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Abstract—This paper proposes a New Adaptive Neural Fuzzy
Sliding Mode Controller (NANFSMC) for regulating a
Coupled Tank System (CTS), with unknown nonlinear
dynamics in experimental environments. The CTS exhibits
strong nonlinearities and uncertainties arising from sensor
noise, parameter variations, variations in output valve
characteristics, and significant time delays. The proposed
control architecture integrates two synergistic components.
The first component is an adaptive control system that
utilizes a Radial Basis Function Neural Network (RBFNN) to
approximate the adaptive control law, featuring an adaptive
updating mechanism to compensate for RBFNN
approximation errors. The second component is a Sliding
Mode Control (SMC) system, whose parameters are updated
in real-time via a fuzzy inference mechanism to enhance
robustness. Both control laws are derived within the
framework of Lyapunov stability theory, ensuring
closed-loop stability under all operating conditions. The
proposed controller possesses a simple structure, resulting in
low computational load and requiring only a few tuning
parameters. Although the RBFNN weights are initialized to
0, the integration with the adaptive fuzzy mechanism allows
fast convergence and rapid stabilization. Furthermore, this
study presents the first experimental validation of a
Takagi-Sugeno (TS)-fuzzy-based adaptive tuning of the
SMC robustness gain on a real CTS under external
disturbances. The proposed method achieves improvements
of up to 22.9% and 14.2% in the Integral of Absolute Error
(IAE), Mean Absolute Error (MAE), and Integral of
Time-weighted Absolute Error (ITAE) indices compared to
the Adaptive Neural SMC (ANSMC) and Proportional
Integral Derivative (PID) controllers, respectively.

Keywords—Proportional  Integral  Derivative
approximation error, real-time validation,
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I. INTRODUCTION

Accurate liquid-level regulation in process tanks is
essential in industrial production, as it directly impacts
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process efficiency and product quality. In particular,
liquid-level control in chemical manufacturing, oil and gas
processing, and food production requires high precision
and reliability. These systems typically exhibit nonlinear
dynamics and significant uncertainties, including sensor
noise, variations in outlet valve cross-sections,
environmental changes, actuator nonlinearities, and
considerable time delays. The Coupled Tank System
(CTS) is widely used in laboratory environments as a
benchmark for studying liquid-level control. It replicates
the nonlinear characteristics, uncertainties, and high time
delays in industrial processes. Consequently, a broad
spectrum of control strategies—ranging from classical to
advanced—has been investigated to evaluate control
performance on the CTS.

Initial studies [1, 2] applied Proportional Integral
Derivative (PID) controllers to address the slow dynamic
response of CTS. A robust Sliding Mode Control (SMC)
scheme is introduced in Ref. [3] to mitigate nonlinearities
and reduce the influence of disturbances and noise.
Al-Majeez et al. [4] proposed a backstepping control
approach for an interconnected twin-tank system.
Simulation results demonstrated that the backstepping
controller exhibited higher robustness than the synergetic
controller against external disturbances. However, the
results were only verified through simulations with
step-type reference inputs; hence, the actual robustness
performance has not yet been experimentally validated.
Furthermore, this control algorithm depends on the
dynamic model of the system, which may limit its
applicability to systems with modeling uncertainties.
Subsequently, Aranda-Cetraro et al. [5] combined
backstepping, super-twisting, and the modulating function
technique to eliminate the dependency on state derivatives.
This approach also helps suppress measurement noise and
mitigating  the  chattering  phenomenon in a
Quadruple-Tank System (QTS). Simulation results under
non-Gaussian measurement noise and varying reference
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signals confirmed good tracking capability and reduced
chattering. Nevertheless, these results are also limited to
simulations, and thus, the practical effectiveness of the
method remains unverified.

In addition, disturbance observer-based methods [6—8]
and active disturbance rejection control [9] are also
proposed to suppress external perturbations in
liquid-level systems. Moreover, SMC is integrated with
adaptive control techniques [10] for liquid-level regulation
in QTS, yielding improved robustness to reference
variations and external disturbances. However, except for
PID-based methods, most of these approaches rely on
accurate plant models, often unavailable or subject to
significant variation during operation. This limitation
reduces the practical applicability of model-based control
methods.

As a result, it motivates the adoption of model-free and
Artificial Intelligence (AI) integrated strategies. In this
direction, Abushokor and Amrr [11] proposed a
model-free adaptive time-delay estimation method for
CTS control, requiring only historical input-output data to
estimate system behavior and embed it into a robust
control framework. A fuzzy Proportional-Integral (PI)
controller with s- and z-type membership functions [12] is
developed to enhance robustness against uncertainties,
outperforming  conventional fuzzy PI  methods.
Furthermore, Bhandare ef al. [13] introduces an intelligent
fuzzy fractional-order PI controller to improve
performance.

Hybrid approaches that combine Al techniques with
advanced control strategies have also gained attention. For
instance, SMC combined with Recurrent Neural Networks
(RNNs) [14] adaptively updates the equivalent control
term and sliding surface online to reduce chattering. An
adaptive fuzzy SMC scheme [15] is proposed to handle
external noise and actuator faults. In contrast, an adaptive
inverse  multilayer  Takagi-Sugeno  (TS) fuzzy
controller [16] employs differential evolution optimization
for uncertain nonlinear Single-Input Single-Output (SISO)
systems. However, it relies on offline parameter
identification. Adaptive neural SMC methods are explored
to enhance stability and performance in the presence of
nonlinearities and unknown disturbances [17, 18]. In
Ref. [17], an adaptive neural controller is integrated with
SMC to estimate nonlinearities and uncertainties online. In
contrast, Li et al. [18] develops an adaptive neural SMC
for nonlinear SISO systems with unknown dynamics,
focusing on chattering suppression. Refs. [19, 20] further
improve tracking performance by using RNN-based
adaptive neural SMC to estimate model uncertainties and
external perturbations, enabling faster tracking error
convergence. Ref. [21] combined an adaptive neural SMC
algorithm with backstepping to approximate the nonlinear
aerodynamic forces and moments of an aircraft.

