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Abstract—This paper presents a method for identifying the
hazardous configuration of a KUKA KR3 RS540
Six-Degree-of-Freedom (6-DOF) industrial robot. A
kinematic model is first established using the standard
Denavit-Hartenberg (D-H) method, and a multi-body
dynamic model is subsequently constructed by incorporating
the Newton-Euler formulation. To identify the pose that
induces the maximum joint torque, a search strategy based
on the Particle Swarm Optimization (PSO) algorithm is
proposed, implemented through co-simulation between
Adams and MATLAB. The optimization objective is defined
as maximizing the sum of the absolute driving torques of
joints J2 to Js, with the corresponding joint angles serving as
decision variables. The PSO algorithm, driven by MATLAB,
generates candidate poses, while Adams performs
high-precision dynamic computations. This framework
enables an automated search across the high-dimensional
joint space to iteratively locate the global optimum.
Simulation results demonstrate that the proposed method
effectively identifies the global most hazardous configuration,
corresponding to a fully extended manipulator pose with
J2=—-90.81° and J3= 82.57°. The maximum total joint torque
in this configuration is approximately 182.47 N-m. These
results provide crucial load boundary conditions for
structural strength verification and lightweight design, while
also offering valuable insights for the selection of key
components in structural optimization.

hazardous
(PSO),
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I. INTRODUCTION

The widespread deployment of robots across industrial,
service, and medical fields [1-3] has made dynamic
modeling and the identification of hazardous
configurations crucial for ensuring operational reliability.
Industrial robots, serving as core components in intelligent
manufacturing, often operate near workspace boundaries
or singularities when executing large-scale tasks such as

Manuscript received September 4, 2025; revised October 14, 2025;
accepted November 24, 2025; published January 23, 2025.

doi: 10.18178/ijmerr.15.1.38-49

38

material handling and assembly. Under these extreme
configurations, joint actuators are frequently subjected to
peak torques that significantly exceed their rated values,
thereby increasing the risks of structural fatigue, reducer
failure, and even catastrophic machine failure [4, 5].
Consequently, quantifying the joint mechanical limits
under extreme poses not only provides a quantitative basis
for structural safety verification and lightweight design but
is also essential for guaranteeing reliable performance
throughout the robot’s entire lifecycle [6].

Currently, scholars worldwide employ various methods
to investigate the dynamics and stress of robots under
extreme configurations. Experimental methods [7, 8] and
numerical traversal algorithms [9] are widely used;
however, these approaches typically involve substantial
computational loads and low efficiency, making them
difficult to adapt for real-time analysis under complex
working conditions. In recent years, intelligent
optimization algorithms have provided new ideas for
solving such complex optimization problems [10]. Among
them, the Particle Swarm Optimization (PSO) algorithm
has been widely applied in robot path planning and
parameter identification due to its few parameters, fast
convergence, and strong global search capability [11-13].
Although PSO has demonstrated excellent performance in
robot trajectory planning [14], parameter identification,
and control [15, 16], and its accuracy in kinematic analysis
has been proven superior to traditional methods [17],
existing research predominantly focuses on trajectory
optimization and motion performance [18]. Studies that
integrate the PSO algorithm with high-fidelity dynamic
simulation for hazardous configuration identification and
joint limit load analysis remain insufficient. The
Adams-PSO co-simulation framework proposed in this
paper effectively combines the high-precision multi-body
dynamics computation capability of Adams (MSC
Software, USA) with the powerful flexibility of MATLAB
in algorithm development. This elevates the optimization
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accuracy from the kinematic or control level to the
multi-body dynamics level, enabling rapid evaluation of
extreme working conditions during the early design stage
and providing a new technical pathway for hazardous
configuration research [19-21]. In terms of efficiency, the
guided search of the PSO algorithm replaces the blind
enumeration of traditional numerical traversal methods in
high-dimensional space, thereby avoiding the exponential
growth of computational cost with joint dimensionality
and achieving a qualitative improvement in computational
efficiency.

To address the aforementioned research gaps, this study
employs the KUKA KR3 R540 Six-Degree-of-Freedom
(6-DOF) industrial robot as a research platform to
investigate hazardous configuration identification and
dynamic analysis through a co-simulation framework.
Initially, the Newton-Euler formulation is adopted to
develop the dynamic model, establishing a direct mapping
between joint space configurations and the corresponding
driving torques. Subsequently, a search strategy based on
the PSO algorithm is proposed, with the objective of
maximizing the sum of absolute joint torques, to
automatically identify the most hazardous posture across
the entire joint space. Furthermore, an Adams-MATLAB
co-simulation platform is constructed, wherein Adams
provides high-fidelity dynamic validation of the
PSO-derived results, ensuring computational accuracy.
Ultimately, this work elucidates the joint load distribution
of the KR3 R540 under extreme static loading conditions,
thereby providing critical data support and a theoretical
foundation for structural strength validation and
lightweight design.

