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Abstract—This paper proposes a New Adaptive Neural Fuzzy 

Sliding Mode Controller (NANFSMC) for regulating a 

Coupled Tank System (CTS), with unknown nonlinear 

dynamics in experimental environments. The CTS exhibits 

strong nonlinearities and uncertainties arising from sensor 

noise, parameter variations, variations in output valve 

characteristics, and significant time delays. The proposed 

control architecture integrates two synergistic components. 

The first component is an adaptive control system that 

utilizes a Radial Basis Function Neural Network (RBFNN) to 

approximate the adaptive control law, featuring an adaptive 

updating mechanism to compensate for RBFNN 

approximation errors. The second component is a Sliding 

Mode Control (SMC) system, whose parameters are updated 

in real-time via a fuzzy inference mechanism to enhance 

robustness. Both control laws are derived within the 

framework of Lyapunov stability theory, ensuring  

closed-loop stability under all operating conditions. The 

proposed controller possesses a simple structure, resulting in 

low computational load and requiring only a few tuning 

parameters. Although the RBFNN weights are initialized to 

0, the integration with the adaptive fuzzy mechanism allows 

fast convergence and rapid stabilization. Furthermore, this 

study presents the first experimental validation of a  

Takagi-Sugeno (TS)-fuzzy–based adaptive tuning of the 

SMC robustness gain on a real CTS under external 

disturbances. The proposed method achieves improvements 

of up to 22.9% and 14.2% in the Integral of Absolute Error 

(IAE), Mean Absolute Error (MAE), and Integral of  

Time-weighted Absolute Error (ITAE) indices compared to 

the Adaptive Neural SMC (ANSMC) and Proportional 

Integral Derivative (PID) controllers, respectively.  

 

Keywords—Proportional Integral Derivative (PID), 

approximation error, real-time validation, external 

disturbance, robustness, computational load 

 

I. INTRODUCTION 

Accurate liquid-level regulation in process tanks is 

essential in industrial production, as it directly impacts 
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process efficiency and product quality. In particular, 

liquid-level control in chemical manufacturing, oil and gas 

processing, and food production requires high precision 

and reliability. These systems typically exhibit nonlinear 

dynamics and significant uncertainties, including sensor 

noise, variations in outlet valve cross-sections, 

environmental changes, actuator nonlinearities, and 

considerable time delays. The Coupled Tank System 

(CTS) is widely used in laboratory environments as a 

benchmark for studying liquid-level control. It replicates 

the nonlinear characteristics, uncertainties, and high time 

delays in industrial processes. Consequently, a broad 

spectrum of control strategies—ranging from classical to 

advanced—has been investigated to evaluate control 

performance on the CTS.  

Initial studies [1, 2] applied Proportional Integral 

Derivative (PID) controllers to address the slow dynamic 

response of CTS. A robust Sliding Mode Control (SMC) 

scheme is introduced in Ref. [3] to mitigate nonlinearities 

and reduce the influence of disturbances and noise.  

Al-Majeez et al. [4] proposed a backstepping control 

approach for an interconnected twin-tank system. 

Simulation results demonstrated that the backstepping 

controller exhibited higher robustness than the synergetic 

controller against external disturbances. However, the 

results were only verified through simulations with  

step-type reference inputs; hence, the actual robustness 

performance has not yet been experimentally validated. 

Furthermore, this control algorithm depends on the 

dynamic model of the system, which may limit its 

applicability to systems with modeling uncertainties. 

Subsequently, Aranda-Cetraro et al. [5] combined 

backstepping, super-twisting, and the modulating function 

technique to eliminate the dependency on state derivatives. 

This approach also helps suppress measurement noise and 

mitigating the chattering phenomenon in a  

Quadruple-Tank System (QTS). Simulation results under 

non-Gaussian measurement noise and varying reference 

International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

80
 
doi: 10.18178/ijmerr.15.1.80-92

mailto:natuan@sgu.edu.vn
mailto:**%20hphanh@hcmut.edu.vn
https://orcid.org/0009-0001-8931-9506


signals confirmed good tracking capability and reduced 

chattering. Nevertheless, these results are also limited to 

simulations, and thus, the practical effectiveness of the 

method remains unverified. 

In addition, disturbance observer-based methods [6–8] 

and active disturbance rejection control [9] are also 

proposed to suppress external perturbations in  

liquid-level systems. Moreover, SMC is integrated with 

adaptive control techniques [10] for liquid-level regulation 

in QTS, yielding improved robustness to reference 

variations and external disturbances. However, except for 

PID-based methods, most of these approaches rely on 

accurate plant models, often unavailable or subject to 

significant variation during operation. This limitation 

reduces the practical applicability of model-based control 

methods. 

As a result, it motivates the adoption of model-free and 

Artificial Intelligence (AI) integrated strategies. In this 

direction, Abushokor and Amrr [11] proposed a  

model-free adaptive time-delay estimation method for 

CTS control, requiring only historical input-output data to 

estimate system behavior and embed it into a robust 

control framework. A fuzzy Proportional-Integral (PI) 

controller with s- and z-type membership functions [12] is 

developed to enhance robustness against uncertainties, 

outperforming conventional fuzzy PI methods. 

Furthermore, Bhandare et al. [13] introduces an intelligent 

fuzzy fractional-order PI controller to improve 

performance. 

Hybrid approaches that combine AI techniques with 

advanced control strategies have also gained attention. For 

instance, SMC combined with Recurrent Neural Networks 

(RNNs) [14] adaptively updates the equivalent control 

term and sliding surface online to reduce chattering. An 

adaptive fuzzy SMC scheme [15] is proposed to handle 

external noise and actuator faults. In contrast, an adaptive 

inverse multilayer Takagi-Sugeno (TS) fuzzy  

controller [16] employs differential evolution optimization 

for uncertain nonlinear Single-Input Single-Output (SISO) 

systems. However, it relies on offline parameter 

identification. Adaptive neural SMC methods are explored 

to enhance stability and performance in the presence of 

nonlinearities and unknown disturbances [17, 18]. In  

Ref. [17], an adaptive neural controller is integrated with 

SMC to estimate nonlinearities and uncertainties online. In 

contrast, Li et al. [18] develops an adaptive neural SMC 

for nonlinear SISO systems with unknown dynamics, 

focusing on chattering suppression. Refs. [19, 20] further 

improve tracking performance by using RNN-based 

adaptive neural SMC to estimate model uncertainties and 

external perturbations, enabling faster tracking error 

convergence. Ref. [21] combined an adaptive neural SMC 

algorithm with backstepping to approximate the nonlinear 

aerodynamic forces and moments of an aircraft.  

