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Abstract—Path planning remains a critical research area in 
mobile robotics, yet current approaches often suffer from 
suboptimal path quality, limited sampling efficiency, and 
inadequate adaptability across diverse operational scenarios. 
To address these issues, this paper proposes an improved 
algorithm combining Artificial Potential Field (APF) and 
Restricted Path Time (RRT*) approaches. This algorithm 
employs an optimization model that combines dynamic 
sampling with potential field guidance, constructing a  
two-stage dynamic sampling mechanism. During sampling, 
candidate nodes with Gaussian noise are generated along the 
resultant force direction. Finally, path cost comparison and 
parent node reselection are performed within the dynamic 
optimization radius to ensure asymptotic optimality of the 
path. Experimental results show that in complex maps, path 
length is reduced by 33.41% and 26.64%, respectively, and 
planning time is reduced by 21.36% and 86.32%, 
respectively; in narrow passages, path length is reduced by 
49.6% and 49.8%, respectively. The results confirm the 
effectiveness of the two-stage dynamic sampling mechanism, 
which not only preserves the probabilistic completeness of the 
RRT* algorithm but also adaptively adjusts the sampling 
strategy, improving both planning length and time. 
 
Keywords—artificial potential field, Restricted Path Time 
(RRT*) algorithm, path planning, dynamic sampling 
 

I. INTRODUCTION 

With the continuous development of artificial 
intelligence, mobile robots have been widely used in 
various industries, the military, and service sector. Path 
planning is a core component of autonomous mobile robot 
navigation [1]. The key to path planning is to efficiently 
avoid obstacles and find a better path. Therefore, related 
algorithms have always been a research hotspot. Existing 
methods can be roughly divided into three categories: (1) 
geometric model algorithms, such as Dijkstra [2], A* [3], 
Probabilistic Roadmap (PRM) [4], Rapidly-exploring 
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Random Tree (RRT) [5]; (2) swarm intelligence 
algorithms, such as ant colonies [6], genetic algorithms [7], 
Genetic Algorithm-Particle Swarm Optimization  
(GA-PSO) [8]; (3) self-learning algorithms, such as  
Q-learning [9] and deep learning [10]. To this end, 
researchers have proposed improved methods such as 
Restricted Path Time (RRT*) [11], Informed RRT* [12] 
and Informed RRT*-Connect [13], which have made 
progress in terms of speed and path quality. Among them, 
the RRT series based on random sampling has attracted 
widespread attention because of its ability to adapt to 
complex environments. The PRM algorithm in geometric 
models performs well in global path searches in  
high-dimensional spaces, but lacks adaptability in 
dynamic environments. The PSO algorithm [14] in swarm 
intelligence offers advantages in global optimization and 
complex environment search, but its convergence speed 
and stability are inferior to sampling-based methods. 

Despite significant progress in the field, contemporary 
algorithms continue to face two fundamental challenges: 
(1) achieving an optimal balance between solution quality 
and computational efficiency; and (2) maintaining 
convergence stability in geometrically constrained 
environments such as narrow passages or dynamically 
evolving scenarios. In response to these issues, this article 
proposes an improved RRT* algorithm (APF-RRT*) that 
combines artificial potential fields to improve convergence 
efficiency and path optimality. 

The main innovations and contributions of this paper are 
as follows: 

(1) Introducing Artificial Potential Field (APF) 
guidance during the sampling process to make the 
search more directed and efficient; 

(2) Constructing a dynamic sampling and rewiring 
optimization mechanism to improve path quality 
while maintaining asymptotic optimality; 
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(3) Conducting multi-environment simulation 
experiments to verify the superior performance of 
the proposed APF-RRT* algorithm in both 
convergence speed and path smoothness. 

