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Abstract—This paper presents a method for identifying the 
hazardous configuration of a KUKA KR3 R540  
Six-Degree-of-Freedom (6-DOF) industrial robot. A 
kinematic model is first established using the standard 
Denavit-Hartenberg (D-H) method, and a multi-body 
dynamic model is subsequently constructed by incorporating 
the Newton-Euler formulation. To identify the pose that 
induces the maximum joint torque, a search strategy based 
on the Particle Swarm Optimization (PSO) algorithm is 
proposed, implemented through co-simulation between 
Adams and MATLAB. The optimization objective is defined 
as maximizing the sum of the absolute driving torques of 
joints J2 to J6, with the corresponding joint angles serving as 
decision variables. The PSO algorithm, driven by MATLAB, 
generates candidate poses, while Adams performs  
high-precision dynamic computations. This framework 
enables an automated search across the high-dimensional 
joint space to iteratively locate the global optimum. 
Simulation results demonstrate that the proposed method 
effectively identifies the global most hazardous configuration, 
corresponding to a fully extended manipulator pose with  
J2 ≈ −90.81° and J3 ≈ 82.57°. The maximum total joint torque 
in this configuration is approximately 182.47 Nꞏm. These 
results provide crucial load boundary conditions for 
structural strength verification and lightweight design, while 
also offering valuable insights for the selection of key 
components in structural optimization. 
 
Keywords—KUKA robot, dynamic analysis, hazardous 
configuration, Particle Swarm Optimization (PSO),  
Adams-MATLAB co-simulation 
 

I. INTRODUCTION 

The widespread deployment of robots across industrial, 
service, and medical fields [1–3] has made dynamic 
modeling and the identification of hazardous 
configurations crucial for ensuring operational reliability. 
Industrial robots, serving as core components in intelligent 
manufacturing, often operate near workspace boundaries 
or singularities when executing large-scale tasks such as 
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material handling and assembly. Under these extreme 
configurations, joint actuators are frequently subjected to 
peak torques that significantly exceed their rated values, 
thereby increasing the risks of structural fatigue, reducer 
failure, and even catastrophic machine failure [4, 5]. 
Consequently, quantifying the joint mechanical limits 
under extreme poses not only provides a quantitative basis 
for structural safety verification and lightweight design but 
is also essential for guaranteeing reliable performance 
throughout the robot’s entire lifecycle [6]. 

Currently, scholars worldwide employ various methods 
to investigate the dynamics and stress of robots under 
extreme configurations. Experimental methods [7, 8] and 
numerical traversal algorithms [9] are widely used; 
however, these approaches typically involve substantial 
computational loads and low efficiency, making them 
difficult to adapt for real-time analysis under complex 
working conditions. In recent years, intelligent 
optimization algorithms have provided new ideas for 
solving such complex optimization problems [10]. Among 
them, the Particle Swarm Optimization (PSO) algorithm 
has been widely applied in robot path planning and 
parameter identification due to its few parameters, fast 
convergence, and strong global search capability [11–13]. 
Although PSO has demonstrated excellent performance in 
robot trajectory planning [14], parameter identification, 
and control [15, 16], and its accuracy in kinematic analysis 
has been proven superior to traditional methods [17], 
existing research predominantly focuses on trajectory 
optimization and motion performance [18]. Studies that 
integrate the PSO algorithm with high-fidelity dynamic 
simulation for hazardous configuration identification and 
joint limit load analysis remain insufficient. The  
Adams-PSO co-simulation framework proposed in this 
paper effectively combines the high-precision multi-body 
dynamics computation capability of Adams (MSC 
Software, USA) with the powerful flexibility of MATLAB 
in algorithm development. This elevates the optimization 
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accuracy from the kinematic or control level to the  
multi-body dynamics level, enabling rapid evaluation of 
extreme working conditions during the early design stage 
and providing a new technical pathway for hazardous 
configuration research [19–21]. In terms of efficiency, the 
guided search of the PSO algorithm replaces the blind 
enumeration of traditional numerical traversal methods in 
high-dimensional space, thereby avoiding the exponential 
growth of computational cost with joint dimensionality 
and achieving a qualitative improvement in computational 
efficiency. 

To address the aforementioned research gaps, this study 
employs the KUKA KR3 R540 Six-Degree-of-Freedom 
(6-DOF) industrial robot as a research platform to 
investigate hazardous configuration identification and 
dynamic analysis through a co-simulation framework. 
Initially, the Newton-Euler formulation is adopted to 
develop the dynamic model, establishing a direct mapping 
between joint space configurations and the corresponding 
driving torques. Subsequently, a search strategy based on 
the PSO algorithm is proposed, with the objective of 
maximizing the sum of absolute joint torques, to 
automatically identify the most hazardous posture across 
the entire joint space. Furthermore, an Adams-MATLAB 
co-simulation platform is constructed, wherein Adams 
provides high-fidelity dynamic validation of the  
PSO-derived results, ensuring computational accuracy. 
Ultimately, this work elucidates the joint load distribution 
of the KR3 R540 under extreme static loading conditions, 
thereby providing critical data support and a theoretical 
foundation for structural strength validation and 
lightweight design. 