In contrast to traditional methods reliant on simplified
models, the Adams-MATLAB co-simulation framework
developed in this work enables automated global search
with high fidelity. Its core advantage lies in bypassing the
explicit simplification and derivation of complex dynamic
equations. By directly integrating the global exploration
capability of the PSO algorithm with the high-fidelity
physical computation of Adams, optimization is
performed directly on the complete multi-body model.
This approach inherently avoids errors induced by model
simplification,  thereby yielding more reliable
identification of hazardous configurations and limit loads.

II. THEORETICAL BASIS AND METHODOLOGY

A.  Foundation of Robot Dynamic Modeling

Robot dynamic modeling serves as the theoretical
foundation for identifying hazardous configurations, with
the objective of establishing the mapping between joint
angles ¢ and the required joint driving torques 7. Among
the available modeling methodologies—including the
Lagrangian formulation, Newton-Euler method, Gauss’s
principle, Kane’s equations, and screw-dual number
theory—the Lagrangian and Newton-Euler approaches are
the most widely adopted [22]. The Lagrangian method,
based on energy analysis, offers a concise formulation but
suffers from high computational complexity, making it less
suitable for rapid computation in multi-DOF robotic
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systems [23]. In contrast, the Newton-Euler method
employs a recursive link-by-link derivation, resulting in
significantly higher computational efficiency and
rendering it particularly suitable for real-time dynamic
analysis [24]. Since this study focuses on a 6-DOF robot
under the most severe static loading condition in a
gravitational field, and the dynamic model must be
evaluated repeatedly during PSO iterations, the
Newton-Euler method is selected for its computational
advantage. The dynamic model is constructed based on the
robot’s geometric parameters and joint coordinate systems,
with the D-H parameters listed in Table I.

TABLE I. D-H PARAMETER TABLE

Linki 6i(°®) di(mm) ai(mm) ai(°) Joint Range (°)
1 6, 345 20 -90 +170
2 0, 0 260 0 =170/50
3 23 0 20 -90 —110/155
4 Oy 260 0 90 +175
5 0Os 0 0 -90 +120
6 O 75 0 0 +350

The general dynamic equation for an n-DOF serial
industrial robot can be described by Eq. (1):

(9.4.9) = M()§+C(q.9)4+g(@) T (@) Fext (1)

where:

=[11,73,...,7,]" 1s the joint driving torque vector;
M(q) is the joint-space inertia matrix;

C(q,9)q represents the Coriolis and centrifugal forces;
2(g) denotes the gravitational torque;

J(q) is the geometric Jacobian of the end-effector;
F.y 1s the external wrench applied at the end-effector.

In applications such as spot welding, the holding phase
in material handling, or when determining limit loads for
design verification, robot velocity and acceleration are
zero or negligible. Under these conditions, inertial and
Coriolis forces can be disregarded. Therefore, this study
focuses on the most severe static loading condition within
a gravitational field, where the dynamic model considers
only the gravitational and external load terms, while joint
velocities and accelerations are set to zero, i.e., ¢ = 0 and
g = 0, then the dynamic equation simplifies to Eq. (2):

T

7(q) = g(@)+J" (9)Fext @)
where:

2(g) is determined by the mass and center-of-mass
position of each link;

J'(g)F. represents the joint torque load resulting from
the projection of the external end-effector force through
the Jacobian matrix.

Consequently, for the identification of static hazardous
configurations, each joint angle vector ¢ maps to a unique
set of joint torques. The PSO algorithm is employed to
search the high-dimensional joint space, enabling the
identification of the specific configuration that maximizes
the total load on the robotic manipulator.



International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

B.  Algorithm and Design

The PSO algorithm is a population-based global
optimization technique inspired by the collective social
behavior of bird flocking or fish schooling, originally
introduced by Kennedy and Eberhart [25]. This
metaheuristic algorithm models the cooperative search
process of a swarm of particles, each of which iteratively
updates its position within the search space to
progressively approach the optimum. In comparison with
conventional  optimization  approaches, PSO is
characterized by its simplicity of implementation, minimal
parameter tuning, and robust global exploration capability.
Throughout the iterative process, each particle
dynamically adjusts its velocity and position according to
its own historical best solution (personal best, pbest) and
the swarm’s overall best solution (global best, gbest),
facilitating coordinated evolution toward promising
regions of the search space [26]. Through successive
generations, the swarm collectively converges to the
optimal or a near-optimal solution, with the overall
procedure summarized in Fig. 1.

