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Abstract— This study presents the design and development of 

a fuzzy control system for a hybrid Three-Wheeled 

Omnidirectional Mobile Robot (3WOMR). As a holonomic 

robot, it can perform simultaneous translational and 

rotational motions. The proposed fuzzy controller enables 

efficient obstacle avoidance in environments with static and 

dynamic obstacles while minimizing structural vibration 

using rubber wheels for damping. An RPLIDAR sensor is 

employed to detect obstacle distances in three 45°-spaced 

sectors. The controller uses three input parameters distance 

from the head (DH), left (DL), and right (DR) to determine 

two output variables representing the angular velocities of 

the left and right wheels. The system operates through 

seventeen cognitive states and twenty-seven fuzzy rules 

implemented in Python using fuzzy logic libraries. 

Experimental tests were performed in a 3×4 m environment, 

both with and without obstacles. The robot successfully 

navigated the area, avoiding collisions and maintaining 

stability. MATLAB 2023b simulations confirmed the 

system’s reliability and performance. The proposed fuzzy 

controller demonstrated improved accuracy and efficiency 

compared to existing methods, providing effective control of 

the robot’s linear and angular motion for safe navigation in 

real-world conditions.  

 

Keywords—Swedish wheel, fuzzy logic, autonomous 

navigation, avoidance obstacle, uncertainty, Python library 

 

I. INTRODUCTION 

Mobile robots experience increasing interest because 

they serve numerous applications that operate in different 

regions including terrestrial [1], aerial [2] and aquatic 

environments [3]. The wheel-based mobile robots fall into 

two classification categories: holonomic and non-

holonomic depending on their ability to steer. Non-

holonomic robots consist of bicycle robots [4] and 

differential drive robots [5] and tricycles [6] together with 

car-like robots as described by Lima and Pereira [7]. 

Holonomic robots exhibit a condition where actuators 

match the available degrees of freedom in their systems. 

Omnidirectional mobile robots constitute holonomic 

systems since their design enables simultaneous operation 
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between translational and rotational movements. The 

ability of holonomic robots to change direction without 

relying on their position makes them effective for personal 

help systems as described by Moreno et al. [8] alongside 

rehabilitation practice [9] and industrial 

manufacturing [10], and recreational sports activities [11].  

Since Grabowiecki introduced the omnidirectional 

wheel in 1919 many diverse omnidirectional wheel 

mechanisms have emerged over the past few years. 

Numerous such examples were demonstrated starting with 

the ball castor introduced by Townsend [12], followed by 

the Mecanum wheel from Ilon [13] and the ball wheel 

developed by West and Asada [14] as well as the 

longitudinal orthogonal wheel from Mourioux et al. [15], 

the MY wheel designed by Ye and Ma [16], the MY 

wheel-II created by Ma et al. [17] and the ACROBAT 

drive system integrated by Inoue et al. [18]. These wheel 

mechanisms achieve active traction force in their primary 

motion path and passive movement in perpendicular 

directions through their free-rolling design. 

Crenganiș [19] presented their works on Three-Wheeled 

Omnidirectional Mobile Robot (3WOMR) kinematic 

behaviour and dynamic properties. 

The research investigated methods to control obstacle 

avoidance in the system. An obstacle avoidance system 

utilized a fuzzy controller which received comparison tests 

against documented methods from the available literature 

database. Multiple methods have been used to create 

control systems. The control methods of sliding-mode 

control and neural networks appeared in  

Alshorman et al. [20] and Li et al. [21] respectively.  

At the same time Hadi [22] worked on this paper aimed 

at MR control modeling through PID fuzzy logic systems 

paired with sliding suppression algorithms development. 

This approach facilitates research into the dynamic 

characteristics of mobile robots with different 

configurations. The overall performance of the control 

system is evaluated, revealing several advantages of fuzzy 

logic controllers. The implementation of fuzzy logic 

proves simpler than traditional control theory because it 

omits complex mathematical modelling while using 
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control rules as its foundation. Additionally, fuzzy control 

is more resilient to changes in parameters. There are many 

control challenges in accelerators that involve phenomena 

difficult to model mathematically [22]. Al-Sahib and  

Jasim et al. [23] investigates the application of Fuzzy 

Logic Control (FLC) in the sonar systems of mobile robots. 

Fuzzy logic approaches provide substantial control to 

mobile robot navigation systems that function in partially 

known spaces critical for industrial and societal 

applications. Through fuzzy logic processing platforms, 

they solve the problem of handling multiple sonar sensor 

input data with their respective information capabilities.  

Abiyev et al. [24] design and present a fuzzy controller 

system which will regulate omnidirectional robots. The 

paper thoroughly describes both mobile robot kinematic 

and dynamic principles as well as presenting a detailed 

explanation about its developed fuzzy controller algorithm. 

The algorithms have been developed for the purpose of 

monitoring both positional changes and rotational 

positioning in mobile robots. 

Wondosen and Shieraw et al. [25] developed and 

simulated a mobile robot motion controller for navigating 

unknown dynamic outdoor spaces because this presents a 

non-linear system containing multiple control variables. A 

fuzzy logic control algorithm operates for both path 

planning and obstacle avoidance because it allows 

intermediate action calculation through rule averaging. 

Key Features of the Project 

• Using Arduino (slave) and Raspberry Pi 4 Model 

B as a master. 

• Coding by python language and applied on 

raspberry Pi 4 as a master controller. 

• Utilizing a Laser Range Scanner Sensor, 

commonly referred to as Lidar, for the purpose of 

obstacle detection. 

• Design CAD and Operation Hybrid-Wheel 

Mobile Robot. 

• Development of controller algorithms utilizing 

Fuzzy Logic Control (FLC) for the purpose of 

obstacle avoidance. 

II. MATERIAL AND METHOD OF THE 3WOMR 

A. Mechanical System 

1) Robot structure 

The robot frame, crafted from stainless steel, is 

meticulously cut using a laser machine. The distance from 

center of robot to the omni wheel is 23 cm, as depicted in 

Fig. 1. The motor support for the robot frame and wheels 

is connected to the DC motors by Aluminum flanges as 

shown in Figs. 2 and 3. The. Finally, the assembled hybrid 

robot frames are shown in Fig. 4.  

 

 

 

 

 

 

Fig. 1. Distance from robot center to wheel. 

 

Fig. 2. Motor support for the robot’s chassis. 

 

Fig. 3. Flange coupling Aluminium alloy. 