In contrast to traditional methods reliant on simplified 
models, the Adams-MATLAB co-simulation framework 
developed in this work enables automated global search 
with high fidelity. Its core advantage lies in bypassing the 
explicit simplification and derivation of complex dynamic 
equations. By directly integrating the global exploration 
capability of the PSO algorithm with the high-fidelity 
physical computation of Adams, optimization is 
performed directly on the complete multi-body model. 
This approach inherently avoids errors induced by model 
simplification, thereby yielding more reliable 
identification of hazardous configurations and limit loads. 

II. THEORETICAL BASIS AND METHODOLOGY 

A. Foundation of Robot Dynamic Modeling 

Robot dynamic modeling serves as the theoretical 
foundation for identifying hazardous configurations, with 
the objective of establishing the mapping between joint 
angles q and the required joint driving torques τ. Among 
the available modeling methodologies—including the 
Lagrangian formulation, Newton-Euler method, Gauss’s 
principle, Kane’s equations, and screw-dual number 
theory—the Lagrangian and Newton-Euler approaches are 
the most widely adopted [22]. The Lagrangian method, 
based on energy analysis, offers a concise formulation but 
suffers from high computational complexity, making it less 
suitable for rapid computation in multi-DOF robotic 

systems [23]. In contrast, the Newton-Euler method 
employs a recursive link-by-link derivation, resulting in 
significantly higher computational efficiency and 
rendering it particularly suitable for real-time dynamic 
analysis [24]. Since this study focuses on a 6-DOF robot 
under the most severe static loading condition in a 
gravitational field, and the dynamic model must be 
evaluated repeatedly during PSO iterations, the  
Newton-Euler method is selected for its computational 
advantage. The dynamic model is constructed based on the 
robot’s geometric parameters and joint coordinate systems, 
with the D-H parameters listed in Table I. 

TABLE I. D-H PARAMETER TABLE 

Link i θi (°) di (mm) ai (mm) αi (°) Joint Range (°) 
1 θ1 345 20 −90 ±170 
2 θ2 0 260 0 −170/50 
3 θ3 0 20 −90 −110/155 
4 θ4 260 0 90 ±175 
5 θ5 0 0 −90 ±120 
6 θ6 75 0 0 ±350 

 
The general dynamic equation for an n-DOF serial 

industrial robot can be described by Eq. (1):  

 τሺq,qሶ ,qሷ ሻ = Mሺqሻqሷ+Cሺq,qሶ ሻqሶ+gሺqሻ+JTሺqሻFext (1) 

where:  
τ=ሾτ1,τ2,…,τnሿ் is the joint driving torque vector; 
Mሺqሻ is the joint-space inertia matrix;  
Cሺq,qሶ ሻqሶ  represents the Coriolis and centrifugal forces;  
gሺqሻ denotes the gravitational torque;  
Jሺqሻ is the geometric Jacobian of the end-effector; 
Fext is the external wrench applied at the end-effector. 

In applications such as spot welding, the holding phase 
in material handling, or when determining limit loads for 
design verification, robot velocity and acceleration are 
zero or negligible. Under these conditions, inertial and 
Coriolis forces can be disregarded. Therefore, this study 
focuses on the most severe static loading condition within 
a gravitational field, where the dynamic model considers 
only the gravitational and external load terms, while joint 
velocities and accelerations are set to zero, i.e., qሶ ൌ 0 and 
qሷ ൌ 0, then the dynamic equation simplifies to Eq. (2): 

 τሺqሻ = gሺqሻ+JTሺqሻFext (2) 

where: 
gሺqሻ  is determined by the mass and center-of-mass 
position of each link; 
JTሺqሻFext represents the joint torque load resulting from 
the projection of the external end-effector force through 
the Jacobian matrix. 

Consequently, for the identification of static hazardous 
configurations, each joint angle vector q maps to a unique 
set of joint torques. The PSO algorithm is employed to 
search the high-dimensional joint space, enabling the 
identification of the specific configuration that maximizes 
the total load on the robotic manipulator. 
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B. Algorithm and Design 

The PSO algorithm is a population-based global 
optimization technique inspired by the collective social 
behavior of bird flocking or fish schooling, originally 
introduced by Kennedy and Eberhart [25]. This 
metaheuristic algorithm models the cooperative search 
process of a swarm of particles, each of which iteratively 
updates its position within the search space to 
progressively approach the optimum. In comparison with 
conventional optimization approaches, PSO is 
characterized by its simplicity of implementation, minimal 
parameter tuning, and robust global exploration capability. 
Throughout the iterative process, each particle 
dynamically adjusts its velocity and position according to 
its own historical best solution (personal best, pbest) and 
the swarm’s overall best solution (global best, gbest), 
facilitating coordinated evolution toward promising 
regions of the search space [26]. Through successive 
generations, the swarm collectively converges to the 
optimal or a near-optimal solution, with the overall 
procedure summarized in Fig. 1. 