Meanwhile, the adaptive backstepping terminal sliding
mode control utilizes a physics-informed neural
network [22] to accurately estimate and compensate for
system uncertainty. Recent works [23-26] leverage the
fast approximation capability of Radial Basis Function
Neural Networks (RBFNN) and the strong robustness of
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SMC to develop an Adaptive Neural SMC (ANSMC)
scheme for nonlinear systems with uncertainties and
external disturbances. However, in these ANSMC
techniques, the network weights generally require
pretraining. Without proper initialization, the system may
oscillate; random or zero-weight initialization can lead to
instability or extended convergence time during startup.
Overall, these ANSMC approaches rely heavily on the
neural network’s self-approximation capability. In many
cases, expert intervention is required to accelerate
convergence and improve approximation accuracy.
Therefore, the performance of ANSMC has been further
enhanced by incorporating fuzzy logic techniques to
exploit expert knowledge and the neural network’s
adaptive learning capability [27-29], thereby improving
adaptability to complex and time-varying uncertainties.
However, these controllers typically involve high
computational loads, which may hinder their applicability
in real-time industrial implementations.

In recent years, terminal SMC techniques have been
widely adopted to accelerate convergence within a finite
time. Initially, adaptive fuzzy-neural methods [30-32]
were combined with terminal SMC to guarantee
finite-time convergence under parameter variations and
external disturbances. Adaptive fuzzy-neural SMC
methods optimize network structures online by combining
self-organizing mechanisms with terminal SMC [33],
ensuring finite-time convergence. Nevertheless, these
controllers impose high computational burdens and have
not yet been validated for real-time control applications.
Adaptive fuzzy neuro SMC methods [34-36] are
combined with nonsingular terminal SMC to eliminate
singularities inherent in conventional terminal SMC and
ensure fixed-time convergence. This combination also
reduces chattering, thereby improving responsiveness to
dynamic uncertainties, input saturation, and external
perturbations. However, Refs. [34, 35] only verify their
results through simulation and do not assess real-time
performance. Ref. [36] included both simulation and
experimental validation. However, its controller combined
multiple techniques, requiring real-time updates of
numerous adaptive coefficients, which increases
computational cost and limits its applicability to industrial
controllers with constrained resources. Refs. [37, 38]
propose combining adaptive fuzzy neural networks with
super-twisting SMC to reduce chattering further.
However, these networks also incur high computational

complexity, which imposes significant real-time
processing burdens on resource-limited hardware
platforms.

Other adaptive fuzzy-neuro SMC approaches utilize
RBFNNs to leverage their fast approximation and

compensation capabilities for unknown = system
uncertainties and external disturbances, thereby enhancing
control  quality [39—41]. Nevertheless, control

performance is highly sensitive to the RBFNN parameters.
Ref. [41] employed a K-means clustering algorithm to
optimize the centers and widths of the RBF neurons.
Furthermore, the number and spatial distribution of RBF
neurons significantly impact the network’s approximation
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accuracy, computational load, and responsiveness of the
controller. Therefore, these parameters must be carefully
optimized in accordance with the control objectives.

Overall, the above analysis indicates that adaptive
neural SMC, utilizing RBFNNs and integrated with fuzzy
logic, can significantly enhance control performance,
robustness, and convergence speed for nonlinear uncertain
systems. However, to the best of the authors’ knowledge,
no existing study has applied an adaptive fuzzy mechanism
to tune the stability coefficient of the SMC component
within an adaptive neural SMC structure and
experimentally validated it on a real CTS. Accordingly,
this study proposes a Novel Adaptive Neural Fuzzy
Sliding Mode Controller (NANFSMC) for liquid-level
regulation in a CTS. The proposed controller addresses the
challenges of improving convergence speed and
maintaining robustness under uncertain conditions, with
stability guaranteed via Lyapunov theory. The proposed
method is experimentally validated and compared with the
ANSMC and a conventional PID controller [10], which
serves as a widely used model-free benchmark.

The main contributions of this paper are summarized as
follows:

(1) Novel controller design: development of a
NANFSMC for nonlinear uncertain systems
regarding sensor  perturbation, external
disturbances, varying reference signals, and
significant time delays. The closed-loop stability
of the proposed control system is rigorously
guaranteed through a sliding mode control
component and an adaptive law, both of which are
implemented using the Lyapunov principle. The
robustness and convergence speed of the proposed
controller are enhanced by combining the adaptive
tuning capability of the ANSMC with a
TS-fuzzy mechanism that adaptively adjusts the
robustness gain of the SMC component. This work
provides the first experimental validation of a
TS-fuzzy-based adaptive tuning of the robustness
gain § in the SMC component of the proposed
controller, implemented on a real CTS under
external disturbances.

Computational efficiency and implementability:
Adaptive neural fuzzy SMC algorithms generally
exhibit high computational complexity, which may
hinder real-time implementation on low-cost
microcontrollers. Moreover, their numerous
parameters complicate controller tuning. To
address these limitations, the proposed controller
features a simplified structure with a low
computational load and a small number of tunable
parameters. This design facilitates real-time
implementation on low-resource microcontrollers
and also extends the controller’s applicability to
other nonlinear systems, particularly Multi-Input
Multi-Output (MIMO) systems.