 

Fig. 4. Hybrid mobile robot viewed from above and below. 

2) Omni and mecanum directional wheels 

The omni wheel is distinguished by its capability to 

traverse independently in multiple directions [26]. This 

wheel typically rotates in a circular motion and can 

laterally navigate along its outer diameter through the 

application of a screw mechanism. The implementation of 

omnidirectional wheels facilitates the transition of robots 

from non-holonomic to holonomic configurations. In 

contrast to non-holonomic robots, which utilize 
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conventional wheels and possess only two Degrees of 

Freedom (DOF), namely, forward and backward 

movement as well as rotation. holonomic omni wheels 

address this limitation by providing three DOF (𝑥, 𝑦, 𝜃). 

Consequently, A holonomic omni-directional robot can 

move freely in any direction while bypassing the need for 

wheel directional adjustment. These holonomic omni-

directional wheels are capable of moving forward, 

backward, sliding laterally, and rotating while maintaining 

a fixed position. An illustration of the omni-directional 

wheels is presented in Fig. 5 and Table I parameters of 

wheel.  

 

     
(a)                                     (b) 

Fig. 5. (a) Omni wheel (b) Mecanum wheel Configuration. 

TABLE I. PARAMETER 

Parameters Description 

Diameter 102 mm 

Diameter 300 g, 297 g 

width 39.5 mm, 39.75 mm 

Body Material Aluminium 

Load Capacity single wheel 30 kg 

Roller Material Rubber 

Number of Rollers per Wheel 9 

 

3) DC motor JGB37-545B and encoder senser 

A separate DC geared motor with encoder drives each 

wheel of the robot. The specifications for the 270:1 

gearmotor, equipped with an encoder, operating at 12 V 

DC and having a rotational speed of 22 RPM, are provided 

in Table II. Fig. 6 shows the physical dimensions of the 

motor as it stands 76 mm long with a diameter of 37 mm. 

TABLE II. TECHNICAL SPECIFICATIONS OF THE JGB37-545B DC 

MOTOR 

Material Description 

Reduction Ratio 270:1 

Rated Voltage 12 V 

Voltage Rang 6–18 V 

No-load speed 22 RPM 

Load speed 19 RPM 

Load Current 3 A 

Torque 25 kg.cm 

Weight 293 g 

 

 

Fig. 6. Gearmotor with encoder DC 12V. 

In WMR applications, sensors are used to tackle 

localization issues. This research incorporated a rotary 

encoder, shown in Fig. 7, with the DC motor on each wheel. 

A rotary encoder, an electromechanical device, detects the 

rotational position of a wheel by measuring changes in the 

magnetic field and converting these changes into electrical 

signals. It operates at a rate of 400 Pulses Per Revolution 

(PPR). The equation establishes how to calculate wheel 

velocity as follows:  

 

𝑉𝑤 =
2𝜋

400
× No.pulses persecond × wheel raduis  (1) 

 

This encoder is an efficient and affordable option that 

provides two-channel and three-channel incremental 

magnetic encoding, making it suitable for challenging 

environments. It incorporates a magnetic grating and a 

magnetic-sensitive detection motor, generating two 

orthogonal square wave outputs with a 90° phase 

difference. Furthermore, the motor produces 16 pulse 

signals for each AB cycle. 

 

 

Fig. 7. Rotary encoder. 

B. Electronic 

1) Raspberry Pi 4 

Research investigates the connection between 

Raspberry Pi 4 serving as the primary interface circuit and 

RP Lidar along with the Arduino Mega while using a 16 V 

power supply. The system operates with a 16 V power 

supply and engages in programming functions. The main 

controller operates with programming written in python 

language. The Raspberry Pi 4 includes a 40-pin GPIO port 

(General Purpose Input/Output) which enables control of 

several external devices through Fig. 8. 
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Fig. 8. Raspberry Pi 4 Model. 

2) RPLiDAR A1M8-R6 

Slamtec created the two-dimensional laser scanning 

device RPLiDAR A1M8-R6 with full 360-degree 

scanning ability reaching 12 m. The resulting 2D point 

cloud is versatile and can be used for mapping, localization, 

and modeling specific objects or environments. The device 

operates at a frequency of 5.5 Hz, enabling it to sample 360 

points with each revolution. The laser measurement 

system employed in the RPLiDAR A1M8-R6 is based on 

triangulation and is suitable for use in environments 

without direct sunlight. The RP Lidar, integrated with a 

Raspberry Pi 4, enables environmental scans that provide 

valuable data for the Raspberry Pi. This functionality 

facilitates discussions aimed at overcoming obstacles in 

the surrounding environment as shown in Fig. 9.  

 

 

Fig. 9. RPLiDAR A1M8-R6. 

3) Arduino Mega 2560 

In this research, Arduino functions as a sub-interface for 

the circuitry. It’s an open-source electronic platform that 

enables programming using the C/CC+ language through 

its Integrated Development Environment (IDE). The 

device provides 54 digital I/O pins which include a PWM 

output on 15 pins and analog input through 16 pins and 

UART access through 4 pins. Users can access the 16 MHz 

crystal oscillator and USB connection and power jack and 

ICSP header and reset button functions on this device. This 

board serves as a crucial component in supporting control 

systems. In this study, the Arduino Mega 2560 

microcontroller has been chosen, as illustrated in Fig. 10, 

for the implementation of the control algorithm associated 

with the 3WOMR, owing to its suitable performance 

characteristics Table III provides a comprehensive 

overview of the primary technical specifications 

associated with the Arduino Mega 2560 board. 

TABLE III. SPECIFICATIONS OF THE ARDUINO MEGA 2560 

MICROCONTROLLER BOARD 

Microcontroller ATmega2560 

Operating voltage range 5 V 

Recommended input voltage 7–12 V 

Suggested input voltage 6–20 V 

Number of Digital I/O pins 54 

Number of analog input pins 16 

DC current per I/O pin 40 mA 

Direct current allowance for the 3.3 V pin 50 mA 

EEPROM capacity 4 kB 

CPU processing speed 16 MHz 

Flash memory capacity 256 kB 

Connection options regular 

 

 

Fig. 10. Arduino Mega 2560. 

4) MPU9250 (HMC5 +MPU6050) 9Axis (attitude, gyro, 

magnetometer senser) 

Fig. 11 illustrates a portion of the MPU-6050 sensor. 