II. RELATED WORK 

In the development of search path technologies,  
LaValle [15] first proposed the RRT algorithm. It is based 
on the sampling path planning algorithm and satisfies the 
need to efficiently find feasible paths from the starting 
point to the target point in a high-dimensional and complex 
constraint space. The main emphasis is on feasibility, the 
disadvantages of poor search path quality and long search 
time. Kuffner et al. [16] proposed the RRT-Connect 
algorithm to solve the disadvantages of long search time. 
It introduces bidirectional fast expansion technology and 
builds a search tree simultaneously from the start point and 
the end point, thereby significantly reducing the search 
time. It only shortens the search time, cannot guarantee the 
quality of the search path, and lacks engineering 
application significance. Karaman [11] and LaValle [15] 
proposed the RRT algorithm to improve the path quality, 
which introduces asymptotic optimality through rewiring 
and maintains probabilistic completeness. However, a 
large number of samples is required to obtain a  
high-quality path, resulting in slow convergence speed and 
large memory consumption. Jeong et al. [17] proposed the 
Quick-RRT* algorithm to address the disadvantages of 
RRT, which solves the problem of slow convergence speed 
by introducing a dynamic step size method. However, the 
ability of Quick-RRT* to maintain parameter optimality is 
weakened, and rapid extension may skip potential low-cost 
neighborhoods. Jeong et al. [17] have also adopted an 
interdisciplinary combination method to obtain a better 
path solution. By combining force field modeling from 
physics with sampling-based motion, and integrating local 
strategies with global sampling, an artificial potential field 
and sampling algorithm was developed. However, local 
minima may occur. In summary, RRT uses a one-way tree 
search, resulting in moderate convergence speed. While 
simple to implement, it suffers from poor path quality and 
cannot guarantee optimality. The RRT-Connect algorithm 
improves search efficiency through a two-way tree search, 
achieving faster convergence, but its path quality remains 
poor. In contrast, Quick-RRT* employs a dynamic step 
size and a target-oriented guidance strategy, improving 
convergence speed, path quality, and optimality to some 
extent, but overall, there is still room for improvement. 

Currently, mainstream improved RRT algorithms can 
be broadly categorized into several core ideas: First, 
represented by RRT*, these algorithms introduce 
asymptotic optimality guarantees through reconnection 
mechanisms, continuously improving path quality while 
ensuring feasible solutions. Second, represented by  
RRT-Connect and Informed RRT*, these algorithms 
improve search efficiency in high-dimensional spaces 
through bidirectional expansion and ellipsoidal domain 
sampling. Finally, there are algorithms emphasizing deep 
combinations of system dynamics and constraints, such as 
Linear Quadratic Regulator Rapidly-exploring Random 

Tree (LQR-RRT), which consider dynamic constraints and 
control costs during expansion to generate more perfect 
paths. Although these improvements have achieved good 
performance across different environments and runs, they 
still have shortcomings in specific situations: Most 
algorithms fail in narrow channels due to strategy failures 
and severe “blind” search phenomena, making it difficult 
to guarantee consistently high-quality solutions. 
Additionally, relying on a single strategy may perform 
well in a specific scenario but fail to meet the needs of 
multiple scenarios. To address these shortcomings, this 
paper adopts a hybrid sampling strategy to enable 
operation in multiple scenarios, compensating for the lack 
of scenario adaptability in traditional RRT* improved 
algorithms. 

III. RRT* ALGORITHM INTEGRATED WITH APF 

A. Algorithm Principle 

RRT* is an enhanced variant of the RRT algorithm that 
converges towards an increasingly optimal solution over 
time. Its core principle is to converge the path cost to the 
optimal through rewiring ( 𝑟௥௘௪௜௥௘ ) and parent node 
reselection mechanisms. In a newly generated x-node, a 
circle with a defined radius is used to compare the 
distances of each point enclosed in the circle to generate 
the shortest route, as shown in Eq. (1), to calculate the 
neighborhood radius 𝑟௡ . The purpose of the rewire 
function is to detect nodes in existing trees, check the 
lengths of paths, compare different routes, and compare 
path costs to obtain the solution that yields the minimum 
cost of the search tree connection as shown in Eqs. (2)  
and (3). The RRT* algorithm will find a better path cost as 
the number of iterations increases, as depicted in Fig. 1. 