Improved initialization  strategy:  Neural
network-based controllers typically adopt one of
three initialization strategies: (1) Pretrained
weights, which require time-consuming selection
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and may cause significant transient overshoot or
instability under real-time uncertainties; (2)
Random initialization, which can lead to instability
or long convergence time during startup; and (3)
Zero-weight initialization, which is simple and
easily applied to various systems but may result in
slow convergence. To overcome these limitations,
this study adopts zero-weight initialization but sets
a significant adaptive learning rate during the first
11 s to accelerate convergence. Subsequently, the
rate is decreased, and the adaptive fuzzy controller
is activated to update the SMC robustness gain.
This mechanism rapidly compensates for
approximation errors, resulting in rapid
stabilization while minimizing overshoot and
undershoot as the output error decreases.

The remainder of this study is organized as follows:
Section II adequately describes the CTS plant along with
the problem formulation. Section III fully presents the
design and the implementation of the proposed
NANFSMC control algorithm. Section IV analytically
presents the experimental results through critical
case-studies. Section V eventually concludes the paper.

II. CTS PLANT MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates the two-degree-of-freedom uncertain
nonlinear CTS model, based on the Quanser tank model.
This CTS model is a part of the quadruple-tank MIMO
system depicted in Fig. 2. The CTS system in Fig. 1
consists of a pump with a control voltage u, which pumps
liquid into Tank 1, while Tank 2 receives liquid through
the outlet pipe of Tank 1. The mathematical model of the
CTS plant in Ref. [16] is as in Eq. (1):

. 1
X1 = a (Kpu - b1C1\/ 2g9x,)

. 1

X2 = E(ble 2gx; — byCa\/29x3)

where x; and x, are the liquid levels in Tank 1 and 2; u is
the control voltage for the pump’s motor, serving as the
system input. The system output can be x4, x, or both x;
and x,. The control objective aims to regulate the liquid
level in Tank 1, Tank 2, or both, tracking the desired liquid
level. This paper focuses on controlling the liquid level in
Tank 2. The physical values of the model parameters are
presented in Table I for reference. Due to the small tank
area, the output sensor exhibits high noise, as it is
significantly affected by the outflow from the pump and
the drainage from the upper tank. This poses a significant
challenge for controlling this system.

In the experimental setup, the physical parameters listed
in Table I can be approximately measured, except for the
discharge coefficients C; and C, , which cannot be
obtained through conventional measurement methods and
are therefore assumed to be unknown. Consequently, the
controller must be capable of approximating all parameters
presented in Table 1.

(1
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Fig. 1. Coupled Tank System (CTS).

Fig. 2. Quadruple-Tank System (QTS).

TABLE I. COUPLED-TANK SYSTEM PARAMETERS FOR REFERENCE

Symbol Explanation Size Unit
A, Inner surface area of Tank 1 16.619 cm?
A, Inner surface area of Tank 2 16.619 cm?
b, Drainpipe area in Tank 1 0.5 cm?
by Drainpipe area in Tank 2 0.33 cm’
C;  Discharge coefficient at the outlet of Tank 1 -

C,  Discharge coefficient at the outlet of Tank 2 -
g Gravitation force 981 cm/ s2
K, Gain of the pump 10.42  cm’/s/V

Next is the design of the proposed NANFSMC

controller for the CTS system Eq. (1).
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% = F() + g(w)
{y = h(x) @

Let h(x) = x,, rewrite Eq. (2) as Eq. (3):

(551 = A—ll(Kpu — by Cy 2gxq)
ixz = A_12 (b €y vV 2gx; — by G, vV 29x;) )

Y =Xz
The CST system Eq. (1) can be rewritten as Eq. (4):
¥ =a(x) +b(x)u (4)

The purpose of control is to track output y(#) according
to the desired value y,(t). Eq. (4) can be rewritten as
Eq. (5):

1
Uu=—:
b(x)

[-a(x) +v(®)] ®)

If both nonlinear descriptions a(x) and b(x) represent
known a priori, the ideal control law given in Eq. (5) can
be directly computed. However, these functions are
typically unknown in practical control applications or may
vary over time due to changes in parameters and variations
in operating conditions.  Consequently, direct
implementation of the ideal control law Eq. (5) is generally
infeasible. In the case where a(x) and b(x) seem
undetermined, the problem reduces to designing a control
law that can accurately approximate the ideal controller in
real-time. To this end, this paper introduces a NANFSMC,
an online approximation of the ideal control law Eq. (5) for
water-level regulation in the CTS. The detailed
formulation and design procedure of the proposed
approach will be fully introduced in the following section.

III. DESIGN THE PROPOSED NANFSMC CONTROL
ALGORITHM

A. The Proposed NANFSMC Algorithm for the Coupled-
Tank Plant

Fig. 3 illustrates the structure of the proposed
NANFSMC for the CTS plant, which comprises an
adaptive control component and an SMC component.
Where the SMC parameters are updated in real-time by the
adaptive fuzzy controller. The ideal controller Eq. (5) is
estimated by the adaptive controller using an RBFNN with
two inputs, e, and é,, fifteen RBF neurons in the hidden
layer, and one output #i as shown in Fig. 4.

