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Abstract—Policy transfer is an efficient approach for
developing specific robots. Its effectiveness depends on
high-quality imitation datasets and a stable learning process.
However, substantial differences in geometry and dynamics
between source and target robots pose challenges. Purely
kinematics-driven mapping methods and manual parameter
tuning often fail to maintain kinematic-dynamic consistency.
In this study, we transfer control policies from the quadruped
robot Unitree Gol to our self-developed heavy wheel-legged
robot Tiangou. We propose a Consistency-Aware
Retargeting (CAR) method. This extends conventional
inverse kinematics by adding dynamic consistency
constraints. Using motion data from Gol’s Model Predictive
Controller (MPC), CAR generates a reference dataset for
Tiangou. We then integrate Bayesian Optimization (BO) into
the imitation learning framework. This enables autonomous
tuning of policy model structures and optimization
hyperparameters. Experiments show that CAR reduces
foot-end position errors, mitigates joint angular velocity
fluctuations, and decreases foot-end slippage. Moreover,
Bayesian optimization improves sample efficiency and
training stability. These contributions establish a practical
foundation for policy transfer across heterogeneous robotic
platforms.

Keywords—imitation learning, motion retargeting, Bayesian
optimization, policy transfer, wheel-legged robot

I. INTRODUCTION

Legged robots offer key advantages through discrete
footholds [1, 2]. They excel in adapting to complex terrain
and provide superior mobility. This makes them ideal for
applications  like disaster response [3], field
exploration [4], and agricultural operations [5]. In recent
years, several quadruped platforms have emerged, which
have accelerated advancements in legged robot control [6].
However, pure leg structures limit mobility and energy
efficiency due to the actuator’s reciprocating oscillation
mode [7]. To overcome this, researchers have developed
hybrid wheel-legged designs, such as mounting driving
wheels at the foot end [8, 9]. Thus, they combine the
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high-speed mobility of wheeled robots with the terrain
adaptability of legged robots. Yet, such designs often
restrict load capacity due to joint mechanical limits and
require joint actuators for propulsion in wheeled-driven
mode, which reduces efficiency and scalability. The
wheeled robots dominate practical applications over
legged ones. Therefore, we argue that wheel-legged robots
should prioritize wheels for mobility and load-bearing.
Legs should mainly provide terrain adaptability. Based on
this principle, we designed Tiangou, a novel wheel-legged
robot, as shown in Fig. 1. It attaches four mechanical legs
to an Unmanned Ground Vehicle (UGV) chassis. Tiangou
features 14 actuators: 12 for the legs and 2 for the wheels,
utilizing high-torque servo motors (e.g., with a peak torque
of 57.5 Nm) and integrated encoders for precise feedback.
Two caster wheels connect to the frame via a single trailing
suspension system, which absorbs vibrations in wheel
mode. Each leg uses a 3 Degrees of Freedom (3-DoF)
serial mechanism for walking, supported by an Inertial
Measurement Unit (IMU) for pose estimation. The wheel
and legged modes operate via independent control loops.
In wheel mode, Tiangou supports a 150 kg payload and
reaches a speed of 50 km/h. In legged mode, the wheels do
not drive; instead, they extend the body length by over
0.4 m to avoid interference. This results in a body-leg ratio
of 1.83 for Tiangou versus 0.97 for Gol. Besides, Tiangou
weighs 80 kg, a 7.7x mass disparity compared to Gol’s
10.4 kg. These complicate legged locomotion control
design and optimization.

To address these control issues on heavy platforms like
Tiangou, we utilize Imitation Learning (IL). This method
has proven effective for robot control, particularly in
facilitating the efficient transfer of policies across different
platforms. For example, GenLoco [10] uses a size factor «
(sampled from [0.8, 1.2]) for transfer among similar-sized
quadrupeds. However, it ignores cases like Tiangou, with
a large body and short legs. Such mismatches amplify
dynamic differences, making GenLoco unsuitable—it fails
to prevent joint overload or instability during transfer from
lightweight to heavy robots. Moreover, training results
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depend heavily on model parameters and algorithm
hyperparameters. Standard tuning practices for general
quadrupeds do not apply to specialized platforms, such as
Tiangou. Manual tuning lacks sample efficiency and
training stability.