 𝑟௡ ൌ 𝑚𝑖𝑛 ቆ𝛾 ቀ
௟௢௚ሺ௡ሻ

௡
ቁ

భ
೏ , 𝜂ቇ (1) 

 𝐶ሺ𝑥௡௘௪ሻ ൅  𝐶ሺ𝑥௡௘௪, 𝑥௜ሻ ൏ 𝐶ሺ𝑥௜ሻ (2) 

 𝑝𝑎𝑟𝑒𝑛𝑡ሺ𝑥௜ሻ ൌ  𝑥௡௘௪ (3) 

 
Fig. 1. Schematic diagram of new node expansion of the RRT* 

algorithm. 

B. APF Algorithm Principle 

The APF algorithm is an established way to plan a path. 
Its core idea is to guide a mobile robot to avoid obstacles 
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and reach a target point by simulating a “potential field” in 
physics. The algorithm has two potential fields, 
gravitational 𝑈௔௧௧ሺ𝑞ሻ  and repulsive 𝑈௥௘௣ሺ𝑞ሻ  fields. The 
target point makes the gravitational field, which pulls the 
robot toward it. The obstacle produces a repulsive field 
that pushes the robot away. If q is the robot’s current 
position, Eqs. (4) and (5) are the gravitational potential 
field and the gravitational functions, respectively. 

 𝑈௔௧௧ሺ𝑞ሻ ൌ
ଵ

ଶ
𝑘௔ ൈ 𝑑ଶ൫𝑞, 𝑞௚௢௔௟൯ (4) 

 𝐹௔௧௧ ൌ െ𝛻𝑈௔௧௧ሺ𝑞ሻ ൌ  𝑘௔ ൈ ൫𝑞௚௢௔௟ െ  𝑞൯ (5) 

In Eq. (1), 𝑘௔  represents the gravitational gain 
coefficient, and d(q,𝑞௚௢௔௟ ) shows the distance from the 
robot’s current position q to the goal in Euclidean space 
𝑞௚௢௔௟ . As the robot searches in space, the function is 
directly related to the distance between the robot and the 

obstacle. The function for the repulsive potential field 
𝑈௥௘௣ሺ𝑞ሻ and the repulsive function 𝐹௥௘௣ሺ𝑞ሻ are shown in 
Eqs. (6) and (7), where 𝑘௥  represents the repulsive gain 
coefficient, d(q,𝑞௢௕௦) is the distance from the robot to the 
obstacle, and 𝑑଴ represents the repulsive influence range 
threshold. 

𝑈௥௘௣ሺ𝑞ሻ ൌ ቐ

ଵ

ଶ
𝑘௥ሺ

ଵ

ௗሺ௤,௤೚್ೞሻ
െ

ଵ

ௗబ
ሻଶ if 𝑑ሺ𝑞, 𝑞௢௕௦ሻ ൑ 𝑑଴

0                                       if 𝑑ሺ𝑞, 𝑞௢௕௦ሻ ൐ 𝑑଴

 (6) 

𝐹௥௘௣ ൌ  𝑘௥ ቀ
ଵ

ௗሺ௤,௤೚್ೞሻ
െ

ଵ

ௗబ
ቁ ൈ

ଵ

ௗమ൫೜,೜೚್ೞ൯ ൈ ∇𝑑ሺ𝑞, 𝑞௢௕௦ሻ (7) 

The robot’s total force is the vector sum of all the forces 
that push it away and gravity, as shown in Eq. (8). 