 

 
Fig. 1. PSO calculation diagram. 

In this study, the PSO algorithm is employed to identify 
the most hazardous configuration of the KUKA KR3 R540 
robot within a gravitational field. The optimization 
objective for hazardous configuration identification is to 
locate the pose that induces the most severe overall load 
on the manipulator. To prioritize the analysis of hazardous 
loads on major working joints, Joint 1—serving as the base 
rotation axis—was excluded from the optimization 
variables due to its negligible influence on the 
gravitational moment. The optimization variables were 
ultimately defined as the angles of Joints 2 to 6 (q1, q2, q3, 
q4, q5), resulting in an optimization dimension of d = 5. The 
fitness function for the PSO is defined as the sum of the 

absolute driving torques of Joints 2 through 6, which is to 
be maximized. The specific design is outlined as follows: 

(1) Optimization variables: The particle dimension is 
set to d = 5, corresponding to the robot’s five joint 
angles forming the vector q = ሾq1, q2, q3, q4, q5ሿ், 
where q1 to q5 represent the angular positions of 
Joints 2 through 6, respectively. 

(2) Constraints: (1) Joint angle limits: 
qi

min ≦ qi ≦ qi
max , for I = 1, 2, …, 5, where the 

bounds are defined by the manufacturer-specified 
operating ranges; (2) Workspace and safety 
constraints: By restricting all joint angles to their 
official motion ranges and ensuring sufficient 
clearance between the end-effector and both the 
workpiece and robot base, workspace and 
collision-avoidance constraints are inherently 
satisfied. 

(3) Objective Function: The sum of the absolute joint 
torques is adopted as the objective function, 
expressed in Eq. (3), to comprehensively evaluate 
the global load severity of the robot under different 
configurations: 

 fsum
ሺqሻ = ∑ |τiሺqሻ|5

i=1  (3) 

where: 
τiሺqሻ denotes the driving torque required by the i-th joint 
at configuration q; 
|τiሺqሻ| is the absolute value of the joint torque, which is 
used to measure the load magnitude regardless of its 
direction; 
fsum

ሺqሻ is the overall objective function value, reflecting 
the cumulative load level of the considered joints at 
configuration q. 

This metric captures the combined torque demand 
across all joints at a given configuration, providing a 
comprehensive measure of the robot’s overall load 
condition. Unlike approaches that consider only the 
maximum individual joint torque, this summed-value 
formulation accounts for potential loading across all 
actuated joints, thereby offering a more complete 
characterization of globally hazardous configurations. 
Consequently, the summation of joint torque magnitudes 
is selected as the optimization objective, with its 
maximization serving as the convergence criterion for the 
PSO iterations. 

(4) Convergence criterion: The maximum iteration 
count is set to generation (ger) = 50. The 
convergence criterion is defined as follows: if the 
improvement in the global best fitness value 
remains below 1×10−6 N·m for 20 consecutive 
generations, the algorithm is considered to have 
converged and terminates early. 

With the above optimization setup, the PSO algorithm 
efficiently identifies near-optimal hazardous 
configurations—where the joint loads approach their 
limits—within a constrained iteration budget. The 
resulting optimal pose is subsequently validated through 
dynamic simulation in the Adams environment. 
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C. Adams-MATLAB Co-Simulation Principle 

Adams is an industry-standard multi-body dynamics 
software capable of high-fidelity simulation of mechanical 
systems under gravitational, inertial, and external loads. 
MATLAB provides a powerful environment for numerical 
computing and optimization algorithm implementation, 
particularly suitable for executing PSO [27, 28]. The 
Adams-MATLAB co-simulation framework establishes a 
closed-loop analysis system: MATLAB serves as the 
optimization host, executing the PSO algorithm and 
generating decision variables (joint angles), while Adams 
functions as the high-precision mechanical solver, 
computing the corresponding joint torques and returning 
results to guide the optimization. The complete  
co-simulation workflow is illustrated in Fig. 2. This 
methodology has been successfully demonstrated in 
complex transmission systems, confirming the viability of 
integrating dynamic modeling with optimization 
techniques [29, 30]. 

 

 
Fig. 2. Flowchart of the Adams-MATLAB co-simulation process. 