‘VWflgerled Mode

Fig. 1. Wheel-legged robot Tiangou with labeled components. (1) main
control unit; (2) can transceiver; (3) battery pack; (4) power distribution
board; (5) inertial measurement unit; (6) single trailing suspension;
(7) hub motor; (8) extension motor & encoder; (9) thigh motor & encoder;
(10) calf motor & encoder; (11) extension joint; (12) thigh; (13) calf;
(14) foot.

To address these gaps, we propose a policy transfer
method that incorporates both kinematic and dynamic
constraints.  Specifically, our Consistency-Aware
Retargeting (CAR) method extends inverse kinematics. It
enforces dynamic consistency to handle body-leg ratios
and mass differences in heterogeneous transfers. As a
result, CAR generates high-quality datasets, reducing joint
overload and instability. Additionally, we integrate
Bayesian Optimization (BO) into the training process. This
automates searches for policy model structures and

hyperparameters, boosting learning efficiency and stability.

This research aims to achieve reliable policy transfer from
Unitree Gol to Tiangou. It offers a pathway for intelligent
control in heavy-duty robots.

The main contributions of this study are as follows:

e We propose a CAR method that extends inverse
kinematics with dynamic consistency constraints,
including warm-start initialization, contact
consistency, hybrid Z-mapping, root smoothing,
and joint low-pass filtering.

e Weintegrate BO with Thompson sampling into the
Proximal Policy Optimization (PPO) framework,
enabling automated tuning of network
architectures and hyperparameters.

e We demonstrate practical policy transfer from the
lightweight Unitree Gol to our self-developed
heavy wheel-legged robot Tiangou (80 kg
self-weight), providing a scalable foundation for
heterogeneous robotic platforms in applications.

The paper is structured as follows: Section II reviews
related work; Section III details the framework and
formulations; Section I'V presents experimental results and
discussions. Section V provides the conclusion.
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II. LITERATURE REVIEW

In robotic policy transfer [11], motion retargeting and
cross-platform  adaptation address = morphological
differences across heterogeneous platforms. Existing
studies can be categorized into three main areas:
kinematics-based retargeting methods [12], unified
learning frameworks for cross-morphology
generalization [13], and imitation learning enhanced by
Reinforcement Learning (RL) [14].

Motion retargeting captures key marker sequences and
applies inverse kinematics for zero-shot transfer from
source to target. For instance, Yoon et al. [15] proposed
Spatio-Temporal Motion Retargeting (STMR). This
generates executable sequences via inverse kinematics,
efficiently reproducing animal motions on quadruped
robots. Similarly, Fuchioka et al. [16] introduced
OPT-Mimic, which optimizes trajectories to reduce noise.
However, these methods focus on single-platform
reproduction. Building upon this, policy transfer research
has advanced toward constructing unified learning
frameworks that enable multi-morphology adaptation
through a single network. Liu ef al. [17] presented the
unified locomotion transformer. It achieves zero-shot
generalization across diverse robot morphologies.
Qin et al. [18] improved task-switching robustness via
language-conditioned control. Yet, these methods require
large datasets and high computation, and overlook
dynamic discrepancies. Methods by Reske et al. [19] and
Niu et al. [20] succeed on specific hardware. But they
emphasize kinematics over nonlinear dynamics. This leads
to failures when body proportions differ greatly. In
particular, transfers from lightweight to heavy platforms
cause oscillations and slippage. Another category
optimizes imitation learning for better sample efficiency
and generalization. Li ef al. [21] proposed FastMimic. It
integrates trajectory optimization with model-based
controllers, imitating diverse gaits and minimizing
hardware fine-tuning. Jin ef al. [22] used staged objectives
for simulation-to-reality transfer in high-speed running.
Sood et al. [23] added a multi-critic RL framework. It
balances imitation fidelity and task performance. This
reduces reward tuning instability. Youm ef al. [24]
incorporated a fine-tuning method based on Model
Predictive Control (MPC). Despite these advances, the
RL-enhanced techniques have limitations. First, the PPO
frameworks are sensitive to hyperparameters, making
manual tuning labor-intensive. Second, relying solely on
network augmentations cannot effectively address
dynamic discrepancies across robot morphologies.