 𝐹௧௢௧௔௟ ൌ  𝐹௔௧௧ ൅ ∑𝐹௥௘௣ (8) 

 
Start

Initialize APF-RRT*

Target bias sampling with a 
probability of 5%

Directly generate nodes 
near the target point

Join RRT* tree

Non-target bias sampling

Randomly select a node from 
the current tree

Calculate the attraction and repulsion, 
and generate new nodes along the 

direction of the resultant force

Add random noise

APF sampling with a 
probability of 47.5%

Completely random sampling 
with a probability of 47.5%

Randomly generate new 
nodes

Check if the new 
node is available

YES

NO

Check if the new node 
is available

YE
S

NO

Check whether the goal is 
achieved

Check whether the goal is 
achieved

END

NO

YE
S

 
Fig. 2. Dynamic sampling strategy program flow chart. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

95



C. RRT* Algorithm Optimization Integrated with APF 

1) Dynamic sampling strategy 

In this study, influenced by an artificial potential field 
and a consequent force 𝐹௧௢௧௔௟, the robot will move in the 
direction of 𝑥௚௢௔௟. If the force that pushes the robot away 
from the barrier is stronger than the force that pulls the 
robot toward the obstacle, it will not reach the target point. 
In response to this phenomenon, the current approach 
adopts a hybrid sampling strategy. First, target bias 
sampling is directly performed with a probability of 5%, 
forcing the algorithm to explore in the target direction, 
accelerating convergence, and avoiding the inefficiency of 
pure random sampling. Second, a non-target configuration 
search is performed with a probability of 95%, in which 
APF-guided sampling and completely random sampling 
are included in a non-target bias. Finally, APF-guided 
sampling with a probability of 47.5% is used to randomly 
select a node from the current tree, calculate the 
gravitational and repulsive forces it receives, create 
additional nodes in the direction of the force that results, 
and add random noise to avoid falling into local minima. 
If the target bias or APF guidance is not met, random 
sampling with a probability of 47.5% is performed as 
shown in Fig. 2. To ensure the algorithm’s capability to 
explore unknown areas and avoid missing feasible paths, 
these two algorithms adopt a dynamic balance, which not 
only ensures global exploration but also accelerates 
convergence to feasible paths. Combining the two 
algorithms achieves the synergy of “guidance” and 
“randomness”, making APF-RRT* a more robust and 
efficient path planning algorithm in situations with 
complex environments, high real-time requirements, and 
dynamic obstacle scenarios. 

2) Collision detection optimization 

The efficiency of collision detection in path planning 
algorithms has an important impact on real-time 
performance. This paper adopts a hierarchical collision 
detection framework and an adaptive step size adjustment 
strategy. Compared with the traditional stepwise 
interpolation method, the algorithm must point-by-point 
check collisions between line segments and obstacles. This 
has high computational complexity. In the collision 
detection operation, the distance field pre-calculation and 
the Bresenham-ray method are combined to achieve  
two-stage detection. In the course detection stage, the 
distance field is used to quickly determine the safe distance 
near the endpoint of the line segment. If it is greater than 
the threshold, the possibility of collision is directly 
excluded. In the fine detection stage, the Bresenham 
algorithm is employed to generate accurate grid 
coordinates for high-risk areas, avoiding the performance 
loss caused by floating-point operations as shown in 
Algorithm 1. 

Second, in complex environmental conditions, fixed 
step sizes are prone to computational redundancy or 
detection omissions. A dynamic step size adjustment 
method is proposed to address this limitation. A smaller 
step size is used in areas with dense obstacles to ensure 
detection accuracy. A larger step size is employed in free 

space to improve traversal efficiency. The step size 
parameter is automatically changed based on the density 
of local obstacles, which strikes a compromise between 
safety and efficiency, while significantly improving the 
computational efficiency of the APF-RRT* algorithm. 
 