Meanwhile, the adaptive backstepping terminal sliding 

mode control utilizes a physics-informed neural  

network [22] to accurately estimate and compensate for 

system uncertainty. Recent works [23–26] leverage the 

fast approximation capability of Radial Basis Function 

Neural Networks (RBFNN) and the strong robustness of 

SMC to develop an Adaptive Neural SMC (ANSMC) 

scheme for nonlinear systems with uncertainties and 

external disturbances. However, in these ANSMC 

techniques, the network weights generally require 

pretraining. Without proper initialization, the system may 

oscillate; random or zero-weight initialization can lead to 

instability or extended convergence time during startup. 

Overall, these ANSMC approaches rely heavily on the 

neural network’s self-approximation capability. In many 

cases, expert intervention is required to accelerate 

convergence and improve approximation accuracy. 

Therefore, the performance of ANSMC has been further 

enhanced by incorporating fuzzy logic techniques to 

exploit expert knowledge and the neural network’s 

adaptive learning capability [27–29], thereby improving 

adaptability to complex and time-varying uncertainties. 

However, these controllers typically involve high 

computational loads, which may hinder their applicability 

in real-time industrial implementations.  

In recent years, terminal SMC techniques have been 

widely adopted to accelerate convergence within a finite 

time. Initially, adaptive fuzzy-neural methods [30–32] 

were combined with terminal SMC to guarantee  

finite-time convergence under parameter variations and 

external disturbances. Adaptive fuzzy-neural SMC 

methods optimize network structures online by combining 

self-organizing mechanisms with terminal SMC [33], 

ensuring finite-time convergence. Nevertheless, these 

controllers impose high computational burdens and have 

not yet been validated for real-time control applications. 

Adaptive fuzzy neuro SMC methods [34–36] are 

combined with nonsingular terminal SMC to eliminate 

singularities inherent in conventional terminal SMC and 

ensure fixed-time convergence. This combination also 

reduces chattering, thereby improving responsiveness to 

dynamic uncertainties, input saturation, and external 

perturbations. However, Refs. [34, 35] only verify their 

results through simulation and do not assess real-time 

performance. Ref. [36] included both simulation and 

experimental validation. However, its controller combined 

multiple techniques, requiring real-time updates of 

numerous adaptive coefficients, which increases 

computational cost and limits its applicability to industrial 

controllers with constrained resources. Refs. [37, 38] 

propose combining adaptive fuzzy neural networks with 

super-twisting SMC to reduce chattering further. 

However, these networks also incur high computational 

complexity, which imposes significant real-time 

processing burdens on resource-limited hardware 

platforms.  

Other adaptive fuzzy-neuro SMC approaches utilize 

RBFNNs to leverage their fast approximation and 

compensation capabilities for unknown system 

uncertainties and external disturbances, thereby enhancing 

control quality [39–41]. Nevertheless, control 

performance is highly sensitive to the RBFNN parameters. 

Ref. [41] employed a K-means clustering algorithm to 

optimize the centers and widths of the RBF neurons. 

Furthermore, the number and spatial distribution of RBF 

neurons significantly impact the network’s approximation 
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accuracy, computational load, and responsiveness of the 

controller. Therefore, these parameters must be carefully 

optimized in accordance with the control objectives. 

Overall, the above analysis indicates that adaptive 

neural SMC, utilizing RBFNNs and integrated with fuzzy 

logic, can significantly enhance control performance, 

robustness, and convergence speed for nonlinear uncertain 

systems. However, to the best of the authors’ knowledge, 

no existing study has applied an adaptive fuzzy mechanism 

to tune the stability coefficient of the SMC component 

within an adaptive neural SMC structure and 

experimentally validated it on a real CTS. Accordingly, 

this study proposes a Novel Adaptive Neural Fuzzy 

Sliding Mode Controller (NANFSMC) for liquid-level 

regulation in a CTS. The proposed controller addresses the 

challenges of improving convergence speed and 

maintaining robustness under uncertain conditions, with 

stability guaranteed via Lyapunov theory. The proposed 

method is experimentally validated and compared with the 

ANSMC and a conventional PID controller [10], which 

serves as a widely used model-free benchmark. 

The main contributions of this paper are summarized as 

follows: 

(1) Novel controller design: development of a 

NANFSMC for nonlinear uncertain systems 

regarding sensor perturbation, external 

disturbances, varying reference signals, and 

significant time delays. The closed-loop stability 

of the proposed control system is rigorously 

guaranteed through a sliding mode control 

component and an adaptive law, both of which are 

implemented using the Lyapunov principle. The 

robustness and convergence speed of the proposed 

controller are enhanced by combining the adaptive 

tuning capability of the ANSMC with a  

TS-fuzzy mechanism that adaptively adjusts the 

robustness gain of the SMC component. This work 

provides the first experimental validation of a  

TS-fuzzy-based adaptive tuning of the robustness 

gain 𝛿̄  in the SMC component of the proposed 

controller, implemented on a real CTS under 

external disturbances. 

(2) Computational efficiency and implementability: 

Adaptive neural fuzzy SMC algorithms generally 

exhibit high computational complexity, which may 

hinder real-time implementation on low-cost 

microcontrollers. Moreover, their numerous 

parameters complicate controller tuning. To 

address these limitations, the proposed controller 

features a simplified structure with a low 

computational load and a small number of tunable 

parameters. This design facilitates real-time 

implementation on low-resource microcontrollers 

and also extends the controller’s applicability to 

other nonlinear systems, particularly Multi-Input 

Multi-Output (MIMO) systems. 

(3) Improved initialization strategy: Neural  

network-based controllers typically adopt one of 

three initialization strategies: (1) Pretrained 

weights, which require time-consuming selection 

and may cause significant transient overshoot or 

instability under real-time uncertainties; (2) 

Random initialization, which can lead to instability 

or long convergence time during startup; and (3) 

Zero-weight initialization, which is simple and 

easily applied to various systems but may result in 

slow convergence. To overcome these limitations, 

this study adopts zero-weight initialization but sets 

a significant adaptive learning rate during the first 

11 s to accelerate convergence. Subsequently, the 

rate is decreased, and the adaptive fuzzy controller 

is activated to update the SMC robustness gain. 

This mechanism rapidly compensates for 

approximation errors, resulting in rapid 

stabilization while minimizing overshoot and 

undershoot as the output error decreases. 

The remainder of this study is organized as follows: 

Section II adequately describes the CTS plant along with 

the problem formulation. Section III fully presents the 

design and the implementation of the proposed 

NANFSMC control algorithm. Section IV analytically 

presents the experimental results through critical  

case-studies. Section V eventually concludes the paper. 

II. CTS PLANT MODEL AND PROBLEM FORMULATION 

Fig. 1 illustrates the two-degree-of-freedom uncertain 

nonlinear CTS model, based on the Quanser tank model. 