Overall, prior works have advanced motion mapping
and learning optimization. However, they often overlook
dynamic discrepancies in heterogeneous platforms and
lack automated parameter tuning. Unlike
kinematics-focused methods, which are limited to
lightweight quadrupeds, our CAR method addresses mass
and proportion mismatches in heavy-duty robots. Thus, we
enhance robustness and efficiency for transfers from
open-source to custom platforms via CAR and use BO for
automated hyperparameter search.
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III. METHODS

The proposed policy transfer framework is illustrated in
Fig. 2. We generate source motion sequences from Gol’s
locomotion, which MPC controls. Based on the Inverse
Kinematics (IK) of robots, we introduce mechanisms like
time-consistent initialization, stance-phase foot locking,
body smoothness constraints, and joint low-pass filtering.

These form the CAR method, which creates a motion
dataset for Tiangou. In the imitation module, we define
multiple candidate hyperparameter configurations.
Gaussian Process (GP) modeling with Thompson
sampling is employed to explore the training pipeline
adaptively. Finally, the module outputs joint commands
executed on Tiangou via a PD controller.
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Fig. 2. Policy transfer pipeline from Unitree Gol to Tiangou.

A. Problem Formulation

This study transfers locomotion policies via an imitation
learning framework. In IL, the policy drives the imitator to
replicate the expert’s behavior. The quality of the source
locomotion sequences sets an upper Bound on the imitated
policy’s performance. Therefore, we select Gol’s official
MPC controller [25] as demonstrations Dy, for its proven
stability and gait diversity, ensuring high-fidelity datasets.
Tiangou features distinct body and leg proportions,
rendering direct imitation ineffective. Our objective is to
learn a policy mg(a;|o;) that maps target observations
o, € R® to actions a, € R™, such that the policy should
mimic source behaviors while adapting to target
morphology. The optimization problem is shown in

Eq. (1).

6" = arg max Er.r, Xt-ovtr(osa)] (1)

where y is the discount factor and r(-) is an imitation
reward aligned with reference trajectories. The trained
policy g outputs joint angles as actions a;, executed via a
Proportional-Derivative (PD) controller with gains
Kp=300 and Kp = 10.

B.  Motion Retargeting

To address morphological differences, we map source
trajectories {gi"°} to feasible target trajectories {q{%"}
using an IK-based pipeline. These compute the target base
pose and foot positions by aligning key skeletal markers.
We define 19 markers: the joints of the four legs, the

center, the head, and the tail. The root pose is calculated in
Eq. (2).

1
root — 1
P, 9 (pcenter + phead)'

root (2)

R; = Quat (f(pcenter’ Pheaa’ phips))

where f(-) constructs an orthogonal frame from

center—head and hip vectors and p, the part position.

End-effector targets are then mapped by geometric transfer
in Eq. (3).

toetar

P = p T+ (P = P T) + Bogpsers ()
where Agfrser; donates the geometric difference of the
source and target robots.

To evaluate the performance of the motion retargeting
method, we define three metrics: L2 norm of foot position
error (Eq. (4)), joint angular velocity L2 norm (Eq. (5)),
and foot slippage L2 norm (Eq. (6)).

EE_Pos L2 =<3, |lp/* — pter]|, )

where pif * is the forward kinematics foot position and
pe the target foot position. Lower values show precise
foot execution.

Joint Vel L2 = |[(q; — q¢-1)/Atll, Q)

where g, is the joint angle vector and At the interval.
Lower values indicate smoother trajectories.