Algorithm 1: Line Segment Collision Detection 
Data: node1 = [y1, x1]: Start point coordinates (y, x). 
node2 = [y2, x2]: End point coordinates (y, x). 
map: 2D occupancy grid map, where 2 denotes an obstacle. 
param: Structure containing parameters, e.g., param.resolution. 
Result: flag: Boolean value; TRUE if collision detected, 
FALSE otherwise. 
1 Function is_collision(node1, node2, map, param) 

2 flag → TRUE *Assume collision until proven otherwise 

3 dy ← node2(1) − node1(1) *y-coordinate difference dx ← 

node2(2) − node1(2) *x-coordinate difference θ← atan2(dy, 

dx)*Angle of the line segment 

4 distance ←  node1 − node2  2 *Euclidean distance n_step ← 

⌈distance/param.resolution⌉ *Number of steps for scanning 

5 for i ← 0 to n_step do 

6  current_y ← node1(1) + i ꞏ param.resolution ꞏ sin(θ) 

7  current_x ← node1(2) + i ꞏ param.resolution ꞏ cos(θ) 

8   *Check for out-of-map boundaries if current_x < 1 

current_x > size(map, 2) current_y < 1 current_y > 

size(map, 1) then 
9    return TRUE *Path extends beyond map limits 
10      end 
11    *Check for collision with an obstacle if 

map(round(current_y), round(current_x)) == 2 
then 
12          return TRUE *Obstacle detected at current point 
13          end 
14      end 
15   flag ← FALSE *No collision found along the entire path return 

fla 

16 end 

D. Computational Complexity Analysis 

To comprehensively evaluate the proposed APF-RRT* 
algorithm, this section analyzes its time complexity. For 
each expansion in the RRT algorithm, the algorithm 
randomly generates a node and connects it to other nodes 
in the tree. The computational complexity of this process 
depends on the number of nodes in the tree. Due to the lack 
of an optimization mechanism, the RRT algorithm has a 
time complexity of O(N), where N is the number of 
iterations. Each expansion requires checking for obstacles, 
and the path is not optimal, requiring multiple iterations to 
find a better path. Secondly, the RRT* algorithm improves 
upon the basic RRT algorithm by gradually optimizing the 
path through a rewiring mechanism. Each time a new node 
is expanded, neighboring nodes must be recalculated and 
the parent node reselected, increasing the computational 
effort for each expansion. Therefore, the RRT algorithm 
has a time complexity of O(N log N), where N is the 
number of nodes in the tree. As the number of nodes 
increases, the computational time of the algorithm grows 
logarithmically. Finally, the APF-RRT* algorithm 
combines an Artificial Potential Field (APF) with RRT*, 
guiding the growth of the search tree through attractive and 
repulsive forces. In each iteration, in addition to checking 
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neighboring nodes, the attractive and repulsive forces on 
each node are calculated, resulting in a time complexity of 
O(N log N + M), where N is the number of nodes and M is 
the APF computation overhead for each node. Although 
APF-RRT* increases the potential field computation, it 
accelerates convergence through a guided sampling 
strategy, avoiding the inefficiency of pure random 
sampling. 

IV. SIMULATION ANALYSIS 

The RRT* method is combined with the artificial 
potential field and evaluated. It is then compared with the 
original algorithm and other algorithms. This is done to 
verify whether the improved algorithm can more 
effectively search for the target point and for paths in 
different scenarios. This work solely looks at  

two-dimensional space. The size of the simulation map is 
a 40×40 grid. Three scene maps are set, a simple map, a 
complex map, and a narrow channel to ensure the accuracy 
of the experiment. The simulation scene is shown in Fig. 3. 
Simulation parameters of different algorithms are set 
uniformly to ensure data accuracy, as shown in Table I. 

TABLE I. EXPERIMENTAL PARAMETER SETTINGS 

Name Value Unit 
𝑟௥௘௪௜௥௘ 30 grid 

r 0.5 grid 
n 20000 frequency 

𝑝௧௔௥௚௘௧ 5% - 
𝑝௥௔௡ௗ௢௠ 47.5% - 

𝑝௡௢௡ି௧௔௥௚௘௧ 47.5% - 
𝑘௔ 0.5 - 
𝑘௥ 0.5 - 

 

 
 (a) (b) (c) 

Fig. 3. Simulation scene maps. (a) simple map; (b) complex map; (c) narrow passage. 