This CTS model is a part of the quadruple-tank MIMO 

system depicted in Fig. 2. The CTS system in Fig. 1 

consists of a pump with a control voltage 𝑢, which pumps 

liquid into Tank 1, while Tank 2 receives liquid through 

the outlet pipe of Tank 1. The mathematical model of the 

CTS plant in Ref. [16] is as in Eq. (1):  

 {
𝑥̇1 =

1

𝐴1
(𝐾𝑝𝑢 − 𝑏1𝐶1√2𝑔𝑥1)

𝑥̇2 =
1

𝐴2
(𝑏1𝐶1√2𝑔𝑥1 − 𝑏2𝐶2√2𝑔𝑥2)

 (1) 

where 𝑥1 and 𝑥2 are the liquid levels in Tank 1 and 2; 𝑢 is 

the control voltage for the pump’s motor, serving as the 

system input. The system output can be 𝑥1, 𝑥2 or both 𝑥1 

and 𝑥2. The control objective aims to regulate the liquid 

level in Tank 1, Tank 2, or both, tracking the desired liquid 

level. This paper focuses on controlling the liquid level in 

Tank 2. The physical values of the model parameters are 

presented in Table I for reference. Due to the small tank 

area, the output sensor exhibits high noise, as it is 

significantly affected by the outflow from the pump and 

the drainage from the upper tank. This poses a significant 

challenge for controlling this system. 

In the experimental setup, the physical parameters listed 

in Table I can be approximately measured, except for the 

discharge coefficients 𝐶1  and 𝐶2 , which cannot be 

obtained through conventional measurement methods and 

are therefore assumed to be unknown. Consequently, the 

controller must be capable of approximating all parameters 

presented in Table I. 
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Fig. 1. Coupled Tank System (CTS). 

 

Fig. 2. Quadruple-Tank System (QTS). 

TABLE I. COUPLED-TANK SYSTEM PARAMETERS FOR REFERENCE 

Symbol Explanation Size Unit 

A1 Inner surface area of Tank 1 16.619 cm2 

A2 Inner surface area of Tank 2 16.619 cm2 

b1 Drainpipe area in Tank 1 0.5 cm2 

b2 Drainpipe area in Tank 2 0.33 cm2 

C1 Discharge coefficient at the outlet of Tank 1 -  - 

C2 Discharge coefficient at the outlet of Tank 2 - - 

g Gravitation force 981 cm/ s2 

Kp Gain of the pump 10.42 cm3/s/V 

 

Next is the design of the proposed NANFSMC 

controller for the CTS system Eq. (1). 

 {
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑢)
𝑦 = ℎ(𝑥)

 (2) 

Let ℎ(𝑥) = 𝑥2, rewrite Eq. (2) as Eq. (3): 

 

{
 

 𝑥̇1 =
1

𝐴1
(𝐾𝑝𝑢 − 𝑏1 𝐶1√2𝑔𝑥1)

𝑥̇2 =
1

𝐴2
(𝑏1 𝐶1√2𝑔𝑥1 − 𝑏2 𝐶2√2𝑔𝑥2)

𝑦 = 𝑥2

 (3) 

The CST system Eq. (1) can be rewritten as Eq. (4): 

 𝑦̈ = 𝑎(𝑥) + 𝑏(𝑥)𝑢  (4) 

The purpose of control is to track output y(t) according 

to the desired value 𝑦𝑑(𝑡) . Eq. (4) can be rewritten as  

Eq. (5): 

 𝑢 =
1

𝑏(𝑥)
[−𝑎(𝑥) + 𝑣(𝑡)] (5) 

If both nonlinear descriptions 𝑎(𝑥) and 𝑏(𝑥) represent 

known a priori, the ideal control law given in Eq. (5) can 

be directly computed. However, these functions are 

typically unknown in practical control applications or may 

vary over time due to changes in parameters and variations 

in operating conditions. Consequently, direct 

implementation of the ideal control law Eq. (5) is generally 

infeasible. In the case where 𝑎(𝑥)  and 𝑏(𝑥)  seem 

undetermined, the problem reduces to designing a control 

law that can accurately approximate the ideal controller in 

real-time. To this end, this paper introduces a NANFSMC, 

an online approximation of the ideal control law Eq. (5) for 

water-level regulation in the CTS. The detailed 

formulation and design procedure of the proposed 

approach will be fully introduced in the following section. 

III. DESIGN THE PROPOSED NANFSMC CONTROL 

ALGORITHM 

A. The Proposed NANFSMC Algorithm for the Coupled-

Tank Plant 

Fig. 3 illustrates the structure of the proposed 

NANFSMC for the CTS plant, which comprises an 

adaptive control component and an SMC component. 

Where the SMC parameters are updated in real-time by the 

adaptive fuzzy controller. The ideal controller Eq. (5) is 

estimated by the adaptive controller using an RBFNN with 

two inputs, 𝑒2 and 𝑒̇2, fifteen RBF neurons in the hidden 

layer, and one output 𝑢̂ as shown in Fig. 4.  

The adaptive controller is computed based on the 

structure shown in Fig. 4 and defined in Eq. (6), 

 𝑢̂ = ℎ
𝑇𝑤  (6) 

The output of the hidden layer is denoted by h function 

as presented in Eq. (7): 

 ℎ(𝑥) = [ℎ1(𝑥) ℎ2(𝑥) ... ℎ15(𝑥)]
𝑇 (7) 
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Fig. 3. Layout of the proposed NANFSMC controller. 

 

Fig. 4. Approximation of the linearized feedback controller using the 

RBFNN. 

The activation function of the i-th RBF neuron is as in 

Eq. (8): 

 ℎ𝑖(𝑥) = 𝑒
−
[(𝑒̄2−𝑐1𝑖)

2
+(𝑒̄̇2−𝑐2𝑖)

2]

2𝜌𝑖
2

 (8) 

The dispersions 𝜌𝑖 ( i = 1,…,15) are selected to be equal, 

and these functions are selected to distribute uniformly 

throughout the state space; select 𝜌𝑖 = 𝜌. Fig. 5 displays 

the distribution of the RBF neuron centers’ locations. 

 

 

Fig. 5. Center placements of the RBFNN. 

The values of the signals 𝑒̄2 and 𝑒̄̇2, corresponding to 

the feedback signals 𝑒2 and 𝑒̇2 given back to the controller, 

they are normalized to stay within the range [0, 1]. 