The MPU-6050 is a Micro-Electromechanical System 

(MEMS) that ingeniously integrates both a gyroscope and 

an accelerometer. It generates output signals that can be 

conveniently read by a microcontroller. This sensor is 

conveniently configured using the I2C-Bus interface. 

 

 

Fig. 11. MPU 9250. 

III. ROBOT DESCRIPTION 

The Three-Wheeled Omnidirectional Mobile Robot 

(3WOMR) is categorized as a holonomic mobile robot, 

characterized by its capability to execute simultaneous and 

independent movements in both translational and 

rotational dimensions. This robot is outfitted with three 

omni-wheels, which are symmetrically positioned at 

intervals of 120º along its circumference refer to Fig. 12. 

Each omnidirectional wheel and mecanum wheel are 

securely attached to its corresponding motor shaft, thereby 
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establishing a shared rotational axis between the motor and 

the wheel. According to kinematics equation, the robot can 

achieve manoeuvres that are unattainable by conventional 

wheeled robots [2, 27–29]. 

 

 

Fig. 12. Robot configuration. 

As illustrated in Fig. 13, an omni-wheel and mecanum 

wheel is designed with multiple rollers, facilitating lateral 

movement that is perpendicular to the standard rolling 

direction. The functionality of an omnidirectional drive 

system necessitates the presence of a minimum of three 

omnidirectional wheels. 

 

 
(a) 

 

 
(b) 

Fig. 13. Type wheel (a) Omni (b) mecanum wheel. 

IV. ROBOT ASSEMBLE 

In Figs. 14 and 15 illustrates the primary components of 

the robot along with their interconnections and schematic 

present work. Table IV enumerates all the components 

utilized in the assembly of this robot. 

TABLE IV. LIST OF COMPONENTS USE ON 3WOMR 

Device Quantity 

Raspberry Pi 4 Model B 1 

Omni wheel 1 

Mecanum wheels 2 

DC Driver 50 A 3 

DC Motor JGB37 With encoder 3 

Flange coupling 3 

Arduino Mega 2560 1 

RP Lidar A1M8-R6 1 

Power Supple 16 V Step 4×4.2 ≈ 16 V 

Step down 3 A 1 

Step down 5 A 1 

MPU-6050 1 

Chassis From Stainless Steel 1 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 14. Methodology mobile robot (a) Circuit diagram of a mechanical 

and electronic component connection of the purpose hybrid robot. (b) 

Schematic present work. (c) Block diagram for the proposed hybrid robot. 
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Fig. 15. Robot configuration with three omni wheels. 

This study employs a Raspberry Pi 4 as the primary 

interface circuit, connected to an RP lidar sensor. The lidar 

sensor aids in identifying obstacles and guiding the robot’s 

navigation. Furthermore, the Raspberry Pi communicates 

with an Arduino Mega via a cable, serving as a secondary 

interface. The Arduino receives data and commands from 

the main controller. Subsequently, the Arduino is 

connected to three DC drivers, each controlling one DC 

motor. The Arduino transmits information to the motors, 

enabling the robot to move to the desired position. 

V. FORWARD AND INVERSE VELOCITY JACOBIAN MATRIX 

Fig. 16 shows arrangement of a robotic system equipped 

with three omnidirectional wheels. A robotic system 

utilizing two mecanum wheels and one omni wheel. Each 

wheel has three velocity components [30–34]. 

In Fig. 17, an omni-wheel and mecanum wheel is 

designed with multiple rollers, facilitating lateral 

movement that is perpendicular to the standard rolling 

direction. The functionality of an omnidirectional drive 

system necessitates the presence of a minimum of three 

omnidirectional wheels. 

The system parameters and velocity specifications 

follow this definition: 

(𝑥, 𝑦):  mobile robot’s position  

𝜃: orientation angle between X and 𝑋𝑅 . 

X G Y: global mobile robot’s position   

𝑋𝑅𝑂𝑌𝑅:  the mobile robot’s base frame refers to a Cartesian 

coordinate system that is associated to the movement of 

the robot’s body canter. 

𝑆𝑖𝑃𝑖𝐸𝑖: coordinate of wheels of 𝑖 th wheel and 𝑃𝑖  represent  

wheel’s canter point. 

𝑂𝑃𝑖
⃗⃗ ⃗⃗⃗⃗ : this vector represents the spatial distance between the 

canter of the robot and the canter of the 𝑖 th wheel. 

𝑅 : represent the distance between omnidirectional wheels 

and the base canter (centre of the robot O). 

𝑟𝑖: represent the distance from centre wheel’s 𝑖 to the roller 

center. 

𝑟𝑟: roller radius on the wheels. 

𝛼𝑖: the angle between O𝑃𝑖 and 𝑋𝑅. 

𝛽𝑖: the angle between 𝑆𝑖 and 𝑋𝑅. 

𝛾𝑖: the angle between 𝑣𝑖𝑟 and 𝐸𝑖. 

𝜔𝑖: wheels angular velocity [rad/s]. 
𝑣𝑖𝜔:  represent the velocity of wheel revolutions [m/s]. 
𝑣𝑖𝑟: denotes the velocity of the passive roller of wheel 𝑖. 
𝑣𝑥𝑣y[m/s] : Robot linear velocity. 

𝜔𝑧[rad/s] : Robot angular velocity. 

 

 

Fig. 16. Geometric structure of Velocity vector of wheel. 

 
(a) 

Passive rollers 

 

Xg 
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(b) 

Fig. 17. Wheel in the robot coordinates (a) mecanum wheel (b) omni 

wheel. 

The velocity of wheel i and tangential velocity of the 

free roller attached to wheel touch floor can be determined 

using Figs. 15 and 16. 

 

𝑣𝑖𝑟 =
1

𝑐𝑜𝑠 45
𝑟𝑟𝜔𝑖                             (2) 

 

 𝑤𝐸𝑖 = 𝑟𝑖𝜔𝑖 [4], 𝑖 = 0, 1, 2, 3                   (3) 

 

According to Fig. 18 and considering the Eq. (3), the 

velocity of the wheel 𝑖 in the frame 𝑆𝑖𝑃𝑖𝐸𝑖, can be derived 

by: 

 

Fig. 18. wheel motion principle. 