The specific parameters are the starting point (20, 6) and 
endpoint (20, 34). The starting point is marked in red, and 
the endpoint is in blue. The step size is 30. In the 
experiments, if the robot’s search trajectory cannot 
intersect the obstacle, a collision results. Since the fast 
search tree has a defined degree of randomness, every 

algorithm is tested 50 times in each scene map to ensure 
data accuracy. At present, the quantitative indicators are 
the search time T/s, path length L/m, and average number 
of iterations n/times. These are used as algorithm 
performance indicators. 

 

 
 (a) (b) (c)  

Fig. 4. Simulation of simple map comparison. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT * algorithm. 

During the random tree algorithm search process, the 
red lines in Fig. 4 represent the algorithm planning paths, 
and the gray lines show the extended node routes. Fig. 4(a) 

illustrates the simulation trajectory diagram for the RRT 
algorithm. The search tree makes an excessive number of 
path points, and movement toward the goal location is 
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slow. Fig. 4(b) is the simulation trajectory diagram of the 
RRT* algorithm. The obtained path diagram significantly 
reduces the path length, but the path is still curved with 
poor convergence. 

Fig. 4(c) shows the APF-RRT* algorithm results. There 
are fewer duplicate path points, which makes the path 
points much smaller. The tree expands toward the goal. 
The average length of the search path, the average cost of 
the search time, and the standard deviation of the three 
algorithms are examined in a simple map to further 
compare their search conditions. If the algorithm runs 
more than 20,000 times during the simulation, it is 
considered a failed search. 

As shown in Table II, the better algorithm finds the 
shortest path for robot planning, the smallest number of 
iterations, and a clear target for the search path. Since the 
random tree iterations of the RRT and RRT* algorithms 
lack directionality, the iteration directions are scattered, 
which causes the failure of these two algorithms. The 
improved APF-RRT* method reduces the average path 
length by 31.6% and 27.77% compared to the RRT and 
RRT* algorithms, and the average iteration time by 50% 
and 93.47%, respectively. The algorithm results are closer 
to the average values, standard deviations are smaller, 
while the target is clearer and more quickly reached 
compared with the RRT and RRT* algorithms. 

TABLE II. COMPARISON DATA OF SIMPLE MAP EXPERIMENTAL RESULTS OF THREE ALGORITHMS 

Algorithm Performance Indicators Average Value Standard Deviation Maximum Minimum Average Number of Iterations 

RRT 
L/m 39.43 2.6 44.75 34.42 

1093 
T/s 0.69 0.6 2.76 0.13 

RRT* 
L/m 38.28 2.34 46.39 34.13 

610 
T/s 0.89 0.17 1.36 0.59 

APF-RRT* 
L/m 29.96 0.5 31.12 29.29 

583 
T/s 0.46 0.15 1.06 0.24 

In complex maps, obstacles with different shapes are 
added, as shown in Fig. 5. The RRT* and RRT algorithms 
have large path node redundancy, slow convergence, and 

search failures. However, the APF-RRT* algorithm is 
more efficient and follows a straighter path. 

 

 
 (a) (b) (c)  

Fig. 5. Comparison of simulated complex maps. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT* algorithm. 

The experimental data of the three algorithms for 
complex maps are shown in Table III. The enhanced 
algorithm shortens the average path length by 33.41% and 
26.64% compared to the RRT and RRT* algorithms, while 
the average iteration time is reduced by 21.36% and 
86.32%, respectively. Additionally, in comparison to the 

RRT* and RRT algorithms, the proposed approach 
exhibits a smaller standard deviation, with its operational 
results being more tightly clustered around the mean value. 
This characteristic enables more explicit and rapid 
convergence toward the target objective. 