Initialize Particle
Velocities and Position

Calculate the Fitness Value
of Each Particle
v
Update Pbest and Gbest According
to Fitness Values, and Update Particle
Velocities and Positions

M

The Max Number
of Iterations is Reached
or The Global Optimum
is Found?

»i

Output the
optimal solution

end

Fig. 1. PSO calculation diagram.

In this study, the PSO algorithm is employed to identify
the most hazardous configuration of the KUKA KR3 R540
robot within a gravitational field. The optimization
objective for hazardous configuration identification is to
locate the pose that induces the most severe overall load
on the manipulator. To prioritize the analysis of hazardous
loads on major working joints, Joint 1—serving as the base
rotation axis—was excluded from the optimization
variables due to its negligible influence on the
gravitational moment. The optimization variables were
ultimately defined as the angles of Joints 2 to 6 (q1, 92, g3,
s, gs), resulting in an optimization dimension of d = 5. The
fitness function for the PSO is defined as the sum of the
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absolute driving torques of Joints 2 through 6, which is to
be maximized. The specific design is outlined as follows:
(1) Optimization variables: The particle dimension is
set to d = 5, corresponding to the robot’s five joint
angles forming the vector ¢ =[q,, q,, 45> 4, qS]T,
where g, to g, represent the angular positions of
Joints 2 through 6, respectively.
Constraints: (1) Joint angle limits:
grSq =S¢, for =1, 2, ..., 5, where the
bounds are defined by the manufacturer-specified
operating ranges; (2) Workspace and safety
constraints: By restricting all joint angles to their
official motion ranges and ensuring sufficient
clearance between the end-effector and both the
workpiece and robot base, workspace and
collision-avoidance constraints are inherently
satisfied.
Objective Function: The sum of the absolute joint
torques is adopted as the objective function,
expressed in Eq. (3), to comprehensively evaluate
the global load severity of the robot under different
configurations:

2

3)

fsum((]) = Z?:1|Ti(Q)| (3)
where:

7;(¢) denotes the driving torque required by the i-th joint
at configuration ¢;

|z;(¢)| is the absolute value of the joint torque, which is
used to measure the load magnitude regardless of its
direction;

Soum(@) 1s the overall objective function value, reflecting
the cumulative load level of the considered joints at
configuration gq.

This metric captures the combined torque demand
across all joints at a given configuration, providing a
comprehensive measure of the robot’s overall load
condition. Unlike approaches that consider only the
maximum individual joint torque, this summed-value
formulation accounts for potential loading across all
actuated joints, thereby offering a more complete
characterization of globally hazardous configurations.
Consequently, the summation of joint torque magnitudes
is selected as the optimization objective, with its
maximization serving as the convergence criterion for the
PSO iterations.

(4) Convergence criterion: The maximum iteration
count is set to generation (ger) = 50. The
convergence criterion is defined as follows: if the
improvement in the global best fitness value
remains below 1x107® N-m for 20 consecutive
generations, the algorithm is considered to have
converged and terminates early.

With the above optimization setup, the PSO algorithm
efficiently identifies near-optimal hazardous
configurations—where the joint loads approach their
limits—within a constrained iteration budget. The
resulting optimal pose is subsequently validated through
dynamic simulation in the Adams environment.
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C. Adams-MATLAB Co-Simulation Principle

Adams is an industry-standard multi-body dynamics
software capable of high-fidelity simulation of mechanical
systems under gravitational, inertial, and external loads.
MATLAB provides a powerful environment for numerical
computing and optimization algorithm implementation,
particularly suitable for executing PSO [27, 28]. The
Adams-MATLAB co-simulation framework establishes a
closed-loop analysis system: MATLAB serves as the
optimization host, executing the PSO algorithm and
generating decision variables (joint angles), while Adams
functions as the high-precision mechanical solver,
computing the corresponding joint torques and returning
results to guide the optimization. The complete
co-simulation workflow is illustrated in Fig. 2. This
methodology has been successfully demonstrated in
complex transmission systems, confirming the viability of
integrating dynamic modeling with optimization
techniques [29, 30].

’ Adams Model & Interface Config

v

MATLAB Initialization: PSO
Setup & Population Initialization

Data Transfer:
MATLAB—Adams
v
Dynamics Simulation:
Compute Torque & Response

Result Return: Adams—MATLAB

v
PSO Update:
Update Population by Fitness
v
Iteration & Convergence:
Output Dangerous Pose Angles

Fig. 2. Flowchart of the Adams-MATLAB co-simulation process.