The adaptive controller is computed based on the
structure shown in Fig. 4 and defined in Eq. (6),

a=n"w (6)

The output of the hidden layer is denoted by /4 function
as presented in Eq. (7):

h(x) = [hy (x) hy(x) .. hys(0)]" (7
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Fig. 3. Layout of the proposed NANFSMC controller.
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Fig. 4. Approximation of the linearized feedback controller using the
RBFNN.

The activation function of the i-th RBF neuron is as in
Eq. (8):

[(e2=c1)*+(2-c,0)?]
2p?

hi(x) = e (®)

The dispersions p; (i=1,...,15) are selected to be equal,
and these functions are selected to distribute uniformly
throughout the state space; select p; = p. Fig. 5 displays
the distribution of the RBF neuron centers’ locations.

1 &
@@ o--@
& @@ &
&—@ &> .
-1 —0.5 0 0.5 1

Fig. 5. Center placements of the RBFNN.

The values of the signals &, and é,, corresponding to
the feedback signals e, and é, given back to the controller,
they are normalized to stay within the range [0, 1].

Based on the limited physical magnitudes of e, and é,,
this paper selects ke, = 1/30 and ké, = 1/30. The
weight vector of the RBFNN’s output layer is denoted
by w as illustrated in Eq. (9):

w = [w; wy ..wys]T

(€))
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To bring @ closer to the ideal value u*, the RBFNN
updates the vector w online. The network has a structural
error §(x) since it uses a limited number of RBF neurons
in the hidden layer to approximate the optimal control law
as described in Eq. (10):

u (x) =w'h(x) + 6(x) (10)

As a result, the difference in the optimal control rule,
u*, with the achieved rule, i, is shown below in Eq. (11).

a(x) —u"(x) = wh(x) — 6(x) (11
with W stands for the approximation error shown in
Eq. (12).

=w-w" (12)

Assumption 1: Since the RBFNN approximates the
controller in a way that makes it possible to know the upper
bound of the structural error §(x) in advance, there is a
continuous function §(x) such that |8 (x)| < §(x), vx.

We choose the following control law as presented in
Eq. (13) to ensure the stability of the system because of the
structural error 6 (x).

u=1u+uy (13)
where the sliding mode controller ug; stabilizes the
system and is selected so that the derivative of the
Lyapunov function is negative semi-definite. Eq. (4)
gives us the following Eq. (14).

¥ =ax)+bx)u* () + b(x)[ut) —u*(®)]

§ = v(®) + bEu(t) — u*(0)] 9
In which v(t) € R, and is defined as in Eq. (15),
v(t) =g+ S+ k.S (15)

With k; > 0, the definitions that follow provide S
and § as presented in Egs. (16)—(18):

S(t) = é;(t) + kq&,(t) (16)
e;(t) = ya(t) —y(0) (17)
§=5-¢, (18)

where the sliding surface is denoted by S(t) and the
plant’s output error by e,(t). Here, the Routh-Hurwitz
stability criterion is satisfied by the choice of
parameter k.

Combining Egs. (14), (15), and (18) results in Eq. (19)
and induced to Egs. (20) and (21):

&(t) = Ja(t) — J(©) (19)
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&(t) = Ja(t) —v(t) = b()[u(®) —u ()] (20)

&(t) = =S5 — k1S — b()[(t) + usa () — u*(O)] (21)

Here, Eq. (11) and (18) are substituted into Eq. (21),
then the nonlinear features of the residual are described in
Eq. (22):

S+ kS =—bWh(x) + bS(x) —bugg (22)

Choosing a Lyapunov function that is quadratic as
presented in Eq. (23):

1 1
Ls2 4 1pTQw
2b 2 Q

%4 (23)
where Q is a positive constant.

Assumption 2: b(x) stays inside a defined range as
follows,

0 < b(x) <b(x) <b(x)<owo

Since Eq. (23) is differentiated with respect to time,
Eq. (24) is determined as,

V_l

lee_ b 2y arpy
=185 2257 + W Qw (24)

Upon inserting Eq. (22) into Eq. (24), we get Eq. (25):

k.52
b

V=

— Sugq + S8 + W (Qw — hS) — =5 5% (25)
Then the adaptive law selection is as Eq. (26).

w=Q 1hS (26)
During the control process, the output weights of the
RBFNN are updated according to Eq. (26) to eliminate the
RBFNN approximation error w in Eq. (25). This updating
mechanism helps drive the sliding surface S to converge to
0. However, due to the structural error § defined in
Eq. (10), which always exists during the approximation
process because of the finite number of RBF neurons. As
a result, the sliding surface S may not converge to 0 even
when the approximation error is canceled. Moreover, this
structural error can potentially cause system instability.
Therefore, to ensure system stability and convergence, an
additional SMC control term is introduced as follows.
Putting Eq. (26) into Eq. (25), we obtain Eq. (27),

. k4S2 b
V=- 1b —Susd+55—ﬁ52
- k452 ||
V<=5 sug 151081+ Lish @)
. k1S2 s y
V<= su, + 1516 + 518D

2b2
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Assumption 3: There is a continuous function y (x) for
which |b|(x) < y(x), and b(x) has a limited fluctuation
rate.

Choose the sliding mode controller as presented in
Eq. (28):

usq = (8 +55150) sgn(s) (28)

Substituting Eq. (28) into Eq. (27), we obtain Eq. (29):

. k15?2
Vs -—=
b

<0

(29)

The positive definite quadratic function ¥ has V < 0.
Therefore, the proposed NANFSMC ensures the stability
of system operation.