TABLE III. COMPARATIVE EXPERIMENTAL RESULTS OF THREE ALGORITHMS ON COMPLEX MAPS 

Algorithm Performance Indicators Average Value Standard Deviation Maximum Minimum Average Number of Iterations 

RRT 
L/m 46.71 4.94 60.97 38.26 

1892 
T/s 1.42 1.11 5.12 0.25 

RRT* 
L/m 44.34 2.69 54.72 39.4 

1204 
T/s 2.18 0.91 5.39 1.05 

APF-RRT* 
L/m 35.01 1.25 39.76 34.38 

1310 
T/s 1.17 0.55 2.81 0.54 

Obstacles in narrow channels are added, as shown in  
Fig. 6. The first two algorithms have large path node 
redundancy and long planning times. This is especially 
true for the rewiring of the RRT* algorithm in the search, 

which leads to a much longer planning time than for the 
other two algorithms for a better path. The improved 
algorithm has a short and linear path with fast 
convergence. 
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The experimental data of the three algorithms in narrow 
channels are shown in Table IV. The new approach cuts 
the path length by 49.6% and 49.8% compared to the RRT 
and RRT* algorithms, and the average iteration time by 
30.81% and 605.35% correspondingly. Additionally, the 

outcomes generated by our algorithm show a stronger 
tendency to gather around the mean, with standard 
deviations being more reduced. Furthermore, it features a 
more definite targeting direction and attains the objective 
at a faster pace. 

TABLE IV. COMPARISON OF NARROW CHANNEL EXPERIMENTAL RESULTS USING THREE ALGORITHMS 

Algorithm Performance Indicators Average Value Standard Deviation Maximum Minimum Average Number of Iterations 

RRT 
L/m 89.07 6.95 115.39 74.08 

14052 
T/s 49.38 19.07 104.07 20.82 

RRT* 
L/m 89.15 7.9 113.52 80.59 

13372 
T/s 287.97 104.17 512.82 100.88 

APF-RRT* 
L/m 59.51 0.71 61.37 58.38 

10971 
T/s 37.74 12.52 75.08 16.26 

 
 (a) (b) (c) 

Fig. 6. Comparison of simulated narrow channels. (a) RRT algorithm; (b) RRT* algorithm; (c) APF-RRT* algorithm. 

Secondly, we compared the path lengths and iteration 
times of the RRT, RRT* and APF-RRT* algorithms in 
different map scenarios through one-way Analysis of 
Variance (ANOVA). The results showed that the 

differences in path lengths and iteration times between the 
algorithms were statistically significant across all three 
map scenarios (p ≤ 0.05). The specific F-values and  
p values are shown in Table V. 

TABLE V. ONE-WAY ANOVA 

Map Name Algorithm 
Path Length Iteration Time 

F-value p-value F-value p-value 

Simple map 

RRT 38.13 4.03×10ିହ 38.12 4.04×10ିହ 

RRT* 39.51 3.2×10ିହ 40.5 2.2×10ିହ 
APF-RRT* 29.96 3.5×10ି଺ 32.34 3.2×10ି଺ 

Complex maps 

RRT 46.71 5.33×10ି଼ 48.12 5.5×10ି଻ 
RRT* 47.38 4.3×10ି଼ 44.8 1.2×10ି଺ 

APF-RRT* 35.01 3.8×10ି଻ 34.9 4.1×10ି଻ 

Narrow passage 

RRT 89.07 2.5×10ି଻ 34.9 4.1×10ି଻ 

RRT* 91.15 1.5×10ି଺ 93 2.5×10ିହ 
APF-RRT* 59.51 3.1×10ି଼ 60.23 4.5×10ି଼ 

Table V summarizes the performance comparison of 
three path planning algorithms (RRT, RRT*, and  
APF-RRT*) across three representative map 
environments. The results demonstrate that APF-RRT* 
consistently outperforms the other algorithms in terms of 
both path length and iteration time. In the simple map, 
APF-RRT* achieves the shortest path (29.96) and the 
lowest iteration time (32.34), outperforming both RRT and 
RRT*. In the complex map, APF-RRT* again shows clear 
superiority, with a significantly shorter path length (35.01) 
and reduced iteration time (34.9). For the narrow passage 
scenario, APF-RRT* achieves the most optimized path 