𝑣𝑆𝑖
= 𝑣𝑖𝑟 𝑠𝑖𝑛 𝛾𝑖 

𝑣𝐸𝑖
= 𝜔𝑖𝑟𝑖 + 𝑣𝑖𝑟 𝑐𝑜𝑠 𝛾𝑖 

   [
𝑣𝑆𝑖

𝑣𝐸𝑖
] = [

0 𝑠𝑖𝑛 𝛾𝑖

𝑟𝑖 𝑐𝑜𝑠 𝛾𝑖
] [

𝜔𝑖

𝑣𝑖𝑟
] =  𝑤𝑖𝑇𝑃𝑖

[
𝜔𝑖

𝑣𝑖𝑟
]        (4) 

 

The transformation of velocities from wheel i to its 

center point requires the following matrix: 

 𝑤𝑖𝑇𝑃𝑖
= [

0 𝑠𝑖𝑛 𝛾𝑖

𝑟𝑖 𝑐𝑜𝑠 𝛾𝑖
]                            (5) 

The Eq. (6) provides the wheel center velocity 

measurement in the 𝑋𝑅𝑂𝑌𝑅 coordinate system as depicted 

in Figs. 15 and 16. 

 

[
𝑣𝑖𝑋𝑅

𝑣𝑖𝑌𝑅
] = [

cos 𝛽𝑖 −sin 𝛽𝑖

sin 𝛽𝑖 cos 𝛽𝑖
] [

𝑣𝑆𝑖

𝑣𝐸𝑖
] =  𝑤𝑖𝑇𝑃𝑖

 𝑃𝑖𝑇𝑅 [
𝜔𝑖

𝑣𝑖𝑟
]   (6) 

 

A transformation matrix connects the center of the i th 

wheel to the robot’s coordinate system through utilization 

of the presented formulas in Eq. (7) [5].   

 

 𝑃𝑖𝑇𝑅 = [
cos 𝛽𝑖 −sin 𝛽𝑖

sin 𝛽𝑖 cos 𝛽𝑖
]                        (7) 

During planar motion the robot system contains: 

 

[
𝑣𝑖𝑋𝑅

𝑣𝑖𝑌𝑅
] = [

1 0 −𝑙𝑖𝑦
0 1 𝑙𝑖𝑥

] [
𝑣𝑋

𝑣𝑌

𝜔
] = 𝑇′ [

𝑣𝑋𝑅

𝑣𝑌𝑅

𝜔𝑅

]          (8) 

where: 

𝑇′ = [
1 0 −𝑙𝑖𝑦
0 1 𝑙𝑖𝑥

]                        (9) 

 

From Eqs. (5) and (7), the inverse kinematic model can 

be obtained: 

 

 𝑤𝑖𝑇𝑃𝑖
 𝑃𝑖𝑇𝑅 [

𝜔𝑖

𝑣𝑖𝑟
] = 𝑇′ [

𝑣𝑋𝑅

𝑣𝑌𝑅

𝜔𝑧

] , 𝑖 = 0, 1, 2, 3           (10) 

 

The robot base velocity at point O can be derived from 

Eq. (11) using combined terms from Eqs. (6) and (8) under 

conditions of 𝑟𝑖 ≠ 0,0 < |𝛾𝑖| < 𝜋/2, det ( 𝑃𝑖𝑇𝑅) ≠

0, det ( 𝑤𝑖𝑇𝑃𝑖
) ≠ 0 

 

[
𝜔𝑖

𝑣𝑖𝑟
] =  𝑤𝑖𝑇𝑃𝑖

 −1 ⋅  𝑃𝑖𝑇𝑅 −1 ⋅ 𝑇′ [

𝑣𝑋𝑅

𝑣𝑌𝑅

𝜔𝑧

]       (11) 

 

Eqs. (5) and (6) describe the relationship between the 

variables in the wheel frames of each robot and its center. 

By using inverse kinematics, the system’s velocity can be 

determined by applying 𝑣𝑖𝑟 for the linear velocity and 𝜔𝑖 

for the rotational speed of the 𝑖  th wheel, as shown in  

Eq. (11), and conversely in Eq. (13). 

 

[

𝑣𝑋𝑅

𝑣𝑌𝑅

𝜔𝑧

] = 𝑇+ [
𝜔𝑖

𝑣𝑖𝑟
]                              (12) 

  

[
𝜔𝑖

𝑣𝑖𝑟
] = 𝑇 [

𝑣𝑋𝑅

𝑣𝑌𝑅

𝜔𝑅

]                               (13) 

                                                                                      

where: 

 

𝑇 =  𝑤𝑖𝑇𝑃𝑖
 −1 ⋅  𝑃𝑖𝑇𝑅 −1 ⋅ 𝑇′ 

 

 𝑇+ = (𝑇𝑇𝑇)−1𝑇𝑇 

 

𝑇 = [
cos 𝛽𝑖 −sin 𝛽𝑖

sin 𝛽𝑖 cos 𝛽𝑖
]
−1

⋅ [
0 sin 𝛾𝑖

𝑟𝑖 cos 𝛾𝑖
]
−1

⋅ [
1 0 −𝑙𝑖𝑦
0 1 𝑙𝑖𝑥

] 

 

Taking into account the relationships 𝑙𝑖𝑥 = 𝑙𝑖cos 𝑎𝑖 and 

𝑙𝑖𝑦 = 𝑙𝑖sin 𝑎𝑖  and under the assumption that the wheels 

are of uniform size, the transformation matrix can be 

expressed as follows: 

 

𝑇:=
1

−𝑟
[

cos (𝛽𝑖−𝑦𝑖)

sin (𝑦𝑖)

sin (𝛽𝑖−𝑦𝑖)

sin (𝑦𝑖)

𝑙𝑖sin (−𝛼𝑖+𝛽𝑖−𝑦𝑖)

sin (𝑦𝑖)

−
𝑟cos (𝛽𝑖)

sin (𝑦𝑖)
−

𝑟sin (𝛽𝑖)

sin (𝑦𝑖)
−

𝑙𝑖sin (−𝛼𝑖+𝛽𝑖)𝑟

sin (𝑦𝑖)

]     (14) 
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𝑇+ =

1

𝑙𝑖
2+1

[

−
1

2
(𝑙𝑖

2sin (𝛽𝑖) − 𝑙𝑖
2sin (−𝛽𝑖 + 2𝛼𝑖) + 2sin (𝐵𝑖))𝑟

1

2
𝑙𝑖

2sin (𝑦𝑖 − 𝛽𝑖 + 2𝛼𝑖) −
1

2
sin (−𝑦𝑖 + 𝛽𝑖)𝑙𝑖

2 − sin (−𝑦𝑖 + 𝛽𝑖)

1

2
𝑟(𝑙𝑖

2 cos(𝛽𝑖) − 𝑙𝑖
2 cos(−𝛽𝑙 + 2𝛼𝑖) + 2 cos(𝛽𝑖)) −

1

2
𝑙𝑖

2cos (𝑦𝑖 − 𝛽𝑙 + 2𝛼𝑖) +
1

2
cos (−𝑦𝑖 + 𝛽𝑙)𝑙𝑖

2 + cos (−𝑦𝑖 + 𝛽𝑖)

cos (𝛼𝑖 − 𝛽𝑖)𝑙𝑖𝑟 cos (𝛼𝑖 − 𝛽𝑖 + 𝑦𝑖)𝑙𝑖

] (15) 

 

The system’s inverse kinematics can be obtained from 

Eq. (15), considering the relationship between the 

independent variables 𝑣ir  and 𝜔𝑖  for each joint, while 

assuming no wheel slipping occurs on the ground. 