Based on the limited physical magnitudes of 𝑒2 and 𝑒̇2, 

this paper selects 𝑘𝑒2 = 1/30  and 𝑘𝑒̇2 = 1/30 . The 

weight vector of the RBFNN’s output layer is denoted  

by w as illustrated in Eq. (9): 

 𝑤 = [𝑤1 𝑤2 ... 𝑤15]
𝑇 (9) 

To bring 𝑢̂  closer to the ideal value 𝑢∗ , the RBFNN 

updates the vector 𝑤 online. The network has a structural 

error 𝛿(𝑥) since it uses a limited number of RBF neurons 

in the hidden layer to approximate the optimal control law 

as described in Eq. (10): 

 𝑢∗(𝑥) = 𝑤∗ℎ(𝑥) + 𝛿(𝑥)  (10) 

As a result, the difference in the optimal control rule, 

𝑢∗, with the achieved rule, 𝑢̂, is shown below in Eq. (11). 

 𝑢̂(𝑥) − 𝑢∗(𝑥) = 𝑤̃ℎ(𝑥) − 𝛿(𝑥)  (11) 

with 𝑤̃  stands for the approximation error shown in  

Eq. (12). 

 𝑤̃ = 𝑤 − 𝑤∗ (12) 

Assumption 1: Since the RBFNN approximates the 

controller in a way that makes it possible to know the upper 

bound of the structural error 𝛿(𝑥) in advance, there is a 

continuous function 𝛿̄(𝑥) such that |𝛿(𝑥)| ≤ 𝛿̄(𝑥), ∀𝑥. 

We choose the following control law as presented in  

Eq. (13) to ensure the stability of the system because of the 

structural error 𝛿(𝑥). 

 𝑢 = 𝑢̂ + 𝑢𝑠𝑑 (13) 

where the sliding mode controller 𝑢𝑠𝑑  stabilizes the 

system and is selected so that the derivative of the 

Lyapunov function is negative semi-definite. Eq. (4)  

gives us the following Eq. (14). 

 
𝑦̈ = 𝑎(𝑥)+ 𝑏(𝑥)𝑢∗(𝑡)+ 𝑏(𝑥)[𝑢(𝑡)− 𝑢∗(𝑡)] 

𝑦̈ = 𝑣(𝑡) + 𝑏(𝑥)[𝑢(𝑡) − 𝑢∗(𝑡)]
 (14) 

In which 𝑣(𝑡) ∈ 𝑅, and is defined as in Eq. (15), 

 𝑣(𝑡) = 𝑦̈𝑑 + 𝑆̄ + 𝑘1𝑆  (15) 

With 𝑘1 > 0,  the definitions that follow provide S  

and 𝑆̄ as presented in Eqs. (16)–(18): 

 𝑆(𝑡) = 𝑒̄̇2(𝑡) + 𝑘1𝑒̄2(𝑡)  (16) 

 𝑒2(𝑡) = 𝑦𝑑(𝑡) − 𝑦(𝑡)  (17) 

 𝑆̄ = 𝑆̇ − 𝑒̄̈2 (18) 

where the sliding surface is denoted by 𝑆(𝑡)  and the 

plant’s output error by 𝑒2(𝑡) . Here, the Routh-Hurwitz 

stability criterion is satisfied by the choice of  

parameter 𝑘1.  

Combining Eqs. (14), (15), and (18) results in Eq. (19) 

and induced to Eqs. (20) and (21): 

 𝑒̄̈2(𝑡) = 𝑦̈𝑑(𝑡) − 𝑦̈(𝑡)  (19) 

𝑤 

𝑢𝑠𝑑 

𝑢̂ 

ℎ 
𝑦̈ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

SMC 

controller 

Adaptive 

controller  

𝑢̂ = ℎ
𝑇𝑤 

On-line 

estimator 

𝑤̇ = 𝑄−1ℎ𝑆 

 

𝑢 𝑦 𝑦𝑑 𝑒2 

Adaptive 

fuzzy 

controller  

Disturbance 

CTS plant 
…

 

𝑤1 

𝑤2 

𝑤15 

𝑢̂(𝑥) 

𝑒̄2 

𝑒̄̇2 

ℎ2(𝑥) 

ℎ15(𝑥) 

ℎ1(𝑥) 

…
 

0.

1 
𝑒̄̇2 

𝑒̄2 

−1 −0.5 0 0.5 1 
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 𝑒̄̈2(𝑡) = 𝑦̈𝑑(𝑡) − 𝑣(𝑡) − 𝑏(𝑥)[𝑢(𝑡) − 𝑢
∗(𝑡)] (20) 

 𝑒̄̈2(𝑡) = −𝑆̄ − 𝑘1𝑆 − 𝑏(𝑥)[𝑢̂(𝑡) + 𝑢𝑠𝑑(𝑡) − 𝑢
∗(𝑡)] (21) 

Here, Eq. (11) and (18) are substituted into Eq. (21), 

then the nonlinear features of the residual are described in 

Eq. (22): 

 𝑆̇ + 𝑘1𝑆 = −𝑏𝑤̃ℎ(𝑥) + 𝑏𝛿(𝑥) − 𝑏𝑢𝑠𝑑 (22) 

Choosing a Lyapunov function that is quadratic as 

presented in Eq. (23): 

 𝑉 =
1

2𝑏
𝑆2 +

1

2
𝑤̃𝑇𝑄𝑤̃ (23) 

where 𝑄 is a positive constant. 

Assumption 2: 𝑏(𝑥)  stays inside a defined range as 

follows, 

 0 < 𝑏̱(𝑥) ≤ 𝑏(𝑥) ≤ 𝑏̄(𝑥) < ∞  

Since Eq. (23) is differentiated with respect to time,  

Eq. (24) is determined as, 

 𝑉̇ =
1

𝑏
𝑆𝑆̇ −

𝑏̇

2𝑏2
𝑆2 + 𝑤̃𝑇𝑄𝑤̇ (24) 

Upon inserting Eq. (22) into Eq. (24), we get Eq. (25): 

 𝑉̇ = −
𝑘1𝑆

2

𝑏
− 𝑆𝑢𝑠𝑑 + 𝑆𝛿 + 𝑤̃

𝑇(𝑄𝑤̇ − ℎ𝑆) −
𝑏̇

2𝑏2
𝑆2 (25) 

Then the adaptive law selection is as Eq. (26). 

 𝑤̇ = 𝑄−1ℎ𝑆  (26) 

During the control process, the output weights of the 

RBFNN are updated according to Eq. (26) to eliminate the 

RBFNN approximation error 𝑤̃ in Eq. (25). This updating 

mechanism helps drive the sliding surface 𝑆 to converge to 

0. However, due to the structural error 𝛿̄  defined in  

Eq. (10), which always exists during the approximation 

process because of the finite number of RBF neurons. As 

a result, the sliding surface 𝑆 may not converge to 0 even 

when the approximation error is canceled. Moreover, this 

structural error can potentially cause system instability. 

Therefore, to ensure system stability and convergence, an 

additional SMC control term is introduced as follows. 