Update the system state
e(6) =ya(t) —y(©) (17)

L
A 4 .
Adaptive
Sliding surface fuzzy
S(t) = é,(t) + k18,(t) (16) controller

v AN
SMC law Ugq
(28)

Adaptive law
w=Q'hS (26)

v

Update output weight w of
RBFNN

v

Adaptive controller
a=rw (6)

vy v

Calculate controller
NAFNSM u =1 +uy (13)

v

Control CTS system

v

Evaluate the results

Fig. 6. The proposed NANFSMC Controller flowchart.

The overall operating principle of the proposed
NANFSMC controller is illustrated in the flowchart shown
in Fig. 6. At the beginning of operation, the system states
e,(t) are updated. The tracking error e,(t) and its
derivative é, are normalized to the range [0,1] and then
used to compute the sliding surface (16), the adaptive law
Eq. (26), and the SMC law Eq. (28). The output weights w
in the adaptive controller Eq. (6) are updated online by the
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RBFNN. Simultaneously, based on the current error, the
stability gain in the SMC controller Eq. (28) is also
updated online through the adaptive fuzzy controller.
Then, the total control signal, as described in Eq. (13), is
calculated. Finally, the control performance of the
proposed algorithm is evaluated.

B. The Adaptive Fuzzy Controllers in the Proposed
NANFSMC Controller

In the SMC controller given by uy, Eq. (28), the gain §
functions analogously to the stability gain K in
conventional SMC schemes. Selecting a large value for
this gain results in faster stabilization but may cause
significant overshoot and undershoot in the output
response when the reference signal changes or
disturbances occur. Conversely, selecting a small gain
reduces overshoot and undershoot, but slows the system’s
response and decreases its robustness against reference
variations, model uncertainties, and, in particular, external
disturbances. To exploit the advantages and mitigate the
drawbacks associated with this gain, this paper proposes
an adaptive fuzzy controller (Fig. 7) based on the
Takagi-Sugeno fuzzy inference system to adaptively tune
the gain & in real time. This adaptive mechanism enhances
both the transient response and robustness of the SMC
controller in Eq. (28), while maintaining low overshoot
and undershoot under all aforementioned uncertainties.
Consequently, the overall performance of the NANFSMC
is satisfactorily ameliorated.

NG
s

0.6 0.5..0.06 0.04 0.06..0.5 0.6

Fig. 7. Input and output of the adaptive fuzzy controller.

The fuzzy MF inputs and output, illustrated in Fig. 7,
consist of a single input e and a single output §, where e
represents the error values before normalization to the
range [0, 1]. These values are selected as:
[eo, €1,---€14,€15] = [0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.6,0.8,1.2,1.6,2,2.5,3,4]; [8,04,...814,6,5] = [0.04,
0.06, 0.08, 0.1, 0.2, 0.23, 0.24, 0.25, 0.26, 0.3, 0.34, 0.38,
0.42, 0.46, 0.5, 0.6].

A TS fuzzy model is employed, in which the input
membership functions are triangular and trapezoidal,
while the output membership function is the singleton
type. The fuzzy rule base follows the general form: If
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e; = a then, §; = B, where a and f are fuzzy sets. The
fuzzy inference mechanism employs the
MAX-MIN composition, and the defuzzification method
is the Sugeno weighted-average approach, as expressed
below in Eq. (30):

& _ Tioi 8in(dy)
0= T2, 1(8) (30)
with u(8;) is the firing strength of the i* fuzzy rule.

The operating principle of the proposed adaptive fuzzy
controller is straightforward yet effective. When the input
e increases, the output & is adaptively increased to
accelerate the system response. Conversely, when e
decreases, & is reduced to suppress overshoot and
undershoot. As § is minimized while still maintaining
sufficient robustness to reject output sensor noise and
actuator uncertainties in the pump motor. This mechanism
enables the proposed NANFSMC to achieve smoother
responses, faster transient performance, and higher
stability compared to the conventional ANSMC with a
fixed § gain. The effectiveness of this approach is
demonstrated through experimental results presented in
the following section.

IV. EXPERIMENT VALIDATION

The response quality of the proposed controller and the
PID control method is evaluated on a real-time control
algorithm for the CTS system. The procedure for
real-time validation is outlined in Fig. 8. The experimental
setup, shown in Fig. 9, consists of a central control board
based on the TMS320F28379D microcontroller, a sensor
signal amplifier for the MPXI10 sensor, a PWM
modulation unit, a JT-750 pump (24 VDC), and a laptop
running Matlab/Simulink 2023b with the “Monitor &
Tune” tool for real-time monitoring and data visualization.

The sensor feedback signal is passed through the Sensor
Signal Amplifier before being sent to the Central Control
Board. The data from this board is transmitted and
displayed on the PC via SCI communication.

Real-time validation is conducted through two
benchmark scenarios. The first benchmark evaluates the
system’s output response to a multi-level reference signal
comprising three step-up transitions and one step-down
transition, as described in Ref. [9]. The second benchmark
assesses performance under significant external
disturbances. Both benchmarks are applied consistently to
all three controllers: the proposed NANFSMC, ANSMC,
and PID control method described in Ref. [8]. The PID
controller in Ref. [8] is reformulated for the CTS model as
presented in Eq.(31):

Upip () = kpea () + ki [ e,(8)dt + kaér () (31)

The PID parameters can be tuned through trial and error,
as performed in Ref. [9] for multiple test cases. However,
since the present study focuses primarily on step
responses, such tuning would not fully reflect the
controller’s performance under varying reference signals.
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Therefore, in this work, the PID parameters are selected
based on their performance in tracking a time-varying
reference signal. The response quality corresponding to
each parameter set is evaluated using error-based
performance indices, and the parameter set yielding the
best performance is chosen for comparison with the
proposed control algorithm.
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Fig. 8. Diagram of the real-time experimental setup.
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TABLE II. TUNING PARAMETERS OF THE PID CONTROLLER FOR DIFFERENT TEST CASES

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
ky 1 1.1 0.9 1 1 1 1
k; 0.0458 0.0458 0.0458 0.0458 0.0458 0.0448 0.0468
ky 1.2 1.2 1.2 1.3 1.1 1.2 1.2
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Fig. 10. Comparative results of CTS output responses for different PID
controller parameter test cases.