III. SIMULATION PROCESS AND RESULTS ANALYSIS

A.  Simulation Process and Parameter Settings

1) Establishment of the Adams multi-body dynamics
model

Due to limitations in robot modeling within Adams, the
three-dimensional model of the robot was created in
SolidWorks and imported into Adams in Parasolid format.
To enhance simulation fidelity, non-structural components
with negligible effects on the results were removed prior
to simulation, thereby highlighting the core mechanical
structure and reducing computational cost [31]. To
improve the accuracy of dynamic analysis [32], actual
mass and center-of-mass parameters were assigned to each
component and the end-effector, as summarized in
Table II. 6 revolute joints were created between adjacent
links, with their axes consistent with the definitions in the
D-H parameter table. The resulting assembly is shown in
Fig. 3. A rotational motion driver was defined for each
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joint, with its displacement function specified as VARVAL
(.model 1.INT AGi) (where i = 1-6), providing an
interface for MATLAB control. A measurement of type
Motion Force — Torque about Z was created for each
driver to output the joint driving torque. Gravity was set to
—9.81 m/s*> along the Y-axis of the global coordinate
system to simulate the actual gravitational environment.

Fig. 3. Simplified 3D model of the robot.

TABLE II. TOTAL MASS AND CENTER OF GRAVITY OF ROBOT

COMPONENTS

Link / mi (Kg) rvi(mm) ryi(mm) r; (mm)

1 8.65 44.48 -0.05 110.09

2 5.09 7.97 2.01 332.72

3 7.49 18.03 3.98 603.48

4 2.36 41.08 0.02 865.49

5 246  279.60 —0.07 890.30

6 045 461.61 1.89 889.97

End of Arm Tooling (EOAT) 2.00  517.48 0.00  890.04

2)  Co-simulation principle and configuration

Within the co-simulation framework of this study,
dynamic computations are handled by Adams, which
utilizes the Generalized STIFF (GSTIFF) integrator for
solution. The MATLAB/Simulink environment acts as the
master controller, executing the PSO algorithm, sending
joint angle commands to Adams, and simultaneously
receiving the resulting joint torque data from Adams. Data
exchange between the two platforms is performed via
fixed-step communication.

3) Robot parameters and static working condition
constraints

The kinematic D-H parameters and joint motion ranges
of the robot in this study are listed in Table I. The
simulation focuses on static conditions, neglecting inertial
and Coriolis forces during motion and considering only
gravitational loads. A 2 kg End of Arm Tooling (EOAT) is
mounted on the robot’s end flange as a simulation payload,
with no additional external operational forces applied. The
search space for each joint angle is constrained by its
official motion range.
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4) PSO optimization algorithm parameter settings

The PSO algorithm is employed to efficiently search for
the most hazardous configuration across the entire joint
space. Based on the kinematic characteristics of serial
robots, hazardous configurations typically occur at
mechanically extreme positions where the manipulator is
fully extended or retracted [33, 34]. To effectively identify
static hazardous configurations, this study focuses the
optimization variables on the joints most sensitive to
gravitational loading. Preliminary analysis indicates that
Joints 2 and 3—driving the upper arm and forearm,
respectively—are the dominant factors influencing the
overall gravitational moment, and are therefore treated as
the core of the analysis. Wrist Joints 46 are also included
to account for their potential coupling effects. Using the
robot configuration shown in Fig. 3 as the initial zero
position, with counterclockwise rotation defined as
positive and clockwise as negative for each link, the
optimization ranges for each joint variable are set
according to official data, as listed in Table III.

TABLE III. THE OPTIMIZATION RANGE OF EACH JOINT VARIABLE

Joint No. J2 Js J4 Js Js
Motion -140/8  —155/11
Range (°) 0 0 +200  £150 +200

The population size N is set to 20, with a maximum
iteration count of 50. The algorithm parameters
are configured as follows: inertia weight w 0.8,
individual learning factor ¢; = 0.7, and social learning
factor c; = 0.9. These parameter values, established based
on typical empirical values for robotic optimization
problems [26] and preliminary testing, strike an effective
balance between exploration and exploitation. The
optimization objective is to maximize the sum of absolute
driving torques for robot Joints 2 to 6, expressed as

maxfoum(q) = X [T(@I(E = 1,2,...,5).
5)  Co-simulation interface configuration

Adams offers two primary co-simulation approaches:
the script interface mode and the Simulink interface
mode [35]. This work employs the Adams-Simulink
co-simulation scheme, wherein the robot dynamics
model—with explicitly defined input (joint angles) and
output (joint torques) variables—is exported as a Simulink
subsystem block (adams sub) via the Adams/Controls
module. The complete simulation architecture is
implemented in Simulink, with the resulting co-simulation
block diagram presented in Fig. 4. In this setup, the
“simout — To Workspace” block serves to record and
export the joint torque time-series data obtained from
Adams simulation to the MATLAB workspace. The PSO
algorithm then reads these data to compute the objective
function value for the current configuration, thereby
closing the optimization loop.