III. SIMULATION PROCESS AND RESULTS ANALYSIS 

A. Simulation Process and Parameter Settings 

1) Establishment of the Adams multi-body dynamics 
model 

Due to limitations in robot modeling within Adams, the 
three-dimensional model of the robot was created in 
SolidWorks and imported into Adams in Parasolid format. 
To enhance simulation fidelity, non-structural components 
with negligible effects on the results were removed prior 
to simulation, thereby highlighting the core mechanical 
structure and reducing computational cost [31]. To 
improve the accuracy of dynamic analysis [32], actual 
mass and center-of-mass parameters were assigned to each 
component and the end-effector, as summarized in  
Table II. 6 revolute joints were created between adjacent 
links, with their axes consistent with the definitions in the 
D-H parameter table. The resulting assembly is shown in 
Fig. 3. A rotational motion driver was defined for each 

joint, with its displacement function specified as VARVAL 
(.model_1.INT_AGi) (where i = 1–6), providing an 
interface for MATLAB control. A measurement of type 
Motion Force → Torque about Z was created for each 
driver to output the joint driving torque. Gravity was set to 
−9.81 m/s²  along the Y-axis of the global coordinate 
system to simulate the actual gravitational environment. 

 

 
Fig. 3. Simplified 3D model of the robot. 

TABLE II. TOTAL MASS AND CENTER OF GRAVITY OF ROBOT 

COMPONENTS 

Link i mi (kg) rxi (mm) ryi (mm) rzi (mm) 

1 8.65 44.48 −0.05 110.09 
2 5.09 7.97 2.01 332.72 
3 7.49 18.03 3.98 603.48 
4 2.36 41.08 0.02 865.49 
5 2.46 279.60 −0.07 890.30 
6 0.45 461.61 1.89 889.97 

End of Arm Tooling (EOAT) 2.00 517.48 0.00 890.04 

 

2) Co-simulation principle and configuration 

Within the co-simulation framework of this study, 
dynamic computations are handled by Adams, which 
utilizes the Generalized STIFF (GSTIFF) integrator for 
solution. The MATLAB/Simulink environment acts as the 
master controller, executing the PSO algorithm, sending 
joint angle commands to Adams, and simultaneously 
receiving the resulting joint torque data from Adams. Data 
exchange between the two platforms is performed via 
fixed-step communication. 

3) Robot parameters and static working condition 
constraints 

The kinematic D-H parameters and joint motion ranges 
of the robot in this study are listed in Table I. The 
simulation focuses on static conditions, neglecting inertial 
and Coriolis forces during motion and considering only 
gravitational loads. A 2 kg End of Arm Tooling (EOAT) is 
mounted on the robot’s end flange as a simulation payload, 
with no additional external operational forces applied. The 
search space for each joint angle is constrained by its 
official motion range. 
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4) PSO optimization algorithm parameter settings 

The PSO algorithm is employed to efficiently search for 
the most hazardous configuration across the entire joint 
space. Based on the kinematic characteristics of serial 
robots, hazardous configurations typically occur at 
mechanically extreme positions where the manipulator is 
fully extended or retracted [33, 34]. To effectively identify 
static hazardous configurations, this study focuses the 
optimization variables on the joints most sensitive to 
gravitational loading. Preliminary analysis indicates that 
Joints 2 and 3—driving the upper arm and forearm, 
respectively—are the dominant factors influencing the 
overall gravitational moment, and are therefore treated as 
the core of the analysis. Wrist Joints 4–6 are also included 
to account for their potential coupling effects. Using the 
robot configuration shown in Fig. 3 as the initial zero 
position, with counterclockwise rotation defined as 
positive and clockwise as negative for each link, the 
optimization ranges for each joint variable are set 
according to official data, as listed in Table III. 

TABLE III. THE OPTIMIZATION RANGE OF EACH JOINT VARIABLE 

Joint No.  J2 J3 J4 J5 J6 
Motion 

Range (°) 
−140/8

0 
−155/11

0 
±200 ±150 ±200 

 
The population size N is set to 20, with a maximum 

iteration count of 50. The algorithm parameters  
are configured as follows: inertia weight w = 0.8, 
individual learning factor c1 = 0.7, and social learning 
factor c2 = 0.9. These parameter values, established based 
on typical empirical values for robotic optimization 
problems [26] and preliminary testing, strike an effective 
balance between exploration and exploitation. The 
optimization objective is to maximize the sum of absolute 
driving torques for robot Joints 2 to 6, expressed as 
max𝑓sumሺ𝑞ሻ ൌ ∑ |𝜏௜ሺ𝑞ሻ|ሺ𝑖 ൌ 1, 2, . . . , 5ሻହ

௜ୀଵ . 