Putting Eq. (26) into Eq. (25), we obtain Eq. (27), 

 

𝑉̇ = −
𝑘1𝑆

2

𝑏
− 𝑆𝑢𝑠𝑑 + 𝑆𝛿 −

𝑏̇

2𝑏2
𝑆2 

𝑉̇ ≤ −
𝑘1𝑆

2

𝑏
− 𝑆𝑢𝑠𝑑 + |𝑆|(|𝛿| +

|𝑏̇|

2𝑏2
|𝑆|)

𝑉̇ ≤ −
𝑘1𝑆

2

𝑏̄
− 𝑆𝑢𝑠𝑑 + |𝑆|(𝛿̄ +

𝛾

2𝑏̱2
|𝑆|)

 (27) 

Assumption 3: There is a continuous function 𝛾(𝑥) for 

which |𝑏̇|(𝑥) ≤ 𝛾(𝑥), and 𝑏(𝑥) has a limited fluctuation 

rate. 

Choose the sliding mode controller as presented in  

Eq. (28): 

 𝑢𝑠𝑑 = (𝛿̄ +
𝛾

2𝑏̱2
|𝑆|) 𝑠𝑔𝑛( 𝑆)  (28) 

Substituting Eq. (28) into Eq. (27), we obtain Eq. (29): 

 𝑉̇ ≤ −
𝑘1𝑆

2

𝑏̄
≤ 0 (29) 

The positive definite quadratic function V has 𝑉̇ ≤ 0. 

Therefore, the proposed NANFSMC ensures the stability 

of system operation. 

 

 

Fig. 6. The proposed NANFSMC Controller flowchart. 

The overall operating principle of the proposed 

NANFSMC controller is illustrated in the flowchart shown 

in Fig. 6. At the beginning of operation, the system states 

𝑒2(𝑡)  are updated. The tracking error 𝑒2(𝑡)  and its 

derivative 𝑒̄̇2 are normalized to the range [0,1] and then 

used to compute the sliding surface (16), the adaptive law 

Eq. (26), and the SMC law Eq. (28). The output weights 𝑤 
in the adaptive controller Eq. (6) are updated online by the 

Sliding surface 
                             (16) 

Adaptive law  

                  (26) 

Evaluate the results 

Start 

SMC law  

(28) 

Update output weight w of 

RBFNN 

Adaptive controller  

                  (6) 

Calculate controller 

NAFNSM                      (13) 

Control CTS system 

 

Update the system state  
                                 (17) 

 

Adaptive 

fuzzy 

controller 

update  

𝑒2(𝑡) = 𝑦𝑑(𝑡) − 𝑦(𝑡) 

𝑆(𝑡) = 𝑒̄̇2(𝑡) + 𝑘1𝑒̄2(𝑡) 

𝑢𝑠𝑑 
𝑤̇ = 𝑄−1ℎ𝑆 

𝑢̂ = ℎ
𝑇𝑤 

𝑢 = 𝑢̂ + 𝑢𝑠𝑑 
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RBFNN. Simultaneously, based on the current error, the 

stability gain in the SMC controller Eq. (28) is also 

updated online through the adaptive fuzzy controller. 

Then, the total control signal, as described in Eq. (13), is 

calculated. Finally, the control performance of the 

proposed algorithm is evaluated. 

B. The Adaptive Fuzzy Controllers in the Proposed 

NANFSMC Controller 

In the SMC controller given by 𝑢𝑠𝑑 Eq. (28), the gain 𝛿̄ 

functions analogously to the stability gain 𝐾 in 

conventional SMC schemes. Selecting a large value for 

this gain results in faster stabilization but may cause 

significant overshoot and undershoot in the output 

response when the reference signal changes or 

disturbances occur. Conversely, selecting a small gain 

reduces overshoot and undershoot, but slows the system’s 

response and decreases its robustness against reference 

variations, model uncertainties, and, in particular, external 

disturbances. To exploit the advantages and mitigate the 

drawbacks associated with this gain, this paper proposes 

an adaptive fuzzy controller (Fig. 7) based on the  

Takagi-Sugeno fuzzy inference system to adaptively tune 

the gain 𝛿̄ in real time. This adaptive mechanism enhances 

both the transient response and robustness of the SMC 

controller in Eq. (28), while maintaining low overshoot 

and undershoot under all aforementioned uncertainties. 

Consequently, the overall performance of the NANFSMC 

is satisfactorily ameliorated. 

 

 

Fig. 7. Input and output of the adaptive fuzzy controller. 

The fuzzy MF inputs and output, illustrated in Fig. 7, 

consist of a single input e and a single output 𝛿̄, where e 

represents the error values before normalization to the 

range [0, 1]. These values are selected as: 

[𝑒0, 𝑒1, . . . 𝑒14, 𝑒15] = [0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 

0.6, 0.8, 1.2, 1.6, 2, 2.5, 3, 4]; [𝛿̄0, 𝛿̄1, . . . 𝛿̄14, 𝛿̄15] = [0.04, 

0.06, 0.08, 0.1, 0.2, 0.23, 0.24, 0.25, 0.26, 0.3, 0.34, 0.38, 

0.42, 0.46, 0.5, 0.6]. 

A TS fuzzy model is employed, in which the input 

membership functions are triangular and trapezoidal, 

while the output membership function is the singleton 

type. The fuzzy rule base follows the general form: If  

𝑒𝑖 = 𝛼  then, 𝛿̄𝑖 = 𝛽 , where 𝛼  and 𝛽  are fuzzy sets. The 

fuzzy inference mechanism employs the  

MAX–MIN composition, and the defuzzification method 

is the Sugeno weighted-average approach, as expressed 

below in Eq. (30): 

 𝛿̄ =
∑ 𝛿̄𝑖𝜇(𝛿̄𝑖)
15
𝑖=1

∑ 𝜇(𝛿̄𝑖)
15
𝑖=1

 (30) 

with 𝜇(𝛿̄𝑖) is the firing strength of the 𝑖𝑡ℎ fuzzy rule. 

The operating principle of the proposed adaptive fuzzy 

controller is straightforward yet effective. When the input 

e increases, the output 𝛿̄  is adaptively increased to 

accelerate the system response. Conversely, when e 

decreases, 𝛿̄  is reduced to suppress overshoot and 

undershoot. As 𝛿̄  is minimized while still maintaining 

sufficient robustness to reject output sensor noise and 

actuator uncertainties in the pump motor. This mechanism 

enables the proposed NANFSMC to achieve smoother 

responses, faster transient performance, and higher 

stability compared to the conventional ANSMC with a 

fixed 𝛿̄  gain. The effectiveness of this approach is 

demonstrated through experimental results presented in 

the following section. 