 

[
 
 
 
 
𝜔1

𝜔2

𝜔3

𝜔4]
 
 
 
 

=

−1
𝑟

[
 
 
 
 
 
 
 
cos(𝛽1−𝛾1)

sin𝛾1
    

sin(𝛽1−𝛾1)

sin𝛾1
    

𝑙1sin (𝛽1−𝛾1−𝛼1)

sin𝛾1
cos(𝛽2−𝛾2)

sin𝛾2
    

sin(𝛽2−𝛾2)

sin𝛾2
    

𝑙2sin (𝛽2−𝛾2−𝛼2)

sin𝛾2
cos(𝛽3−𝛾3)

sin𝛾3
    

sin(𝛽3−𝛾3)

sin𝛾3
    

𝑙3sin (𝛽3−𝛾3−𝛼3)

sin𝛾3

cos(𝛽4−𝛾4)

sin𝛾4
    

sin(𝛽4−𝛾4)

sin𝛾4
    

𝑙4sin (𝛽4−𝛾4−𝛼4)

sin𝛾4 ]
 
 
 
 
 
 
 

[

𝑣𝑋

𝑣𝑌

𝜔𝑧

]               (16) 

 

Eq. (17) shows the Jacobian matrix for the system’s 

inverse kinematic: 

 

𝑇 =
−1

𝑟

[
 
 
 
 
 
 
cos (𝛽1−𝛾1)

sin 𝛾1

sin (𝛽1−𝛾1)

sin 𝛾1

𝑙1sin (𝛽1−𝛾1−𝛼1)

sin 𝛾1

cos (𝛽2−𝛾2)

sin 𝛾2

sin (𝛽2−𝛾2)

sin 𝛾2

𝑙2sin (𝛽2−𝛾2−𝛼2)

sin 𝛾2

cos (𝛽3−𝛾3)

sin 𝛾3

sin (𝛽3−𝛾3)

sin 𝛾3

𝑙3sin (𝛽3−𝛾3−𝛼3)

sin 𝛾3

cos (𝛽4−𝛾4)

sin 𝛾4

sin (𝛽4−𝛾4)

sin 𝛾4

𝑙4sin (𝛽4−𝛾4−𝛼4)

sin 𝛾4 ]
 
 
 
 
 
 

     (17) 

 

And for the forward kinematic according to the Eq. (12), 

we have: 

[

𝑣𝑋

𝑣𝑌

𝜔𝑧

] = 𝑇+ [

𝜔1

𝜔2

𝜔3

]                          (18)  

According to Figs. 19 and 20, 𝜔Di denotes the angular 

velocity of the wheel, while 𝜔Mi corresponds to the actual 

motion of the wheel. 

 

 

Fig. 19. Mathematical model. 

 

Fig. 20. Model of the robot. 

Initially, the Jacobean matrix was reorganized for 

inverse kinematics utilizing the matrix presented in  

Eq. (17) for a platform equipped with two Mecanum 

wheels and a single omni wheel.  

The variables 𝑙𝑖 = 𝑅 ; i = 1;2;3 represent the distances 

from the robot’s center to the center of the wheel as shown 

in Table V. Additionally, r denotes the radius measured in 

meters. The subsequent table presents the standard 

parameter values associated with the robot chassis. 

TABLE V. COMMON PARAMETERS 

Parameter Value 

R (cm) 23 

R (cm) 5 

M (kg) 3.260 

 

𝜔D1, 𝜔D2, and 𝜔D3 represent the angular velocities of the 

wheels, measured in radians per second (rad/s). The 

subsequent Table VI presents the necessary parameters 

pertinent to both Mecanum and omni wheels [35]. 

TABLE VI. ROBOT PARAMETERS 

Wheel 𝜶𝒊 𝜷𝒊 𝜸𝒊 R = 𝒍𝒊 (cm) r (cm) 

1 0 0 −π/2 23 5 

2 −2π/3 −2π/3 π/4 23 5 

3 2π/3 2π/3 −π/4 23 5 

    

All identified parameters demonstrate the correct 

positioning of wheels along with their attached secondary 

wheels. These parameters were then substituted into  

Eq. (12) to derive the inverse kinematics matrix. 

 

[

𝜔D1

𝜔𝐷3

𝜔𝐷3
] = [

0 19.6 4.52
26.78 7.17 4.52

−26.78 7.17 4.52
] [

𝑣𝑥

𝑣𝑦

𝜔𝑧

]       (19) 

  

The derived matrix solves inverse kinematics equations, 

indicating how each wheel’s velocity corresponds to the 

center’s velocity command of the robot platform. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

72



Specifically, wheel 1 is responsible for Y-directional 

motion, while wheels 2 and 3 contribute to X-directional 

front motion. 

 

𝜔D1 = 19.6 × (vy) + 4.52 × (𝜔𝑧)         (20) 

                               

𝜔D2 = 26.78 × (vx) + 7.17 × (vy) + 4.52 × (𝜔𝑧)    (21) 

                                                      

𝜔D3 = −26.78 × (vx) + 7.17 × (vy) + 4.52 × (𝜔𝑧)   (22) 

 

The inverse kinematics model was employed to 

establish the wheel odometry of the robotic system. This 

model primarily facilitated the command of velocities to 

the robot platform through a FLC controller. The 

subsequent section presents the forward kinematics model 

for the system, derived by inverting the aforementioned 

matrix Eq. (19). 

