RRT 89.07 2.5%1077 34.9 4.1x1077

Narrow passage RRT* 91.15 1.5X107¢ 93 2.5%1075
APF-RRT* 59.51 3.1x1078 60.23 4.5%1078

Table V summarizes the performance comparison of
three path planning algorithms (RRT, RRT*, and
APF-RRT#*)  across three  representative  map
environments. The results demonstrate that APF-RRT*
consistently outperforms the other algorithms in terms of
both path length and iteration time. In the simple map,
APF-RRT* achieves the shortest path (29.96) and the
lowest iteration time (32.34), outperforming both RRT and
RRT*. In the complex map, APF-RRT* again shows clear
superiority, with a significantly shorter path length (35.01)
and reduced iteration time (34.9). For the narrow passage
scenario, APF-RRT* achieves the most optimized path
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(59.51), markedly shorter than RRT and RRT*, although
its iteration time (60.23) is slightly higher than RRT but
still considerably lower than RRT* (93). Furthermore, all
p-values are far below 0.05, indicating that the observed
differences are statistically significant. Overall,
APF-RRT* demonstrates a robust balance between path
quality and computational efficiency across various
environments, with particular advantages in complex and
constrained scenarios.

To better validate the APF-RRT* algorithm, it was
compared with the Informed RRT* algorithm in the same
environment. Informed RRT*, after finding an initial
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solution, continues searching for a better path within the
ellipse, instead of randomly sampling across the entire free
space. The average path lengths of Informed RRT* on
simple maps, complex maps, and narrow channels were
35.55, 48.78, and 84.88, respectively. Compared to RRT
and RRT*, it has an advantage in search length, but it is
time-consuming due to the elliptical sampling. APF-RRT*
reduces the relative path length by 15.72%, 39.33%, and
42.63% compared to Informed RRT*. In narrow channels,
the disadvantage of Informed RRT*’s elliptical sampling
is more pronounced, highlighting the advantage of
APF-RRT*’s hybrid sampling strategy.

V. CONCLUSIONS

This paper proposes an improved APF-RRT* algorithm
for robot path planning in a two-dimensional environment.
Firstly, aiming at the random problem existing in the
RRT* algorithm, it is proposed to integrate the APF and
combine it with the RRT* algorithm. Secondly, aiming at
the problem of local minima existing in the artificial
potential field, a dynamic sampling strategy is proposed to
adaptively search in different environments. Finally, for
collision detection, a linear collision detection is proposed,
which adaptively changes the step size to improve the
narrow search ability. Despite these advantages, the
algorithm still has some limitations. The potential field
parameters need to be carefully adjusted to avoid local
minima in a highly chaotic environment. In addition, the
current methods mainly conduct evaluations in
two-dimensional static scenarios. Its scalability in 3D
scenes or dynamic environments still needs to be verified,
and relevant research will be conducted in the next step.

NOMENCLATURE

Xfree: State space.

C,ps: Initial state space.

X¢tare: Random tree starting point.

Xgoai: Random tree target point.

Xrana: Random points.

Xnear: The point in the random tree closest to the random
point (Xrand).

Xnew: New node.

U, (q): Gravitational potential field.
Urep(q): Repulsive potential field.

k,: Gravitational gain coefficient.
Trewire. Relocation radius.

r: Extended distance.

Qgoar: Target point.

F.¢p(q): Repulsion function.

qops: Obstacle configuration.

Fiotar: Combined force.

DPtarget: Target bias sampling probability.
Pnon—target: NOn-target bias sampling probability.
pPapr: APF guides sampling probability.
Prandom: Random sampling probability.
N: Number of iterations.

r: Maximum extension distance.

k,-: Repulsion gain coefficient.
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X, : Represents a node in the search tree.
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