(59.51), markedly shorter than RRT and RRT*, although 
its iteration time (60.23) is slightly higher than RRT but 
still considerably lower than RRT* (93). Furthermore, all  
p-values are far below 0.05, indicating that the observed 
differences are statistically significant. Overall,  
APF-RRT* demonstrates a robust balance between path 
quality and computational efficiency across various 
environments, with particular advantages in complex and 
constrained scenarios. 

To better validate the APF-RRT* algorithm, it was 
compared with the Informed RRT* algorithm in the same 
environment. Informed RRT*, after finding an initial 
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solution, continues searching for a better path within the 
ellipse, instead of randomly sampling across the entire free 
space. The average path lengths of Informed RRT* on 
simple maps, complex maps, and narrow channels were 
35.55, 48.78, and 84.88, respectively. Compared to RRT 
and RRT*, it has an advantage in search length, but it is 
time-consuming due to the elliptical sampling. APF-RRT* 
reduces the relative path length by 15.72%, 39.33%, and 
42.63% compared to Informed RRT*. In narrow channels, 
the disadvantage of Informed RRT*’s elliptical sampling 
is more pronounced, highlighting the advantage of  
APF-RRT*’s hybrid sampling strategy. 

V. CONCLUSIONS 

This paper proposes an improved APF-RRT* algorithm 
for robot path planning in a two-dimensional environment. 
Firstly, aiming at the random problem existing in the 
RRT* algorithm, it is proposed to integrate the APF and 
combine it with the RRT* algorithm. Secondly, aiming at 
the problem of local minima existing in the artificial 
potential field, a dynamic sampling strategy is proposed to 
adaptively search in different environments. Finally, for 
collision detection, a linear collision detection is proposed, 
which adaptively changes the step size to improve the 
narrow search ability. Despite these advantages, the 
algorithm still has some limitations. The potential field 
parameters need to be carefully adjusted to avoid local 
minima in a highly chaotic environment. In addition, the 
current methods mainly conduct evaluations in  
two-dimensional static scenarios. Its scalability in 3D 
scenes or dynamic environments still needs to be verified, 
and relevant research will be conducted in the next step. 

NOMENCLATURE 

𝑋௙௥௘௘: State space. 
𝐶௢௕௦: Initial state space. 
𝑋௦௧௔௥௧: Random tree starting point. 
𝑋௚௢௔௟: Random tree target point. 
𝑋௥௔௡ௗ: Random points. 
𝑋௡௘௔௥: The point in the random tree closest to the random 
point (Xrand). 
𝑋௡௘௪: New node. 
𝑈௔௧௧ሺ𝑞ሻ: Gravitational potential field. 
𝑈௥௘௣ሺ𝑞ሻ: Repulsive potential field. 
𝑘௔: Gravitational gain coefficient. 
𝑟௥௘௪௜௥௘: Relocation radius. 
r: Extended distance. 
𝑞௚௢௔௟: Target point. 
𝐹௥௘௣ሺ𝑞ሻ: Repulsion function. 
𝑞௢௕௦: Obstacle configuration. 
𝐹௧௢௧௔௟: Combined force. 
𝑝௧௔௥௚௘௧: Target bias sampling probability. 
𝑝௡௢௡ି௧௔௥௚௘௧: Non-target bias sampling probability. 
𝑝஺௉ி: APF guides sampling probability. 
𝑝௥௔௡ௗ௢௠: Random sampling probability. 
N: Number of iterations. 
r: Maximum extension distance. 
𝑘௥: Repulsion gain coefficient. 

ix : Represents a node in the search tree. 
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