 

[

𝑣𝑥

𝑣𝑦

𝜔𝑧

] =

[

0 0.01867 0.01867
0.08 −0.04 0.04

  −0.12761 0.1744 0.1744
] [

𝜔D1

𝜔𝐷3

𝜔𝐷3
]                 (23) 

 

VI.  THE FUZZY CONTROLLER 

A. General FLC 

Fuzzy Logic Control (FLC), conceived by Zadeh in 

1965 [36], is rooted in the foundational principles of Fuzzy 

Set Theory (FST). This theoretical framework effectively 

encapsulates the concept of uncertainty. A defining 

characteristic of FST is that the membership function (µ) 

assumes values within the interval of 0 to 1. 

FLC uses linguistic variables instead of traditional 

mathematical equations to formulate control laws. These 

linguistic variables make it easier to define the operational 

characteristics of systems. Fig. 21 illustrates the structure 

of the FLC block diagram [37]. 

 

 

Fig. 21. Fuzzy logic layout controller [38]. 

Fuzzification involves the systematic conversion of 

inputs into corresponding fuzzy set memberships for a 

Fuzzy Logic Controller (FLC). This process is achieved 

through the application of Membership Functions (MFs), 

which operate within a range of 0 to 1. Various forms of 

MFs, such as triangular, bell-shaped, Gaussian, and 

trapezoidal, are illustrated in Fig. 22.  

 

 

Fig. 22. Several types of Membership Functions (MFs) [37]. 

Within the framework of fuzzy logic controllers (FLC), 

two distinct types of fuzzy inference systems are utilized: 

the Mamdani and Sugeno models. These systems exhibit 

unique characteristics that influence the methodology 

employed for output computation. The rule structure 

inherent in the Mamdani fuzzy logic controller can be 

articulated as follows [37]: 

When first input 1 represent x and second input 2 is y 

then the output represents z.  

Sugeno FLC, the rules are of the form:  

 

when first input 1 = x and second input 2 = y, then the 

output is z = Ax + By + c  

Fig. 23 explains the Mamdani inference systems as 

below:   

 

 

Fig. 23. Mamdani inference system [37]. 

The defuzzification process involves finding a 

numerical value from Fuzzy Set Theory (FST) that 

represents the set. It involves five different approaches. In 

this study, used the centre of gravity method. Its 

mathematical representation is as follows [38]: 

 

𝐶𝑂𝐴 =
∫𝜇𝐴(𝑧)∙𝑧𝑑(𝑧)

∫𝜇𝐴(𝑧) 𝑑(𝑧)
                            (24) 

 

B.  Creating the FSI of the FLC  

In the present work, the main purpose of using FLC for 

3WOMR to obstacle avoidance in uncertainty 

environment with dynamic and static obstacle. The first 

step is to define a fI.mamfis object through the fuzzy lab 

library. 

 

>>> fis = fl.mamfis() 

   

The FLC controller received three input parameters 

including DH, DL as well as DR. A measurement of 
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distance toward the head (DH) along with a measurement 

of distance towards the right (DR) and a measurement of 

distance to the left (DL) exists in Fig. 24 below. 

 

Fig. 24. Sets of sensor data readings.       

The distances determined by the three respective groups 

are referred to as DH, DL, and DR. 

 

DH = if (th1 > angle or angle > th4) 

 

DL = if (th4 > angle ≥ th3) 

 

DR = if (th2 ≥ angle > th1) 

 

The controller uses measurements of distances DH, DL 

and DR to calculate angular velocity in the robot. To assess 

the spatial relationship between an object and the robot, 

it’s crucial to define the range within which the object’s 

position is expected to vary. The LiDAR sensor operates 

within a minimum range of 120 mm and a maximum range 

of 3000 mm. Subsequently, this data is utilized as input for 

the Fuzzy Inference System (FIS). 

 

>>> 𝑚𝑖𝑛𝑑 = 120 

>>> 𝑚𝑎𝑥𝑑 = 3000 

>>> 𝑓𝑖𝑠.𝑎𝑑𝑑𝐼𝑛𝑝𝑢𝑡([𝑚𝑖𝑛𝑟, 𝑚𝑎𝑥𝑟], 𝑁𝑎𝑚𝑒 = ′𝐷𝐻′) 

 

The membership functions associated with the fuzzy 

variable DH have been clearly defined. The research 

presented in reference [35] demonstrates the use of 

trapezoidal and triangular membership function pairs for 

setting both safe obstacle minimums and operational 

safety margins at higher speeds. The rules governing these 

functions were formulated through empirical trials, 

leading to the selection of those that yielded satisfactory 

movement in accordance with our evaluative criteria. 

 

 
 

The terms N, M and F within the membership function 

correspond to the linguistic symbols near and medium and 

far. Fig. 25 shows the membership functions for the DH 

linguistic variable which was generated through plotmf 

function. 

>>> plotmf(fis,'input',0) 

 
 

Fig. 25. The DH variable membership functions. 

The elements DL and DR are included in a similar 

fashion as shown in Fig. 26 where their membership 

functions use equivalent parameters. 

 

 
 

 
 

 

Fig. 26. Membership function for DL and DR variable. 

fis = addInput(fis,[0, 2500], Name='DH'); 
fis = addMF(fis,'DH','trapmf',[0,0,250,500],Name='N');% near  
fis = addMF(fis,'DH','trimf',[250,750,1500],Name='M');% Mean 
fis = addMF(fis,'DH','trapmf',[1000,1500,2500,2500],Name='F'); % Far 
 

fis = addInput(fis,[0, 2500], Name='DL'); 
fis = addMF(fis,'DL','trapmf',[0,0,250,500],Name='N');% Near 
fis = addMF(fis,'DL','trimf',[500,750,1000],Name='M');% Mean 
fis = addMF(fis,'DL','trapmf',[750,1000,2500,2500],Name='F'); % Far 
 
fis = addInput(fis,[0, 2500], Name='DR'); 
fis = addMF(fis,'DR','trapmf',[0,0,250,500],Name='N');% Near 
fis = addMF(fis,'DR','trimf',[250,750,1500],Name='M');% Mean 
fis = addMF(fis,'DR','trapmf',[500,1500,2500,2500],Name='F'); % Far 
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To successfully execute the navigation task, it’s crucial 

that both the robotic system and the controlling mechanism 

are configured with specific parameters. For the robotic 

unit, adjustments were made to the angular velocity range, 

which is limited to (−300 ≤ ω ≤ 300). These parameters 

were derived from the instructional content of the 

3WOMR Machine Learning course. Additionally, the 

Fuzzy Inference System (FIS) includes the angular 

velocity variable denoted as (Land R). The assessment of 

(Land R) results in classifications that are N (Negative 

Big), NZ (Negative), PZ (Positive), and P (Positive Big) as 

Fig. 27 demonstrates. 