5) Co-simulation interface configuration 

Adams offers two primary co-simulation approaches: 
the script interface mode and the Simulink interface  
mode [35]. This work employs the Adams-Simulink  
co-simulation scheme, wherein the robot dynamics 
model—with explicitly defined input (joint angles) and 
output (joint torques) variables—is exported as a Simulink 
subsystem block (adams_sub) via the Adams/Controls 
module. The complete simulation architecture is 
implemented in Simulink, with the resulting co-simulation 
block diagram presented in Fig. 4. In this setup, the 
“simout → To Workspace” block serves to record and 
export the joint torque time-series data obtained from 
Adams simulation to the MATLAB workspace. The PSO 
algorithm then reads these data to compute the objective 
function value for the current configuration, thereby 
closing the optimization loop. 

To ensure efficient and accurate computation of static 
torques in the co-simulation, the Simulink parameters are 
configured as follows: the simulation time is set to [0, 1] 
seconds. To achieve stable and synchronized data 

exchange with the Adams model, the co-simulation 
communication is configured with a fixed step size, 
employing a fixed-step solver. This configuration ensures 
reliable dynamic computation by Adams at each 
communication step. Accurate static torque results are 
obtained by reading the stabilized torque data at the final 
simulation time. During co-simulation, a MATLAB script 
drives the PSO algorithm to generate joint angle 
commands and invokes the Simulink model to transmit 
these commands to the subsystem. Adams receives  
the angle values in the background, performs dynamic 
computation, and returns the resulting joint torques to  
the MATLAB workspace [36]. This establishes an 
automated closed-loop optimization cycle of “MATLAB 
generates parameters → Adams performs precise 
computation → returned results guide optimization”, 
thereby achieving automated identification of hazardous 
configurations. 

 

 
Fig. 4. Adams and Simulink co-simulation block diagram. 

B. Optimization Results and Analysis 

To validate the effectiveness of the proposed method, 
ten co-simulation optimizations were conducted using the 
parameters specified in the previous section. The evolution 
curves of the total torque, individual joint angles, and 
respective joint torques during the PSO process, obtained 
from the simulations, are presented in Figs. 5–7. 

 

 
Fig. 5. Curve of total torque vs. iteration number. 
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 (a) (b) 

 
 (c) (d) 

 
(e) 

Fig. 6. Curves of each joint angle vs. iteration number. (a) J2 angle vs. iteration number; (b) J3 angle vs. iteration number; (c) J4 angle vs. iteration 
number; (d) J5 angle vs. iteration number; (e) J6 angle vs. iteration number. 

1) Algorithm convergence analysis 

As shown in Fig. 5, the fitness values (total torque) from 
ten independent PSO runs demonstrate rapid growth with 
increasing iterations. The optimization process enters a 
rapid improvement phase around the 5th generation and 
collectively stabilizes after the 11th generation. 

Subsequently, all total torque values fluctuate minimally 
around the mean of 182 N·m, with a standard deviation of 
0.82 N·m across the ten runs, indicating stable 
convergence to the global optimum. This convergence 
behavior confirms that the PSO parameters are 
appropriately configured and the optimization strategy 
exhibits high search efficiency and robustness. 
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 (a) (b) 

 
 (c) (b) 

 
(e) 

Fig. 7. Curves of each joint torque vs. iteration number. (a) J2 torque vs. iteration number; (b) J3 torque vs. iteration number; (c) J4 torque vs. iteration 
number; (b) J5 torque vs. iteration number; (e) J6 torque vs. iteration number. 

2) Analysis of joint angle optimization process 

Analysis of the joint angle convergence curves in Fig. 6 
reveals the following: 

(1) Joints 2 and 3: The optimization processes of  
Joints 2 and 3 in Fig. 6(a) and (b) demonstrate core 
characteristics of the robot’s static hazardous 

configurations. Unlike the random search patterns 
observed in the wrist joints, the angles of J2 and J3 
exhibit clear, rapid convergence trends across all 
10 runs, yet their final results distinctly separate 
into two clusters: 

 Forward-extended posture: In the majority of runs, 
J2 converges to approximately −91°, and J3 to 
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approximately 82°. This configuration 
corresponds to the manipulator fully extending 
forward and downward, positioning the robot’s 
center of gravity at its farthest limit from the base. 

 Backward-leaning posture: In some runs, J2 
converges to approximately 80°, and J3 to 
approximately 91°. In this configuration, the 
manipulator extends backward and downward. 

The PSO algorithm’s ability to comprehensively capture 
both configurations demonstrates its strong global 
exploration capability. Although the total torques are very 
similar between these postures, their potential failure risks 
differ significantly. In industrial robots, Joint 2 being 
closer to the base, is typically designed to be the strongest 
with a higher rated torque. In contrast, Joint 3 of the 
forearm, as a downstream element in the kinematic chain, 
is structurally more vulnerable and typically has a lower 
rated torque. Therefore, analysis of the forward-extended 
posture holds greater engineering significance for safety: 
this posture loads the relatively weaker Joint 3 near its 
mechanical limit, creating the most hazardous “weakest 
link” in the system [32]. The results corresponding to the 
forward-extended posture from the ten runs are 
summarized in Table IV. This posture shows a mean total 
torque of 182.47 N·m, with mean joint angles of −90.81° 

for J2 and 82.57° for J3. The corresponding standard 
deviations are 0.22 N·m, 0.13°, and 0.31°, respectively. 
These results confirm that the adopted PSO parameters 
provide excellent robustness, enabling the algorithm to 
stably and repeatedly locate the global most hazardous 
configuration. 