To ensure efficient and accurate computation of static
torques in the co-simulation, the Simulink parameters are
configured as follows: the simulation time is set to [0, 1]
seconds. To achieve stable and synchronized data
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exchange with the Adams model, the co-simulation
communication is configured with a fixed step size,
employing a fixed-step solver. This configuration ensures
reliable dynamic computation by Adams at each
communication step. Accurate static torque results are
obtained by reading the stabilized torque data at the final
simulation time. During co-simulation, a MATLAB script
drives the PSO algorithm to generate joint angle
commands and invokes the Simulink model to transmit
these commands to the subsystem. Adams receives
the angle values in the background, performs dynamic
computation, and returns the resulting joint torques to
the MATLAB workspace [36]. This establishes an
automated closed-loop optimization cycle of “MATLAB
generates parameters — Adams performs precise
computation — returned results guide optimization”,
thereby achieving automated identification of hazardous
configurations.

AG1 |
INT_AG1
AG2 ——— P E—
INT_AG2
AG3
INT_AG3 simout
AG4 =
INT_AG4
AG5 >
INT_AG5
AG6
INT_AG6 adams_sub

Fig. 4. Adams and Simulink co-simulation block diagram.

B.  Optimization Results and Analysis

To validate the effectiveness of the proposed method,
ten co-simulation optimizations were conducted using the
parameters specified in the previous section. The evolution
curves of the total torque, individual joint angles, and
respective joint torques during the PSO process, obtained
from the simulations, are presented in Figs. 5-7.
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Fig. 5. Curve of total torque vs. iteration number.
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1)  Algorithm convergence analysis

As shown in Fig. 5, the fitness values (total torque) from
ten independent PSO runs demonstrate rapid growth with
increasing iterations. The optimization process enters a
rapid improvement phase around the 5th generation and
collectively stabilizes after the 11th generation.

25

Generation
(e)

Fig. 6. Curves of each joint angle vs. iteration number. (a) J, angle vs. iteration number; (b) J; angle vs. iteration number; (c) J; angle vs. iteration
number; (d) Js angle vs. iteration number; (e) J¢ angle vs. iteration number.
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Subsequently, all total torque values fluctuate minimally
around the mean of 182 N-m, with a standard deviation of
0.82 N'm across the ten runs, indicating stable
convergence to the global optimum. This convergence
behavior confirms that the PSO parameters are
appropriately configured and the optimization strategy
exhibits high search efficiency and robustness.
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2)  Analysis of joint angle optimization process

Analysis of the joint angle convergence curves in Fig. 6
reveals the following:
(1) Joints 2 and 3: The optimization processes of

Joints 2 and 3 in Fig. 6(a) and (b) demonstrate core
characteristics of the robot’s static hazardous
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configurations. Unlike the random search patterns
observed in the wrist joints, the angles of J, and J3
exhibit clear, rapid convergence trends across all
10 runs, yet their final results distinctly separate
into two clusters:

Forward-extended posture: In the majority of runs,
J> converges to approximately —91°, and Js to
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approximately 82°. This configuration
corresponds to the manipulator fully extending
forward and downward, positioning the robot’s
center of gravity at its farthest limit from the base.
Backward-leaning posture: In some runs, J;
converges to approximately 80°, and J; to
approximately 91°. In this configuration, the
manipulator extends backward and downward.
The PSO algorithm’s ability to comprehensively capture
both configurations demonstrates its strong global
exploration capability. Although the total torques are very
similar between these postures, their potential failure risks
differ significantly. In industrial robots, Joint 2 being
closer to the base, is typically designed to be the strongest
with a higher rated torque. In contrast, Joint 3 of the
forearm, as a downstream element in the kinematic chain,
is structurally more vulnerable and typically has a lower
rated torque. Therefore, analysis of the forward-extended
posture holds greater engineering significance for safety:
this posture loads the relatively weaker Joint 3 near its
mechanical limit, creating the most hazardous “weakest
link” in the system [32]. The results corresponding to the
forward-extended posture from the ten runs are
summarized in Table I'V. This posture shows a mean total
torque of 182.47 N-m, with mean joint angles of —90.81°

TABLE IV. COMPUTATION RESULTS

for J, and 82.57° for J;. The corresponding standard
deviations are 0.22 N-m, 0.13°, and 0.31°, respectively.
These results confirm that the adopted PSO parameters
provide excellent robustness, enabling the algorithm to
stably and repeatedly locate the global most hazardous
configuration.