The PID controller parameters are tuned for multiple
test cases, with seven representative cases presented in
Table II. The corresponding output responses of the CTS
for these seven parameter sets are shown in Fig. 10.

Table III presents the output performance of the CTS for
the seven parameter test cases corresponding to the
parameter sets listed in Table II. The results indicate that
Case 1 yields the best response quality among all cases.
Therefore, the parameters of Case 1 are selected for
comparison with the proposed NANFSMC in the
subsequent analysis.

Next, the parameter selection for the proposed
controller and the ANSMC is discussed. The parameters of
both controllers are chosen to achieve a trade-off among
fast transient response, minimal overshoot and undershoot,
and the lowest possible steady-state error, while ensuring
stability under sensor noise, pump uncertainties inherent in
real-time control, and external disturbances. In both
algorithms, the output weights w of the RBFNNs in the
adaptive controller Eq. (6) are initialized to 0, eliminating
the need for pre-optimized weight initialization. Instead,
both controllers are initialized with higher adaptation gains
during the startup phase, specifically Qg = 0.046 for the
first 11 s, to accelerate the initial adaptation of the
RBFNNSs. This gain is then reduced to 0.012 to suppress
overshoot and undershoot when the reference signal
changes. In addition, the gain § = 0.3 of the SMC
controller in Eq. (28) is fixed at 0.3 for the first 11 s.
Subsequently, in the proposed controller, this gain is
adaptively updated in real-time by the adaptive fuzzy
controller described in Section III, whereas in the
ANSMC, it remains constant § = 0.1 . The control
performance of the algorithms is evaluated using
error-based performance indices, namely the Integral of
Absolute Error (IAE), Mean Absolute Error (MAE), and
Integral of Time-weighted Absolute Error (ITAE). The
remaining parameters— p? in Eq. (8) and ki in
Eq. (16)—are set identically for both the proposed
controller and the ANSMC: p? = 0.35, k1 =0.1.

TABLE III. PERFORMANCE METRICS OF THE PID CONTROLLER FOR DIFFERENT PARAMETER TEST CASES

Criterion Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
TAE 478.467 572.071 509.696 534.829 481.773 485.603 504.112
MAE 0.808 0.966 0.861 0.903 0.814 0.820 0.852
ITAE 2.832x10° 3.386x10° 3.017x10° 3.166x10° 2.852x10° 2.874x10° 2.984x10°
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A. The First Benchmark Test

The first benchmark verifies the system’s output
response to a multi-level reference signal consisting of
three step-up transitions and one step-down transition,
specifically from 10 cm to 17 c¢m, then to 22 cm, and
finally decreasing to 13 cm, as described in Ref. [9]. This
test is used to evaluate and compare the response quality
of the control algorithms.

Output z, responses of different algorithms

T Ref
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an undershoot of approximately 10 cm, an overshoot of
14.5 cm, and settles after more than 100 s. The proposed
controller reduces the undershoot to approximately
12.5 cm, exhibits almost no overshoot, and settles in about
40 s. The ANSMC yields a slightly larger undershoot of
12.1 em, no overshoot, and settles more slowly at around
60 s. These results demonstrate that under varying
reference signals, the proposed controller achieves
significantly lower overshoot and undershoot and reaches
the steady state more quickly than the ANSMC and PID
controllers. Furthermore, the error-based performance
indices summarized in Table IV show improvements of up
to 23.8% and 7.8% in the IAE and MAE indices compared
to the ANSMC and PID controllers, respectively. These
results demonstrate that the proposed controller achieves a
faster transient response and reaches the steady state more
quickly than the other two algorithms.

".‘l n 1 1 1 T R o
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/ 22 7@:35—‘-—-- EN TABLE IV. COMPARISON OF TOTAL ERROR-BASED PERFORMANCE
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MAE 0.7518 0.9864 0.8101
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Fig. 11. Comparison of CTS output responses obtained with the proposed
NANFSMC, the ANSMC, and the PID controller under varying reference
signals.

Fig. 11 shows that all controllers generally track the
reference signal effectively. The PID controller exhibits a
slower startup than the other methods, reaching steady
state after approximately 100 s, but with negligible
overshoot and undershoot during the initial rise. However,
when the reference signal changes, the PID controller
responds faster but produces significantly higher
overshoot and undershoot. In contrast, both the proposed
NANFSMC and the ANSMC achieve significantly lower
overshoot and undershoot compared to the PID controller.
Specifically, when the reference signal increases from
10 cm to 17 cm, the PID controller exhibits an overshoot
of approximately 21.4 cm and an undershoot of 15.5 cm,
reaching the steady state after about 100 s. The proposed
controller limits overshoot to 18 cm, eliminates
undershoot, and achieves a steady state in approximately
50 s. The ANSMC also limits overshoot to 18 cm, with no
undershoot, but settles more slowly, at around 90 s. When
the reference signal rises to 22 c¢m, the PID controller
produces an overshoot of 25 cm, an undershoot of 20.8 cm,
and reaches a steady state after approximately 100 s. The
proposed controller limits overshoot to 23 cm, with no
undershoot, achieves a settling time of 52 s. In comparison,
the ANSMC also limits overshoot to 23 cm, with no
undershoot, but requires approximately 82 s to reach a
stable state. Finally, when the reference signal decreases
sharply from 22 cm to 13 c¢m, the PID controller exhibits
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B. The Second Benchmark Test