(2) Joints 4, 5 and 6: In sharp contrast to J2 and J3, the 
optimization processes of the wrist joints (J4, J5, J6) 
in Fig. 6(c)–(e) exhibit random search 
characteristics without consistent patterns. 
Although some angles tend to stabilize towards the 
end of iterations, their final values demonstrate 
high discreteness across the 10 independent runs, 
as indicated in Table IV. This confirms that the 
posture variations of the wrist joints have a 
negligible influence on the total gravitational 
moment of the manipulator. During the search, the 
PSO algorithm recognized that adjusting these 
joints could not significantly improve the value of 
the objective function (total torque), and therefore 
did not treat them as key decision variables. This 
finding strongly supports the adoption of a 
dimensionality-reduction optimization strategy 
focusing solely on Joints 2 and 3 in subsequent 
research or engineering applications, which would 
substantially improve computational efficiency. 

TABLE IV. COMPUTATION RESULTS FOR THE FORWARD-EXTENDED POSTURE 

Variable Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 
fsum (q) (N·m) 182.54 182.59 182.61 182.57 182.51 181.99 

J2(°) −90.63 −90.89 −90.87 −91.02 −90.69 −90.78 
J3(°) 82.14 83.15 82.47 82.71 82.38 82.59 
J4(°) 58.26 −71.49 −50.39 −50.87 40.77 88.77 
J5(°) −2.72 32.57 13.61 45.49 49.14 120.00 
J6(°) 17.35 147.04 −112.76 −179.62 85.60 −117.96 

 
Based on the comprehensive analysis above, this study 

selects the “forward-extended posture”—which imposes 
more severe loading on Joint 3—from the two hazardous 
configurations identified by PSO as the limit condition 
with the greatest engineering safety significance. 
Accordingly, the static hazardous configuration of the 
robot is determined as J2 ≈ −90.81° and J3 ≈ 82.57°. This 
result deviates from the theoretically expected posture  
(J2 = −90°, J3 = 90°) based on the assumption of uniform 
mass distribution [37]. The discrepancy primarily stems 
from the asymmetric mass distribution and center-of-mass 
offsets among the robot links, demonstrating that the 
maximum joint load does not simply occur at the fully 
horizontal arm geometry but is determined by the actual 
physical attributes of the structure. 

3) Analysis of the joint torque optimization process 

As illustrated in Fig. 7, the evolutionary trajectories of 
individual joint torques exhibit strong coupling with their 
corresponding angle optimization processes, leading to the 
following conclusions: 

(1) Joints 2 and 3: Their torque values are significantly 
higher than those of other joints, representing the 
dominant contributors to the overall load. The 
variation trends of these torques are highly 
consistent with the total torque curve in Fig. 5, 

directly determining the direction of the 
optimization objective. The final mean converged 
torque values are approximately 153.96 N·m for 
Joint 2 and 27.38 N·m for Joint 3, summing to 
181.34 N·m, which accounts for 99.38% of the 
total torque. 

(2) Joints 4, 5 and 6: In contrast to the random 
distribution of their angles, their output torques 
remain consistently at minimal levels across all 
runs. This indicates that the posture of the wrist 
joints has a negligible influence on the global static 
load. During optimization, these joints do not 
function as critical decision variables; their angle 
values merely passively adapt to the macro 
configuration determined by the primary arm 
joints (Joints 2 and 3), and the randomness in their 
own postures does not significantly affect the total 
torque. 

4) Sensitivity analysis of wrist joints 

To evaluate the influence of wrist joints on the global 
static load, supplementary validation simulations were 
conducted based on the identified optimal configuration of 
the dominant joints. Specifically, with Joints 2 and 3 fixed 
in the forward-extended hazardous posture, random 
sampling was performed across the full motion range of 
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the wrist joints. The resulting mean joint torques and their 
standard deviations are summarized in Table V. The 
computational results demonstrate that despite substantial 
variations in wrist joint angles, the standard deviations of 
the corresponding joint torques do not exceed 0.1670 N·m, 
while the standard deviation of the total torque is merely 
0.36 N·m—representing a fluctuation of less than 0.2% 
relative to its mean value. These results quantitatively 
confirm that posture variations of the wrist joints have a 
negligible effect on the identification of global hazardous 
configurations. This finding not only validates the initial 
decision to focus the optimization variables on the primary 
joints but also provides a solid mathematical foundation 
for proposing a more efficient dimensionality-reduction 
optimization strategy. 