(2) Joints 4, 5 and 6: In sharp contrast to J, and J3, the
optimization processes of the wrist joints (J4, Js, J)
in Fig. 6(c)—«(e) exhibit random search
characteristics ~ without consistent patterns.
Although some angles tend to stabilize towards the
end of iterations, their final values demonstrate
high discreteness across the 10 independent runs,
as indicated in Table IV. This confirms that the
posture variations of the wrist joints have a
negligible influence on the total gravitational
moment of the manipulator. During the search, the
PSO algorithm recognized that adjusting these
joints could not significantly improve the value of
the objective function (total torque), and therefore
did not treat them as key decision variables. This
finding strongly supports the adoption of a
dimensionality-reduction optimization strategy
focusing solely on Joints 2 and 3 in subsequent
research or engineering applications, which would
substantially improve computational efficiency.

FOR THE FORWARD-EXTENDED POSTURE

Variable Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Soum (q) (N-m) 182.54 182.59 182.61 182.57 182.51 181.99

1% -90.63 -90.89 -90.87 -91.02 -90.69 -90.78

13(°) 82.14 83.15 82.47 82.71 82.38 82.59

14(°®) 58.26 =71.49 -50.39 =50.87 40.77 88.77

J5(°) -2.72 32.57 13.61 45.49 49.14 120.00

Js(®) 17.35 147.04 -112.76 -179.62 85.60 -117.96
Based on the comprehensive analysis above, this study directly determining the direction of the
selects the “forward-extended posture”—which imposes optimization objective. The final mean converged
more severe loading on Joint 3—from the two hazardous torque values are approximately 153.96 N-m for
configurations identified by PSO as the limit condition Joint 2 and 27.38 N-m for Joint 3, summing to
with the greatest engineering safety significance. 181.34 N-m, which accounts for 99.38% of the

Accordingly, the static hazardous configuration of the total torque.

robot is determined as J» = —90.81° and J3 = 82.57°. This (2) Joints 4, 5 and 6: In contrast to the random

result deviates from the theoretically expected posture
(J2 =-90°, J3 = 90°) based on the assumption of uniform
mass distribution [37]. The discrepancy primarily stems
from the asymmetric mass distribution and center-of-mass
offsets among the robot links, demonstrating that the
maximum joint load does not simply occur at the fully
horizontal arm geometry but is determined by the actual
physical attributes of the structure.

3)  Analysis of the joint torque optimization process

As illustrated in Fig. 7, the evolutionary trajectories of
individual joint torques exhibit strong coupling with their
corresponding angle optimization processes, leading to the
following conclusions:

(1) Joints 2 and 3: Their torque values are significantly
higher than those of other joints, representing the
dominant contributors to the overall load. The
variation trends of these torques are highly
consistent with the total torque curve in Fig. 5,
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distribution of their angles, their output torques
remain consistently at minimal levels across all
runs. This indicates that the posture of the wrist
joints has a negligible influence on the global static
load. During optimization, these joints do not
function as critical decision variables; their angle
values merely passively adapt to the macro
configuration determined by the primary arm
joints (Joints 2 and 3), and the randomness in their
own postures does not significantly affect the total
torque.
4)  Sensitivity analysis of wrist joints
To evaluate the influence of wrist joints on the global
static load, supplementary validation simulations were
conducted based on the identified optimal configuration of
the dominant joints. Specifically, with Joints 2 and 3 fixed
in the forward-extended hazardous posture, random
sampling was performed across the full motion range of



International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

the wrist joints. The resulting mean joint torques and their
standard deviations are summarized in Table V. The
computational results demonstrate that despite substantial
variations in wrist joint angles, the standard deviations of
the corresponding joint torques do not exceed 0.1670 N-m,
while the standard deviation of the total torque is merely
0.36 N-m—representing a fluctuation of less than 0.2%
relative to its mean value. These results quantitatively
confirm that posture variations of the wrist joints have a
negligible effect on the identification of global hazardous
configurations. This finding not only validates the initial
decision to focus the optimization variables on the primary
joints but also provides a solid mathematical foundation
for proposing a more efficient dimensionality-reduction
optimization strategy.