 

 
 

 
(a) 

 
(b) 

Fig. 27. Membership function: (a) represent (L) parameter and (b) 

represents (R) parameter. 

The relation between FLC inputs and outputs becomes 

understandable through the fuzzy rules presented in Table 

VII below. 
 

 

 

 

TABLE VII. (A), (B), (C) RULES LIST 

(A) (B) (C) 

1 1 1 1 1 1 

1; % Rule 1 
2 1 1 3 3 1 1; % Rule 1 

3 1 1 3 3 1 1; % Rule 

1 

1 1 2 1 2 1 1; % 

Rule 2 
2 1 2 4 3 1 1; % Rule 2 

3 1 2 4 3 1 1; % Rule 

2 

1 1 3 1 2 1 1; % 

Rule 3 
2 1 3 4 3 1 1; % Rule 3 

3 1 3 4 3 1 1; % Rule 

3 

1 2 1 2 1 1 1; % 

Rule 4 
2 2 1 3 4 1 1; % Rule 4 

3 2 1 3 4 1 1; % Rule 

4 

1 2 2 1 1 1 1; % 

Rule 5 
2 2 2 3 3 1 1; % Rule 5 

3 2 2 4 4 1 1; % Rule 

5 

1 2 3 1 1 1 1; % 

Rule 6 
2 2 3 3 3 1 1; % Rule 6 

3 2 3 4 4 1 1; % Rule 

6 

1 3 1 2 1 1 1; % 

Rule 7 
2 3 1 3 3 1 1; % Rule 7 

3 3 1 3 4 1 1; % Rule 

7 

1 3 2 1 1 1 1; % 

Rule 8 
2 3 2 3 3 1 1; % Rule 8 

3 3 2 4 4 1 1; % Rule 

8 

1 3 3 1 1 1 1; % 

Rule 9 
2 3 3 3 3 1 1; % Rule 9 

3 3 3 4 4 1 1; % Rule 

9 

 

In Fig. 28, it’s evident that the formulation of rules for 

the Fuzzy Inference System (FIS) requires specialized 

knowledge. This expertise enables the precise 

determination of angular velocity based on various input 

values. The robot can encounter 27 distinct perceptual 

scenarios, categorized into three groups of inputs, each 

represented by three linguistic values. Each scenario 

corresponds to a specific response, articulated through 27 

fundamental rules, as illustrated in Fig. 29 and detailed in 

Table VIII. Fig. 30 represents overview of the fuzzy 

model's surface. 

 

 

Fig. 28. Fuzzy Inference System (FIS) control. 

 

Fig. 29. Fuzzy rules of the FIS. 

 

fis = addOutput(fis,[-300, 300], Name='L'); 
fis = addMF(fis,'L','trimf',[-300, -200, -175], Name='N'); 
fis = addMF(fis,'L','trimf',[-200, -150, -100], Name='NZ'); 
fis = addMF(fis,'L','trimf',[100, 150, 250], Name='PZ'); 
fis = addMF(fis,'L','trimf',[150, 200, 300], Name='P'); 
 
fis = addOutput(fis,[-300, 300], Name='R'); 
fis = addMF(fis,'R','trimf',[-300, -200, -150], Name='N'); 
fis = addMF(fis,'R','trimf',[-200, -150, -50], Name='NZ'); 
fis = addMF(fis,'R','trimf',[100, 150, 200], Name='PZ'); 
fis = addMF(fis,'R','trimf',[150, 200, 300], Name='P'); 
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TABLE VIII. FUZZY RULES  

Rules number DH DL DR L R 

1 N N N N N 

2 N N M PZ NZ 

3 N N F PZ N 

4 N M N NZ PZ 

5 N M M P NZ 

6 N M F P N 

7 N F N N PZ 

8 N F M NZ P 

9 N F F PZ N 

10 M N N PZ PZ 

11 M N M PZ PZ 

12 M N F P PZ 

13 M M N PZ PZ 

14 M M M PZ PZ 

15 M M F PZ PZ 

16 M F N PZ P 

17 M F M PZ PZ 

18 M F F P P 

19 F N N PZ PZ 

20 F N M PZ PZ 

21 F N F PZ PZ 

22 F M N PZ PZ 

23 F M M PZ PZ 

24 F M F PZ PZ 

25 F F N P PZ 

26 F F M PZ PZ 

27 F F F P P 

  

 

Fig. 30. Overview of the fuzzy model's surface. 

The first three columns specify an input membership 

function that defines a particular input while the following 

two columns represent an output membership function 

linked to left and right wheel angular velocities. Each rule 

contains information about its weight in the penultimate 

column followed by an identification of the used fuzzy 

operator expressed as value “1” representing the “and” 

operator. The rules are incorporated into the Fuzzy 

Inference System (FIS) using the method addRule: 

 

fis.addRule(ruleList). 

 

Subsequently to the establishment of a Fuzzy Inference 

System (FIS) utilizing the fuzzy lab library, the eval fis 

function can be utilized to evaluate the variables DH, DL, 

and DR in accordance with the readings obtained from the 

sensors. 

C. Pose Update 

These equations are the pose update kinematics for a 

mobile robot. They take the robot’s local 

forward/sideways velocities and rotation rate, and update 

its global position (x, y) and orientation 𝜃 . The Mean 

Square Error (MSE) refers to positional error remained 

below 0.06 m. 

 ẋ= 𝑣𝑥cos 𝜃 − 𝑣𝑦sin 𝜃                          (25) 

 

ẏ = 𝑣𝑥sin θ + 𝑣𝑦cos θ                         (26) 

 

𝜃̇ =  𝜔                                      (27) 

Equations (simple time integral Δt) to update the global 

position (𝑥, 𝑦, 𝜃) from local velocities 𝑉𝑥, 𝑉𝑦 and angular 

velocity 𝜔: 

 

 𝑥𝑘+1 = 𝑥𝑘 + (𝑣𝑥cos 𝜃𝑘 − 𝑣𝑦sin 𝜃𝑘)Δ𝑡       ( 28) 

 

𝑦𝑘 = 𝑦𝑘 + (𝑣𝑥sin 𝜃𝑘 + 𝑣𝑦cos 𝜃𝑘)Δ𝑡        (29) 

 

𝜃𝑘+1 = 𝜃𝑘 + 𝜔𝑘Δ𝑡                        (30) 

VII. RESUTS AND DISCUSSION     

The Light Detection and Ranging (LiDAR) system as 

show in Fig. 31, mounted on the upper part of the robotic 

apparatus, functions as a two-dimensional scanning 

mechanism that collects environmental data within a 

designated scanning range. It’s crucial to understand that 

this two-dimensional LiDAR is limited to scanning a 

single plane, making obstacles below its installation height 

invisible. Therefore, the height of the LiDAR installation 

should be carefully considered based on the specific 

operational environment. 