Validation is further performed with a multi-level
reference signal in the presence of external disturbances
applied at two time instants: 300 s and 500 s,
corresponding to reference levels of 17 cm and 20 cm,
respectively. These disturbances are introduced by adding
water volume equivalent to a height of 7 cm in the tank,
corresponding to abrupt increases of approximately 35%
and 41% of the respective reference levels.

Fig. 12 compares the CTS output responses of the three
controllers—proposed NANFSMC, ANSMC, and
PID—under varying reference signals, external
disturbances, and sensor noise. When a disturbance is
applied at £ = 300 s with the reference signal at 17 cm, the
PID controller produces a fast response but with a
significant overshoot of approximately 19.6 cm and a large
undershoot of about 12.2 cm, followed by sustained
oscillations around the reference and a recovery time
exceeding 100 s. The proposed controller eliminates
overshoot, limits undershoot to approximately 16.1 cm,
and achieves recovery in about 48 s. The ANSMC also
achieves 0 overshoot and slightly higher undershoot at
15.9 cm, but settles more slowly, requiring approximately
75 s. When a disturbance is applied at £ = 500 s with the
reference at 20 cm, the PID controller again produces a fast
initial response but exhibits an overshoot of approximately
21.4 cm, an undershoot of 17.0 cm, and oscillations that
persist for exceeding 100 s before recovery. The proposed
controller eliminates overshoot, limits undershoot to about
19 cm, and recovers within 52 s. The ANSMC achieves 0
overshoot, an undershoot of 18 cm, and a slower recovery
time of approximately 82 s. These experimental results
demonstrate that the proposed NANFSMC and the
ANSMC maintain stable operation under significant
external disturbances, with the proposed controller
consistently achieving substantially faster recovery times
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than the ANSMC and PID controllers. In contrast, the PID
controller exhibits significant overshoot and undershoot
values, as well as prolonged oscillations, before returning
to its steady state.  Furthermore, the error-based
performance indices summarized in Table V show
improvements of up to 22.9% and 14.2% in the IAE and
MAE indices compared to the ANSMC and PID
controllers, respectively. The percentage improvement
over the PID controller increases from 7.8% in the first
benchmark test to 14.2% in the second benchmark test,
indicating that the proposed controller exhibits enhanced
responsiveness and disturbance rejection capability
compared to the PID algorithm.

Output zs responses of different algorithms
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Fig. 12. Comparison of CTS output responses obtained with the proposed
NANFSMC, the ANSMC, and the PID controller under varying reference
signals, external disturbances, and sensor noise.

TABLE V. COMPARISON OF TOTAL ERROR-BASED PERFORMANCE
INDICES FOR OUTPUT RESPONSES UNDER VARYING REFERENCE SIGNALS,
EXTERNAL DISTURBANCES, AND SENSOR NOISE

Criterion NANFSMC ANSMC PID
1AE 587.664 761.7629 684.7973
MAE 0.9955 1.2905 1.1601
ITAE 3.469x10° 4.4967x10° 4.0424x10°

Fig. 13 presents the output response along with the
real-time updated value of § in the SMC component of the
proposed controller, as adjusted by the fuzzy controller
under varying reference signals, external disturbances, and
sensor noise. When the error e is large, corresponding to
substantial reference signals changes or significant
external disturbances, the fuzzy controller increases & to
enable the SMC component to stabilize the system rapidly.
This mechanism is clearly illustrated in the zoomed view
from 620 s to 660 s, where the reference signal decreases
from 20 cm to 13 cm, and the value of & rapidly increases
to approximately 0.23 to quickly suppress the undershoot.
Conversely, when the tracking error e becomes small, & is
reduced to generate a smoother response while
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maintaining stable steady-state operation under the
influence of output sensor noise, pump motor
uncertainties, and other system disturbances.

This behavior is further confirmed in the zoomed view
from 780 s to 800 s, where the ANSMC algorithm exhibits
a steady-state error within the range of [—0.3, 0.2] cm,
whereas the proposed controller maintains a smaller error
within [-0.1, 0.1] cm due to the adaptively updated &
value ranging from 0.04 to 0.07. In contrast, the ANSMC
algorithm fixes this parameter at 0.1 to maintain control
performance. These results demonstrate that the stability
gain in the SMC component of the proposed controller is
rapidly updated under all uncertain conditions, enabling
the system to achieve faster yet smoother stabilization
compared to the ANSMC algorithm.
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Fig. 13. Output response and adaptively updated value of §; by the fuzzy
controller in the proposed NANFSMC under varying reference signals,
external disturbances, and sensor noise.
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Fig. 14. Control input response and real-time adaptively updated output
weights w of the RBFNN in the proposed NANFSMC under varying
reference signals, external disturbances, and sensor noise.