TABLE V. JOINT TORQUES AND STANDARD DEVIATIONS FROM WRIST
JOINT SENSITIVITY ANALYSIS

Joint No. Sfam(q)  J2 J3 Jio Js  Js
Mean Torque (N-m) 181.92 154.39 27.20 0.25 0.08 0.00

Standard Deviations (N'-m) 0.36  0.16 0.16 0.17 0.06 0.00

In summary, the static hazardous configuration of the
KUKA KR3 R540 robot is predominantly governed by
the postures of Joints 2 and 3, while the influence of
Joints 4, 5, and 6 is negligible. The identified critical
posture corresponds to the forward-fully-extended state of
the manipulator, where the combined joint torque reaches
its maximum with a mean value of 182.47 N-m.

C. Verification of Co-Simulation Results and Error
Analysis

To validate the reliability of the hazardous configuration
and maximum torque results obtained from the
aforementioned PSO optimization, this section conducts
an independent static analysis within the Adams model
using the optimized maximum torque and its
corresponding joint angles, followed by comparative
results and error analysis.

1)  Hazardous configuration visualization

The optimal joint angle combination identified by the
PSO algorithm is applied as input to the Adams model,
with the resulting static hazardous configuration presented
in Fig. 8. The visualization clearly shows the robotic arm
in a fully extended configuration with the upper arm and
forearm reaching their maximum extension, positioning
the center of gravity at its farthest point from the base. This
geometric representation provides initial validation of the
optimization results and aligns perfectly with the
conclusions drawn from the torque and angle evolution
analysis in Section III.B, confirming that the hazardous
configuration is dominated by Joints 2 and 3 and
corresponds to the fully extended arm posture.

Fig. 8. Schematic diagram of the robot’s hazardous configuration based
on Adams.

Fig. 9 presents the transient driving torques of all joints
computed by the Adams solver under this hazardous
configuration. All joint torques rapidly stabilize within a
very short duration, confirming that the robot reaches static
equilibrium. The Adams results clearly demonstrate that
the torques produced by the wrist joints (Js—Js) are
negligible in the final posture, thereby corroborating from
a mechanical perspective the conclusion presented in
Section III.B.

2)  Results comparison and error analysis

The steady-state values extracted from the curves in
Fig. 9 serve as precise reference results from Adams for
comparison with the PSO outcomes. A detailed
comparison between the PSO-optimized results and the
direct computational results from the high-fidelity Adams
dynamic model is presented in Table VI.

model_1
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Fig. 9. Joint torque curves from Adams post-processing.
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TABLE VI. COMPARISON OF RESULTS BETWEEN MATLAB-PSO AND ADAMS

Joint MATLAB-PSO Torque (N-m) Adams Torque (N-m) Absolute Error (N-m) Relative Error (%)
I 154.6765 154.6754 0.0011 0.0007
I3 27.4399 27.4389 0.001 0.0036
Iy 0.3396 0.3535 —-0.0139 —4.0931
Js 0.1416 0.1470 —0.0054 -3.8136
Js 0 0 0 0.0000
Total 182.5976 182.4678 0.1298 0.0711

Based on the data presented in Table VI, the following
conclusions can be drawn:

(1) High Consistency: The maximum absolute torque
error for the primary load-bearing joints (J», J3) is
merely 0.0011 N-m, with a maximum relative error
of only 0.0036%. The total torque exhibits an
absolute error of 0.1298 N-m and a relative error
of 0.0711%, all falling within acceptable
engineering tolerances. These results confirm that
the PSO algorithm successfully located the true
global optimum and demonstrate the reliability of
the Adams-MATLAB co-simulation strategy.
Error Source Analysis: The minor observed
discrepancies can be attributed to the following
factors:

Numerical precision and interface transmission:
Rounding errors inherent in the data exchange
between MATLAB and Adams during
co-simulation;

Model fidelity: Subtle differences in parameter
implementation between the simplified dynamics
model used in PSO iterations and the high-fidelity
Adams verification model;

Solver configuration: Discrepancies between the
simplified static solution employed in the PSO
loop and the high-precision solver settings used in
Adams post-processing analysis.

@

D. Result Discussion and Outlook

Through precise identification of hazardous
configurations and dynamic analysis, this study provides
critical input loads and universal design guidelines for the
lightweight design of 6-DOF industrial robots. The main
contributions are as follows:

1) Identification of critical components and limit
conditions

(1) Critical Components: Joints 2 and 3 carry 99.38%
of the static load, making their corresponding
upper arm and forearm links the primary targets for
lightweight design. Prioritizing weight reduction
in these components most effectively reduces joint
loads and overall system inertia.