IV. EXPERIMENT VALIDATION 

The response quality of the proposed controller and the 

PID control method is evaluated on a real-time control 

algorithm for the CTS system. The procedure for  

real-time validation is outlined in Fig. 8. The experimental 

setup, shown in Fig. 9, consists of a central control board 

based on the TMS320F28379D microcontroller, a sensor 

signal amplifier for the MPX10 sensor, a PWM 

modulation unit, a JT-750 pump (24 VDC), and a laptop 

running Matlab/Simulink 2023b with the “Monitor & 

Tune” tool for real-time monitoring and data visualization. 

The sensor feedback signal is passed through the Sensor 

Signal Amplifier before being sent to the Central Control 

Board. The data from this board is transmitted and 

displayed on the PC via SCI communication. 

Real-time validation is conducted through two 

benchmark scenarios. The first benchmark evaluates the 

system’s output response to a multi-level reference signal 

comprising three step-up transitions and one step-down 

transition, as described in Ref. [9]. The second benchmark 

assesses performance under significant external 

disturbances. Both benchmarks are applied consistently to 

all three controllers: the proposed NANFSMC, ANSMC, 

and PID control method described in Ref. [8]. The PID 

controller in Ref. [8] is reformulated for the CTS model as 

presented in Eq.(31): 

 𝑢𝑃𝐼𝐷(𝑡) = 𝑘𝑝𝑒2(𝑡) + 𝑘𝑖 ∫ 𝑒2(𝑡)𝑑𝑡
𝑡

0
+ 𝑘𝑑𝑒̇2(𝑡)  (31) 

The PID parameters can be tuned through trial and error, 

as performed in Ref. [9] for multiple test cases. However, 

since the present study focuses primarily on step 

responses, such tuning would not fully reflect the 

controller’s performance under varying reference signals. 

𝜇(𝛿̄) 

-4      -3 ...-0.1     0      0.1 ...    3       4 

𝜇(𝑒) 

𝛿̄1   ...𝛿̄14       𝛿̄15   𝛿̄15   𝛿̄14  ...𝛿̄1 

−𝑒15 − 𝑒14... − 𝑒1 𝑒1  ...𝑒14      𝑒15 𝑒0 

𝛿̄0 

       0.6    0.5...0.06     0.04   0.06 ... 0.5     0.6 

𝑒 

𝛿̄ 
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Therefore, in this work, the PID parameters are selected 

based on their performance in tracking a time-varying 

reference signal. The response quality corresponding to 

each parameter set is evaluated using error-based 

performance indices, and the parameter set yielding the 

best performance is chosen for comparison with the 

proposed control algorithm. 

 

 

Fig. 8. Diagram of the real-time experimental setup. 

 

Fig. 9. Real-time validation arrangement. 

TABLE II. TUNING PARAMETERS OF THE PID CONTROLLER FOR DIFFERENT TEST CASES 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

𝑘𝑝 1 1.1 0.9 1 1 1 1 

𝑘𝑖 0.0458 0.0458 0.0458 0.0458 0.0458 0.0448 0.0468 

𝑘𝑑 1.2 1.2 1.2 1.3 1.1 1.2 1.2 

 

Fig. 10. Comparative results of CTS output responses for different PID 

controller parameter test cases. 

The PID controller parameters are tuned for multiple 

test cases, with seven representative cases presented in 

Table II. The corresponding output responses of the CTS 

for these seven parameter sets are shown in Fig. 10. 

Table III presents the output performance of the CTS for 

the seven parameter test cases corresponding to the 

parameter sets listed in Table II. The results indicate that 

Case 1 yields the best response quality among all cases. 

Therefore, the parameters of Case 1 are selected for 

comparison with the proposed NANFSMC in the 

subsequent analysis.  

Next, the parameter selection for the proposed 

controller and the ANSMC is discussed. The parameters of 

both controllers are chosen to achieve a trade-off among 

fast transient response, minimal overshoot and undershoot, 

and the lowest possible steady-state error, while ensuring 

stability under sensor noise, pump uncertainties inherent in 

real-time control, and external disturbances. In both 

algorithms, the output weights w of the RBFNNs in the 

adaptive controller Eq. (6) are initialized to 0, eliminating 

the need for pre-optimized weight initialization. Instead, 

both controllers are initialized with higher adaptation gains 

during the startup phase, specifically 𝑄0
−1 = 0.046 for the 

first 11 s, to accelerate the initial adaptation of the 

RBFNNs. This gain is then reduced to 0.012 to suppress 

overshoot and undershoot when the reference signal 

changes. In addition, the gain 𝛿̄ = 0.3  of the SMC 

controller in Eq. (28) is fixed at 0.3 for the first 11 s. 

Subsequently, in the proposed controller, this gain is 

adaptively updated in real-time by the adaptive fuzzy 

controller described in Section III, whereas in the 

ANSMC, it remains constant 𝛿̄ = 0.1 . The control 

performance of the algorithms is evaluated using  

error-based performance indices, namely the Integral of 

Absolute Error (IAE), Mean Absolute Error (MAE), and 

Integral of Time-weighted Absolute Error (ITAE). The 

remaining parameters— 𝜌2  in Eq. (8) and k1 in  

Eq. (16)—are set identically for both the proposed 

controller and the ANSMC: 𝜌2 = 0.35, k1 = 0.1.  

TABLE III. PERFORMANCE METRICS OF THE PID CONTROLLER FOR DIFFERENT PARAMETER TEST CASES 

Criterion Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

IAE 478.467 572.071 509.696 534.829 481.773 485.603 504.112 

MAE 0.808 0.966 0.861 0.903 0.814 0.820 0.852 

ITAE 2.832×106 3.386×106 3.017×106 3.166×106 2.852×106 2.874×106 2.984×106 
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A. The First Benchmark Test 

The first benchmark verifies the system’s output 

response to a multi-level reference signal consisting of 

three step-up transitions and one step-down transition, 

specifically from 10 cm to 17 cm, then to 22 cm, and 

finally decreasing to 13 cm, as described in Ref. [9]. This 

test is used to evaluate and compare the response quality 

of the control algorithms. 

 

 

Fig. 11. Comparison of CTS output responses obtained with the proposed 

NANFSMC, the ANSMC, and the PID controller under varying reference 

signals. 

Fig. 11 shows that all controllers generally track the 

reference signal effectively. The PID controller exhibits a 

slower startup than the other methods, reaching steady 

state after approximately 100 s, but with negligible 

overshoot and undershoot during the initial rise. However, 

when the reference signal changes, the PID controller 

responds faster but produces significantly higher 

overshoot and undershoot. In contrast, both the proposed 

NANFSMC and the ANSMC achieve significantly lower 

overshoot and undershoot compared to the PID controller. 