 

 

Fig. 31. LiDAR and obstacle.  

During each scanning cycle, the LiDAR conducts a 

comprehensive 360 examination of its surroundings, 

generating Np data points, commonly known as a laser 

point cloud. These data points can be mathematically 

expressed as (𝑑𝑡𝑖 , 𝑡𝑖), where 𝑑𝑡𝑖  and  𝑡𝑖,  are centered on 

the robot, with the index i ranging from 1 to Np at a 

specific time t. Fig. 32 illustrates the original data acquired 

by the LiDAR in polar coordinates, with red dots 
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indicating detected obstacles, R representing the scanning 

radius of the LiDAR, and the white triangle representing 

the robot’s position. 

 

 

Fig. 32. Original data of LiDAR. 

The operational space contained four obstacles with 

radius 0.15 m purposefully arranged around the robot. The 

four obstacles received specific placement positions near 

the edge of the robot platform, the case scenario requires 

avoidance of four stationary obstacles as shown in Fig. 33 

and Table IX presents all the required parameters for the 

static obstacles and robot Start Point (SP) from (50,50) cm 

to End Point (EP) (50,450) cm. Under experiment 

conditions the hybrid mobile robot required 25.44 s to 

reach its target whereas the three omni wheel robot needed 

48.5 s. 

TABLE IX. POSITION AND THE RADIUS OF THE STATIC OBSTACLES  

Obs. Number Radius (cm) Position (x, y) cm 

1 15 50,150 

2 15 150,150 

3 15 150,250 

4 15 50,450 

 

 

 

Fig. 33. Robot and Graphical User Interface (GUI) with four obstacles   

In the specified scanning area of 3×4.5 m², as shown in 

Fig. 34, each obstacle can be represented of as a collection 

of distinct red points. The presence of obstacles leads to 

the creation of multiple point sets that effectively 

encompass these obstacles. In contrast, when obstacles are 

absent, no data points are generated. The direct 

representation of the environment using the original 

LiDAR data is impractical because the data points are 

discrete. A single point does not indicate the presence of 

an obstacle; rather, it is the collective aggregation of 

numerous data points that represent this information about 

obstacles location in environment. A substantial body of 

literature has focused on clustering techniques suitable for 

point cloud data. This study aims to compute collision-free 

trajectories for a mobile robot operating in environments 

with either dynamic or static obstacles. The comparison 

outcomes for ABC and FLC algorithms appear in Table X 

based on the performance Fig. 33 in MATLAB program. 

 

 

Fig. 34. Robot and real environment with four obstacles. 

TABLE X. COMPARISON BETWEEN ABC AND FLC ALGORITHMS 

Obstacles Avoidance 

Algorithm 

Path Length 

from SP to TP 

Traveling 

time (s) 

Via Point 

(x, y) cm 

No. of 

turns 

ABC (RED LINE) 574.7 33.634 
P1(88,148) 

P2(175,21) 
8 

FLC (GREEN LINE) 536.515 25.44 
P1(88,148) 

P2(275,27) 
6 

 

At the end, Table XI highlighted the Mean Square Error 

(MSE) for each state error component and Table XII 

Performance characteristics between FLC and PID as well 

as trajectory comparison plot as shown in Fig. 35. 

 

(𝑞𝑑 − 𝑞) = (𝑒𝑋, 𝑒𝑌, 𝑒𝜃)                      (31) 

TABLE XI. MSE OF FOR TWO CONTROLLERS 

Controller 

Methodology 

MSE 

ex (m) ey (m) eθ (rad)  

PID 8.055 e−02 7.782 e−02 4.904 e−03 [1]  

FLC  3.344 e−02 6.798 e−02 3.041 e−03 [2]  

TABLE XII. PERFORMANCE CHARACTERISTICS BETWEEN FLC AND PID 

Controller 

Methodology 
Rise Time 

Setting 

Time (s) 

Steady state  

error 

Max.overs

hoot 

PID 0.45 2.35 0.01 0.77 

FLC  0.36 2.01 0.02 0.71 

 

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

77



 

Fig. 35. Trajectory comparison plots (FLC vs. PID). 

VIII. CONCLUSION AND FUTURE WORK 

This study developed a fuzzy logic controller (FLC) 

for mobile robot obstacle avoidance using LiDAR sensing. 

The controller, designed with 27 fuzzy rules and three 

input distance parameters, demonstrated reliable 

navigation in both simple and cluttered environments. 

Simulation results revealed that the proposed fuzzy system 

achieved a 7% shorter path and a 9% faster travel time 

compared to the ABC method, confirming the 

effectiveness of fuzzy logic in managing nonlinear robotic 

systems and uncertainties in real-world navigation. 

Building on these results, two practical configurations 

are proposed for future development: 

1. FLC (Reactive) + PID (Inner-loop) for precision 

• The FLC acts as a decision-making planner 

that considers environmental constraints such 

as obstacle avoidance and high-level velocity 

references. 

• The PID controller, operating in the inner 

loop of speed and position, tracks the 

reference commands and compensates for 

disturbances caused by model inaccuracies. 

• This configuration is suitable when simplicity 

and low computational demand are prioritized. 

2. FLC (Navigation) + MPC (Precision & Constraints) 

• Here, the FLC functions as a fast planner, 

providing a short planning horizon for the 

Model Predictive Control (MPC) module. 

• The MPC then solves a tightly constrained 

optimization problem, ensuring precise 

motion and robust constraint handling. 

• This structure is ideal for applications that 

demand high accuracy and optimal 

performance under complex conditions. 

Future work may also include extending the controller 

for dynamic obstacle avoidance, integrating optimization 

algorithms to enhance fuzzy rule tuning, and incorporating 

velocity and trajectory control for improved real-time 

navigation in dynamic environments. 
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