Limit Load Condition: The fully extended arm
configuration shown in Fig. 8 constitutes the most
severe condition for structural static strength
analysis. Compared to the official maximum
equivalent load moment of 108 N-m for J, and J3,
the simulated moments for J, and J; reach
154.68 N-m and 27.44 N-m, respectively. Notably,
the load on Joint 2 reaches 143% of its rated value,
confirming that the identified configuration indeed

@
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represents a ‘“hazardous condition” capable of
causing structural overload. These torque results
serve as crucial input loads for robot limit strength
verification and lightweight design, and any
optimized topological configuration must satisfy
material allowable stress and deformation
constraints under this extreme load.

2)  Proposal of dimensionality reduction optimization
strategy

The torque response and optimization behavior of joints
4-6 demonstrate that wrist joint configurations have
negligible influence on global static performance. This
finding carries significant practical value: for static
performance optimization of such 6-DOF robots, a
dimensionality-reduction strategy can be implemented by
constraining the hazardous configuration search from the
full 6-dimensional joint space to the 2-dimensional
subspace spanned solely by Joints 2 and 3. This approach
substantially reduces computational expense while
enabling rapid structural design iteration.

3)  Establishment of performance evaluation benchmark

Finite element analysis of the identified hazardous
configuration yields corresponding deformation and stress
distributions [38], establishing a benchmark reference for
evaluating lightweight design effectiveness. Provided that
kinematic parameters remain unchanged, the working
conditions and loads characterized in this study can further
serve as invariant inputs for assessing the static
performance of optimized structural designs.

4) Causes of the torsional phenomenon and result
reliability

During the Adams-MATLAB co-simulation, minor
torsional deformation was observed in the forearm. This
phenomenon primarily stems from modeling and
simulation ~ approximations, including  potential
discrepancies in mass and centroid parameters, slight
misalignments in joint coordinate definitions, and
cumulative numerical or compliance effects. It should be
emphasized that this torsion does not represent actual
physical deformation of the robot, but rather arises from
inherent modeling simplifications. As evidenced in
Table VI, the maximum relative error in joint torques
between MATLAB and Adams remains within acceptable
limits, with both methodologies consistently identifying
the same hazardous configuration and maximum joint
torque. Therefore, the observed torsional effect has
negligible impact on the substantive conclusions, and all
reported torques corresponding to the hazardous posture
are derived from the validated model to ensure reliability.
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IV. CONCLUSIONS

This study addresses the static hazardous configuration
identification for the KUKA KR3 R540 industrial robot by
successfully establishing an automated analysis
framework based on PSO and Adams-MATLAB
co-simulation. This framework effectively integrates
MATLAB?’s efficiency in optimization algorithms with
Adams’ high precision in multi-body dynamics
computation, providing a reliable solution for accurately
locating hazardous configurations within
high-dimensional joint spaces. Through this framework,
the research precisely identifies the most hazardous static
posture under gravitational field and its corresponding
maximum joint loads. The ten independent PSO runs
demonstrated excellent robustness, with all executions
consistently converging to the same optimal region,
exhibiting a standard deviation of merely 0.82 N-m in total
torque. Results demonstrate that when the robot adopts the
fully extended arm configuration, the combined joint
driving torque reaches its peak, with Joints 2 and 3 serving
as the primary load-bearing components while wrist joints
contribute negligibly. The extreme load conditions and
boundary parameters established in this study provide
crucial inputs for subsequent structural lightweight design
and topological optimization of the upper arm and forearm
links. Furthermore, cross-validation of co-simulation
results reveals that the maximum joint torque discrepancy
between PSO optimization and independent Adams
high-fidelity computation remains below 0.0711%,
thoroughly verifying the effectiveness and accuracy of
both the methodology and conclusions.

While this research provides an effective solution for
static hazardous configuration identification in industrial
robots, several limitations warrant attention and guide
future research directions. First, the multi-rigid-body
assumption neglects link and joint flexibility, which may
introduce deviations in ultra-high-precision or lightweight
design scenarios. Second, the model omits joint friction
and actuator dynamics, somewhat simplifying actual joint
loading conditions. Finally, the focus on static conditions
excludes dynamic torque peaks arising from inertial forces
during motion. Future work will develop rigid-flexible
coupling dynamic models and, building upon this
foundation, pursue dynamic hazardous configuration
identification encompassing complete motion trajectories.
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