Specifically, when the reference signal increases from  

10 cm to 17 cm, the PID controller exhibits an overshoot 

of approximately 21.4 cm and an undershoot of 15.5 cm, 

reaching the steady state after about 100 s. The proposed 

controller limits overshoot to 18 cm, eliminates 

undershoot, and achieves a steady state in approximately 

50 s. The ANSMC also limits overshoot to 18 cm, with no 

undershoot, but settles more slowly, at around 90 s. When 

the reference signal rises to 22 cm, the PID controller 

produces an overshoot of 25 cm, an undershoot of 20.8 cm, 

and reaches a steady state after approximately 100 s. The 

proposed controller limits overshoot to 23 cm, with no 

undershoot, achieves a settling time of 52 s. In comparison, 

the ANSMC also limits overshoot to 23 cm, with no 

undershoot, but requires approximately 82 s to reach a 

stable state. Finally, when the reference signal decreases 

sharply from 22 cm to 13 cm, the PID controller exhibits 

an undershoot of approximately 10 cm, an overshoot of 

14.5 cm, and settles after more than 100 s. The proposed 

controller reduces the undershoot to approximately  

12.5 cm, exhibits almost no overshoot, and settles in about 

40 s. The ANSMC yields a slightly larger undershoot of 

12.1 cm, no overshoot, and settles more slowly at around 

60 s. These results demonstrate that under varying 

reference signals, the proposed controller achieves 

significantly lower overshoot and undershoot and reaches 

the steady state more quickly than the ANSMC and PID 

controllers. Furthermore, the error-based performance 

indices summarized in Table IV show improvements of up 

to 23.8% and 7.8% in the IAE and MAE indices compared 

to the ANSMC and PID controllers, respectively. These 

results demonstrate that the proposed controller achieves a 

faster transient response and reaches the steady state more 

quickly than the other two algorithms. 

TABLE IV.  COMPARISON OF TOTAL ERROR-BASED PERFORMANCE 

INDICES FOR OUTPUT RESPONSES UNDER VARYING REFERENCE SIGNALS 

Criterion NANFSMC ANSMC PID 

IAE 444.0404 582.5631 478.4671 

MAE 0.7518 0.9864 0.8101 

ITAE 2.6225 × 106 3.4406 × 106 2.8258 × 106 

B. The Second Benchmark Test 

Validation is further performed with a multi-level 

reference signal in the presence of external disturbances 

applied at two time instants: 300 s and 500 s, 

corresponding to reference levels of 17 cm and 20 cm, 

respectively. These disturbances are introduced by adding 

water volume equivalent to a height of 7 cm in the tank, 

corresponding to abrupt increases of approximately 35% 

and 41% of the respective reference levels. 

Fig. 12 compares the CTS output responses of the three 

controllers—proposed NANFSMC, ANSMC, and  

PID—under varying reference signals, external 

disturbances, and sensor noise. When a disturbance is 

applied at t = 300 s with the reference signal at 17 cm, the 

PID controller produces a fast response but with a 

significant overshoot of approximately 19.6 cm and a large 

undershoot of about 12.2 cm, followed by sustained 

oscillations around the reference and a recovery time 

exceeding 100 s. The proposed controller eliminates 

overshoot, limits undershoot to approximately 16.1 cm, 

and achieves recovery in about 48 s. The ANSMC also 

achieves 0 overshoot and slightly higher undershoot at 

15.9 cm, but settles more slowly, requiring approximately 

75 s. When a disturbance is applied at t = 500 s with the 

reference at 20 cm, the PID controller again produces a fast 

initial response but exhibits an overshoot of approximately 

21.4 cm, an undershoot of 17.0 cm, and oscillations that 

persist for exceeding 100 s before recovery. The proposed 

controller eliminates overshoot, limits undershoot to about 

19 cm, and recovers within 52 s. The ANSMC achieves 0 

overshoot, an undershoot of 18 cm, and a slower recovery 

time of approximately 82 s. These experimental results 

demonstrate that the proposed NANFSMC and the 

ANSMC maintain stable operation under significant 

external disturbances, with the proposed controller 

consistently achieving substantially faster recovery times 
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than the ANSMC and PID controllers. In contrast, the PID 

controller exhibits significant overshoot and undershoot 

values, as well as prolonged oscillations, before returning 

to its steady state.  Furthermore, the error-based 

performance indices summarized in Table V show 

improvements of up to 22.9% and 14.2% in the IAE and 

MAE indices compared to the ANSMC and PID 

controllers, respectively. The percentage improvement 

over the PID controller increases from 7.8% in the first 

benchmark test to 14.2% in the second benchmark test, 

indicating that the proposed controller exhibits enhanced 

responsiveness and disturbance rejection capability 

compared to the PID algorithm. 

 

 

Fig. 12. Comparison of CTS output responses obtained with the proposed 

NANFSMC, the ANSMC, and the PID controller under varying reference 

signals, external disturbances, and sensor noise. 

TABLE V. COMPARISON OF TOTAL ERROR-BASED PERFORMANCE 

INDICES FOR OUTPUT RESPONSES UNDER VARYING REFERENCE SIGNALS, 

EXTERNAL DISTURBANCES, AND SENSOR NOISE 

Criterion NANFSMC ANSMC PID 

IAE 587.664 761.7629 684.7973 

MAE 0.9955 1.2905 1.1601 

ITAE 3.469×106 4.4967×106 4.0424×106 

 

Fig. 13 presents the output response along with the  

real-time updated value of 𝛿̄ in the SMC component of the 

proposed controller, as adjusted by the fuzzy controller 

under varying reference signals, external disturbances, and 

sensor noise. When the error 𝑒 is large, corresponding to 

substantial reference signals changes or significant 

external disturbances, the fuzzy controller increases 𝛿̄ to 

enable the SMC component to stabilize the system rapidly. 

This mechanism is clearly illustrated in the zoomed view 

from 620 s to 660 s, where the reference signal decreases 

from 20 cm to 13 cm, and the value of 𝛿̄ rapidly increases 

to approximately 0.23 to quickly suppress the undershoot. 

Conversely, when the tracking error 𝑒 becomes small, 𝛿̄ is 

reduced to generate a smoother response while 

maintaining stable steady-state operation under the 

influence of output sensor noise, pump motor 

uncertainties, and other system disturbances. 

This behavior is further confirmed in the zoomed view 

from 780 s to 800 s, where the ANSMC algorithm exhibits 

a steady-state error within the range of [−0.3, 0.2] cm, 

whereas the proposed controller maintains a smaller error 

within [−0.1, 0.1] cm due to the adaptively updated 𝛿̄ 

value ranging from 0.04 to 0.07. In contrast, the ANSMC 

algorithm fixes this parameter at 0.1 to maintain control 

performance. These results demonstrate that the stability 

gain in the SMC component of the proposed controller is 

rapidly updated under all uncertain conditions, enabling 

the system to achieve faster yet smoother stabilization 

compared to the ANSMC algorithm. 