Fig. 14 illustrates the real-time adaptive variations of the
output weights w of the RBFNN in the proposed
NANFSMC, along with the corresponding changes in the
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control input, under varying reference signals, external
disturbances, and sensor noise. When the reference signal
changes or disturbances occur, the values of w exhibit
significant variations, enabling the proposed controller to
adapt effectively to these changing operating conditions.
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Fig. 15. Zooming control input response and real-time adaptively updated
output weights w of the RBFNN in the proposed NANFSMC under
varying reference signals, external disturbances, and sensor noise. (a)
control signal u increases; (b) control signal u decreases (with reference
signal decreases from 22 cm to 13 cm at 600 s); (c) control ~ signal u
decreases (with reference level of 17 cm); (d) control signal u decreases
(with reference level of 22 cm).

0 4 -

» 10 1 I

-20 1 r

0 100 200 300 400 500 600 700 800

06 1 . . o
0.4 1

S
0.2 1 r
0 100 200 300 400 500 600 700 800
Time (s)

Fig. 16. Adaptively updated values of §&; corresponding to the
convergence of sliding surfaces in the proposed NANFSMC under
varying reference signals, external disturbances, and sensor noise.

Fig. 15 presents the zoomed-in view of Fig. 14. In
Fig. 15(a), when the reference signal increases from
10 cmto 17 cm at 200 s, the magnitude of the control signal
u rises from approximately 3 V to 6 V to drive the pump
output to 17 cm and then decreases to around 3.2 V to
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maintain this new level. Conversely, as shown in
Fig. 15(b), when the reference signal decreases from
22 cm to 13 cm at 600 s, the control signal u dropsto 0 V
and subsequently increases to about 2.8 V to sustain the
liquid level at 13 cm. When external disturbances are
introduced, the output level rises at 300 s and 500 s in the
Fig. 15(c) and (d), respectively, the control signal u
quickly drops to 0 V and then rapidly increases to
approximately 3.2 V and 3.6 V, corresponding to the
reference levels of 17 cm and 22 cm. Additionally, the
amplitude of u continuously varies in response to output
sensor noise, which is always present in real-time control
systems. These results demonstrate that the control signal
u rapidly adapts to varying reference signals, external
disturbances, and output sensor noise.

In Fig. 16, the value of § in the SMC controller Eq. (28)
is updated in accordance with the convergence of the
sliding surfaces S in the proposed NANFSMC under
varying reference signals, external disturbances, and
sensor noise. When the reference signal changes or when
disturbances occur at # = 300 s and ¢ = 500 s, § increases
to enhance stabilization speed. When S becomes small, &
is reduced, resulting in smoother system behavior while
maintaining stability. This adaptive adjustment enables the
proposed controller to achieve faster responses, higher
stability, and smoother performance compared to the
ANSMC, which has the value of & fixed. The
experimental results demonstrate that the proposed
controller outperforms both the ANSMC and the PID
controller in scenarios involving varying reference signals
(Fig. 11) and significant external disturbances (Fig. 12).
The proposed controller delivers fast responses with low
overshoot and undershoot. While the ANSMC also
achieves low overshoot and undershoot, it exhibits slower
settling than the proposed method. The PID controller
responds quickly but suffers significant overshoot, large
undershoot, and sustained oscillations. Furthermore, the
performance indices in Tables IV and V confirm that the
proposed controller achieves superior results across all
evaluated metrics. In addition, Figs. 13—-16 illustrate the
online adaptation capability of the RBFNN output weights
w in the adaptive controller Eq. (6) and the parameter & in
the SMC controller Eq. (28) under varying reference
signals, external disturbances, and output sensor noise.
These adaptive mechanisms enable the proposed controller
to respond faster, maintain robustness, and produce
smoother control actions compared to both the ANSMC
and the PID controller. This validates the effectiveness of
integrating ANSMC with the fuzzy logic technique to
enhance control performance.

V. CONCLUSION

This paper presents a NANFSMC to control uncertain
nonlinear systems with unknown dynamic models. The
proposed controller integrates two components: (1) an
adaptive control component, approximated by an RBFNN,
and (2) an SMC component for system stabilization. The
adaptation and SMC laws are derived using Lyapunov
stability theory. In the proposed scheme, the parameter of
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the SMC component is updated in real-time by an adaptive
fuzzy controller, thereby improving the transient response
speed and overall control quality.

The efficiency of the proposed NANFSMC is
experimentally verified on a CTS under various test
scenarios, with its performance compared to that of the
ANSMC and PID controllers. This is the first experimental
validation of a TS-fuzzy-tuned SMC robustness gain
implemented on a real CTS under external disturbances,
achieving improvements of up to 22.9% and 14.2% in the
IAE, MAE, and ITAE indices compared to the ANSMC
and PID controllers, respectively. These results verify that
the proposed controller possesses a strong ability to
maintain system stability under varying reference signals,
sensor noise, and, particularly, significant external
disturbances.

Furthermore, the proposed controller features a simple
structure with low computational load and a small number
of tuning parameters, making it easily applicable to other
nonlinear systems, especially nonlinear MIMO processes.
In addition, although the RBFNN output weights are
initialized to 0, thus eliminating the need for
pre-optimized weight selection, the system still exhibits
fast convergence with minimal overshoot and undershoot.
This performance is achieved through the integration of an
adaptive fuzzy mechanism, which dynamically adjusts the
stability gain of the SMC component to rapidly
compensate for the approximation error of the RBFNN in
the neural adaptive controller. As a result, the system
stabilizes quickly while minimizing overshoot and
undershoot at low levels as the output error decreases.

However, although the controller is designed for
simplicity and computational efficiency, it has not yet been
experimentally verified on nonlinear MIMO systems.
Therefore, future work will focus on extending the
proposed control strategy to nonlinear MIMO processes to
evaluate its scalability and computational performance.
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