TABLE V. JOINT TORQUES AND STANDARD DEVIATIONS FROM WRIST 

JOINT SENSITIVITY ANALYSIS 

Joint No.  fsum(q) J2 J3 J4 J5 J6 

Mean Torque (N·m) 181.92 154.39 27.20 0.25 0.08 0.00 

Standard Deviations (N·m) 0.36 0.16 0.16 0.17 0.06 0.00 

 
In summary, the static hazardous configuration of the 

KUKA KR3 R540 robot is predominantly governed by  
the postures of Joints 2 and 3, while the influence of  
Joints 4, 5, and 6 is negligible. The identified critical 
posture corresponds to the forward-fully-extended state of 
the manipulator, where the combined joint torque reaches 
its maximum with a mean value of 182.47 N·m. 

C. Verification of Co-Simulation Results and Error 
Analysis 

To validate the reliability of the hazardous configuration 
and maximum torque results obtained from the 
aforementioned PSO optimization, this section conducts 
an independent static analysis within the Adams model 
using the optimized maximum torque and its 
corresponding joint angles, followed by comparative 
results and error analysis. 

 

1) Hazardous configuration visualization 

The optimal joint angle combination identified by the 
PSO algorithm is applied as input to the Adams model, 
with the resulting static hazardous configuration presented 
in Fig. 8. The visualization clearly shows the robotic arm 
in a fully extended configuration with the upper arm and 
forearm reaching their maximum extension, positioning 
the center of gravity at its farthest point from the base. This 
geometric representation provides initial validation of the 
optimization results and aligns perfectly with the 
conclusions drawn from the torque and angle evolution 
analysis in Section III.B, confirming that the hazardous 
configuration is dominated by Joints 2 and 3 and 
corresponds to the fully extended arm posture. 

 
Fig. 8. Schematic diagram of the robot’s hazardous configuration based 

on Adams. 

Fig. 9 presents the transient driving torques of all joints 
computed by the Adams solver under this hazardous 
configuration. All joint torques rapidly stabilize within a 
very short duration, confirming that the robot reaches static 
equilibrium. The Adams results clearly demonstrate that 
the torques produced by the wrist joints (J4–J6) are 
negligible in the final posture, thereby corroborating from 
a mechanical perspective the conclusion presented in 
Section III.B. 

2) Results comparison and error analysis 

The steady-state values extracted from the curves in  
Fig. 9 serve as precise reference results from Adams for 
comparison with the PSO outcomes. A detailed 
comparison between the PSO-optimized results and the 
direct computational results from the high-fidelity Adams 
dynamic model is presented in Table VI. 

 

 
Fig. 9. Joint torque curves from Adams post-processing. 
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TABLE VI. COMPARISON OF RESULTS BETWEEN MATLAB-PSO AND ADAMS 

Joint MATLAB-PSO Torque (Nꞏm) Adams Torque (Nꞏm) Absolute Error (Nꞏm) Relative Error (%) 
J2 154.6765 154.6754 0.0011 0.0007 
J3 27.4399 27.4389 0.001 0.0036 
J4 0.3396 0.3535 −0.0139 −4.0931 
J5 0.1416 0.1470 −0.0054 −3.8136 
J6 0 0 0 0.0000 

Total 182.5976 182.4678 0.1298 0.0711 

Based on the data presented in Table VI, the following 
conclusions can be drawn: 

(1) High Consistency: The maximum absolute torque 
error for the primary load-bearing joints (J2, J3) is 
merely 0.0011 N·m, with a maximum relative error 
of only 0.0036%. The total torque exhibits an 
absolute error of 0.1298 N·m and a relative error 
of 0.0711%, all falling within acceptable 
engineering tolerances. These results confirm that 
the PSO algorithm successfully located the true 
global optimum and demonstrate the reliability of 
the Adams-MATLAB co-simulation strategy. 

(2) Error Source Analysis: The minor observed 
discrepancies can be attributed to the following 
factors:  

 Numerical precision and interface transmission: 
Rounding errors inherent in the data exchange 
between MATLAB and Adams during  
co-simulation;  

 Model fidelity: Subtle differences in parameter 
implementation between the simplified dynamics 
model used in PSO iterations and the high-fidelity 
Adams verification model;  

 Solver configuration: Discrepancies between the 
simplified static solution employed in the PSO 
loop and the high-precision solver settings used in 
Adams post-processing analysis. 

D. Result Discussion and Outlook 

Through precise identification of hazardous 
configurations and dynamic analysis, this study provides 
critical input loads and universal design guidelines for the 
lightweight design of 6-DOF industrial robots. The main 
contributions are as follows: 

1) Identification of critical components and limit 
conditions 

(1) Critical Components: Joints 2 and 3 carry 99.38% 
of the static load, making their corresponding 
upper arm and forearm links the primary targets for 
lightweight design. Prioritizing weight reduction 
in these components most effectively reduces joint 
loads and overall system inertia. 