 

 

Fig. 13. Output response and adaptively updated value of 𝛿̄𝑖 by the fuzzy 

controller in the proposed NANFSMC under varying reference signals, 

external disturbances, and sensor noise. 

 

Fig. 14. Control input response and real-time adaptively updated output 

weights 𝑤 of the RBFNN in the proposed NANFSMC under varying 

reference signals, external disturbances, and sensor noise. 

Fig. 14 illustrates the real-time adaptive variations of the 

output weights w of the RBFNN in the proposed 

NANFSMC, along with the corresponding changes in the 
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control input, under varying reference signals, external 

disturbances, and sensor noise. When the reference signal 

changes or disturbances occur, the values of w exhibit 

significant variations, enabling the proposed controller to 

adapt effectively to these changing operating conditions. 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 15. Zooming control input response and real-time adaptively updated 

output weights 𝑤 of the RBFNN in the proposed NANFSMC under 

varying reference signals, external disturbances, and sensor noise. (a) 

control signal u increases; (b)  control signal u decreases (with reference 

signal decreases from 22 cm to 13 cm at 600 s); (c) control signal u 

decreases (with reference level of 17 cm); (d) control signal u decreases 

(with reference level of 22 cm). 

 

Fig. 16. Adaptively updated values of 𝛿̄𝑖 corresponding to the 

convergence of sliding surfaces in the proposed NANFSMC under 

varying reference signals, external disturbances, and sensor noise. 

Fig. 15 presents the zoomed-in view of Fig. 14. In  

Fig. 15(a), when the reference signal increases from  

10 cm to 17 cm at 200 s, the magnitude of the control signal 

𝑢 rises from approximately 3 V to 6 V to drive the pump 

output to 17 cm and then decreases to around 3.2 V to 

maintain this new level. Conversely, as shown in  

Fig. 15(b), when the reference signal decreases from  

22 cm to 13 cm at 600 s, the control signal 𝑢 drops to 0 V 

and subsequently increases to about 2.8 V to sustain the 

liquid level at 13 cm. When external disturbances are 

introduced, the output level rises at 300 s and 500 s in the 

Fig. 15(c) and (d), respectively, the control signal 𝑢 

quickly drops to 0 V and then rapidly increases to 

approximately 3.2 V and 3.6 V, corresponding to the 

reference levels of 17 cm and 22 cm. Additionally, the 

amplitude of 𝑢 continuously varies in response to output 

sensor noise, which is always present in real-time control 

systems. These results demonstrate that the control signal 

𝑢 rapidly adapts to varying reference signals, external 

disturbances, and output sensor noise. 

In Fig. 16, the value of 𝛿̄ in the SMC controller Eq. (28) 

is updated in accordance with the convergence of the 

sliding surfaces 𝑆 in the proposed NANFSMC under 

varying reference signals, external disturbances, and 

sensor noise. When the reference signal changes or when 

disturbances occur at t = 300 s and t = 500 s, 𝛿̄ increases 

to enhance stabilization speed. When 𝑆 becomes small, 𝛿̄ 

is reduced, resulting in smoother system behavior while 

maintaining stability. This adaptive adjustment enables the 

proposed controller to achieve faster responses, higher 

stability, and smoother performance compared to the 

ANSMC, which has the value of 𝛿̄  fixed. The 

experimental results demonstrate that the proposed 

controller outperforms both the ANSMC and the PID 

controller in scenarios involving varying reference signals 

(Fig. 11) and significant external disturbances (Fig. 12). 

The proposed controller delivers fast responses with low 

overshoot and undershoot. While the ANSMC also 

achieves low overshoot and undershoot, it exhibits slower 

settling than the proposed method. The PID controller 

responds quickly but suffers significant overshoot, large 

undershoot, and sustained oscillations. Furthermore, the 

performance indices in Tables IV and V confirm that the 

proposed controller achieves superior results across all 

evaluated metrics. In addition, Figs. 13–16 illustrate the 

online adaptation capability of the RBFNN output weights 

𝑤 in the adaptive controller Eq. (6) and the parameter 𝛿̄ in 

the SMC controller Eq. (28) under varying reference 

signals, external disturbances, and output sensor noise. 

These adaptive mechanisms enable the proposed controller 

to respond faster, maintain robustness, and produce 

smoother control actions compared to both the ANSMC 

and the PID controller. This validates the effectiveness of 

integrating ANSMC with the fuzzy logic technique to 

enhance control performance. 

V. CONCLUSION 

This paper presents a NANFSMC to control uncertain 

nonlinear systems with unknown dynamic models. The 

proposed controller integrates two components: (1) an 

adaptive control component, approximated by an RBFNN, 

and (2) an SMC component for system stabilization. The 

adaptation and SMC laws are derived using Lyapunov 

stability theory. In the proposed scheme, the parameter of 
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the SMC component is updated in real-time by an adaptive 

fuzzy controller, thereby improving the transient response 

speed and overall control quality.  

The efficiency of the proposed NANFSMC is 

experimentally verified on a CTS under various test 

scenarios, with its performance compared to that of the 

ANSMC and PID controllers. This is the first experimental 

validation of a TS-fuzzy–tuned SMC robustness gain 

implemented on a real CTS under external disturbances, 

achieving improvements of up to 22.9% and 14.2% in the 

IAE, MAE, and ITAE indices compared to the ANSMC 

and PID controllers, respectively. These results verify that 

the proposed controller possesses a strong ability to 

maintain system stability under varying reference signals, 

sensor noise, and, particularly, significant external 

disturbances. 

Furthermore, the proposed controller features a simple 

structure with low computational load and a small number 

of tuning parameters, making it easily applicable to other 

nonlinear systems, especially nonlinear MIMO processes. 

In addition, although the RBFNN output weights are 

initialized to 0, thus eliminating the need for  

pre-optimized weight selection, the system still exhibits 

fast convergence with minimal overshoot and undershoot. 

This performance is achieved through the integration of an 

adaptive fuzzy mechanism, which dynamically adjusts the 

stability gain of the SMC component to rapidly 

compensate for the approximation error of the RBFNN in 

the neural adaptive controller. As a result, the system 

stabilizes quickly while minimizing overshoot and 

undershoot at low levels as the output error decreases.  

However, although the controller is designed for 

simplicity and computational efficiency, it has not yet been 

experimentally verified on nonlinear MIMO systems. 

Therefore, future work will focus on extending the 

proposed control strategy to nonlinear MIMO processes to 

evaluate its scalability and computational performance. 
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