(2) Limit Load Condition: The fully extended arm 
configuration shown in Fig. 8 constitutes the most 
severe condition for structural static strength 
analysis. Compared to the official maximum 
equivalent load moment of 108 N·m for J2 and J3, 
the simulated moments for J2 and J3 reach 
154.68 N·m and 27.44 N·m, respectively. Notably, 
the load on Joint 2 reaches 143% of its rated value, 
confirming that the identified configuration indeed 

represents a “hazardous condition” capable of 
causing structural overload. These torque results 
serve as crucial input loads for robot limit strength 
verification and lightweight design, and any 
optimized topological configuration must satisfy 
material allowable stress and deformation 
constraints under this extreme load. 

2) Proposal of dimensionality reduction optimization 
strategy 

The torque response and optimization behavior of joints 
4-6 demonstrate that wrist joint configurations have 
negligible influence on global static performance. This 
finding carries significant practical value: for static 
performance optimization of such 6-DOF robots, a 
dimensionality-reduction strategy can be implemented by 
constraining the hazardous configuration search from the 
full 6-dimensional joint space to the 2-dimensional 
subspace spanned solely by Joints 2 and 3. This approach 
substantially reduces computational expense while 
enabling rapid structural design iteration. 

3) Establishment of performance evaluation benchmark 

Finite element analysis of the identified hazardous 
configuration yields corresponding deformation and stress 
distributions [38], establishing a benchmark reference for 
evaluating lightweight design effectiveness. Provided that 
kinematic parameters remain unchanged, the working 
conditions and loads characterized in this study can further 
serve as invariant inputs for assessing the static 
performance of optimized structural designs. 

4) Causes of the torsional phenomenon and result 
reliability 

During the Adams-MATLAB co-simulation, minor 
torsional deformation was observed in the forearm. This 
phenomenon primarily stems from modeling and 
simulation approximations, including potential 
discrepancies in mass and centroid parameters, slight 
misalignments in joint coordinate definitions, and 
cumulative numerical or compliance effects. It should be 
emphasized that this torsion does not represent actual 
physical deformation of the robot, but rather arises from 
inherent modeling simplifications. As evidenced in  
Table VI, the maximum relative error in joint torques 
between MATLAB and Adams remains within acceptable 
limits, with both methodologies consistently identifying 
the same hazardous configuration and maximum joint 
torque. Therefore, the observed torsional effect has 
negligible impact on the substantive conclusions, and all 
reported torques corresponding to the hazardous posture 
are derived from the validated model to ensure reliability. 
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IV. CONCLUSIONS 

This study addresses the static hazardous configuration 
identification for the KUKA KR3 R540 industrial robot by 
successfully establishing an automated analysis 
framework based on PSO and Adams-MATLAB  
co-simulation. This framework effectively integrates 
MATLAB’s efficiency in optimization algorithms with 
Adams’ high precision in multi-body dynamics 
computation, providing a reliable solution for accurately 
locating hazardous configurations within  
high-dimensional joint spaces. Through this framework, 
the research precisely identifies the most hazardous static 
posture under gravitational field and its corresponding 
maximum joint loads. The ten independent PSO runs 
demonstrated excellent robustness, with all executions 
consistently converging to the same optimal region, 
exhibiting a standard deviation of merely 0.82 N·m in total 
torque. Results demonstrate that when the robot adopts the 
fully extended arm configuration, the combined joint 
driving torque reaches its peak, with Joints 2 and 3 serving 
as the primary load-bearing components while wrist joints 
contribute negligibly. The extreme load conditions and 
boundary parameters established in this study provide 
crucial inputs for subsequent structural lightweight design 
and topological optimization of the upper arm and forearm 
links. Furthermore, cross-validation of co-simulation 
results reveals that the maximum joint torque discrepancy 
between PSO optimization and independent Adams  
high-fidelity computation remains below 0.0711%, 
thoroughly verifying the effectiveness and accuracy of 
both the methodology and conclusions. 

While this research provides an effective solution for 
static hazardous configuration identification in industrial 
robots, several limitations warrant attention and guide 
future research directions. First, the multi-rigid-body 
assumption neglects link and joint flexibility, which may 
introduce deviations in ultra-high-precision or lightweight 
design scenarios. Second, the model omits joint friction 
and actuator dynamics, somewhat simplifying actual joint 
loading conditions. Finally, the focus on static conditions 
excludes dynamic torque peaks arising from inertial forces 
during motion. Future work will develop rigid-flexible 
coupling dynamic models and, building upon this 
foundation, pursue dynamic hazardous configuration 
identification encompassing complete motion trajectories. 
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