30



International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

Foot _Slip = ¥jec (6)

Kk _fk
(pj,t ~Pji-1 ol

where C is the contact set and (-),y , the horizontal
projection. Lower values reduce unwanted slippage.

C. Consistency-Aware Retargeting Components

Observations indicate that instability arises from
mismatches in stance contact patterns, root placement, and
joint feasibility. Thus, we add five enhancements to the IK
backbone for CAR. The coefficients were empirically
tuned based on the following considerations: smaller
values for pose and joint filtering ensure a quick response
and tracking. At the same time, the contact threshold is
determined by foot geometry and simulation precision.

1)  Warm-start IK

This component initializes the IK solver with the
solution from the previous frame as an anchor, leveraging
temporal continuity to improve trajectory smoothness and
significantly improve solving efficiency. Thereby, it can
reduce foot slip and joint velocity spikes. The joint
solution at frame t is defined as q, = IK(Piar) Qrest) -
Where pf,, denotes the target key marker position and
Grest the rest pose. gy 1S equal to g, (t > 0) otherwise
Qaefauit> Where qgerqq.e means the default rest pose.

2)  Contact consistency

Independent solving per frame of IK causes cumulative
foot position deviations, which worsen as the differences
increase. We use contact consistency to lock the feet’s
horizontal positions upon contact, thereby reducing the
cumulative slippage errors. This is an empirical constraint
that enhances motion quality at the kinematic level. For
end-effector i (e.g., each foot), the stance phrase is deemed
when the foot height z < €, where € is set to 0.03 m. The
target XY-positions are defined in Eq. (7).

i i T
[xi-1,Yi-1]", 2 <€

i i T ;
[Xinits Viniel » Otherwise

[x£ar,tt ytiar,t]T = { (7)

where xé_l, yt_,; denote the previous frame positions and
Xinits Yinie the initial positions.
3) Hybrid z-mapping

Similar to contact consistency, this component locks the
feet’s vertical positions upon contact. For each foot i, the

target Z-positions zl,,. and the relative Z-increment
Az' are defined in Eq. (8).

i i
4 = | Zinit +Azhz<e€
ti - i .
oz, otherwise ®)
i i i,hip
Az = Zgc — Zsre

where zl4,, Zlhi, 2zt denote the target Z-position, the
initial Z-position, and the reference Z-position in source

data of foot i, respectively. Zslrhcl P means the reference hip

Z-position corresponding to the foot.
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4)  Root smoothing

Motion retargeting causes high-frequency jitter in the
generated data due to the noise in the reference data,
structural differences between robots, and sensitivity in
geometric calculations. To overcome the abrupt changes in
the body, this component uses temporal smoothing filters.
It weights the current frame’s raw pose with the previous
smoothed value. We set a = 0.18 for position averaging
and f = 0.2 for orientation interpolation. Therefore, root
smoothing retains motion trends while adding inertia and
delay, as defined in Eq. (9).

p;oot =(1- a)pzzolt + apzoot
root _ proot sin((1-p)Q) root Sin(fQ)
R™ =R sin(Q) L sin(Q) ©)

Q = acos (R}°} - R{°)

where p}°°* denotes the world position of the root at time
t, and R}°° denotes the orientation.

5)  Joint low-pass filter

Similar to root smoothing, this component performs
temporal smoothing in joint space. It avoids
high-frequency jitter in joint trajectories. A first-order
exponential moving average low-pass filter is employed,
with the factor n = 0.12 and updates recursively as shown
in Eq. (10). Additionally, soft clipping is added to limit the
joint Bounds, ensuring safer and biomechanically feasible
motions.

tar

7t < (1 =gy

src

+1qe (10)
where g% denotes the filtered target joint position at time
t, q;"¢ the original value computed via the IK solver.

In summary, Warm-start IK addresses the root cause of
abrupt trajectory changes in generated data. Contact
consistency and hybrid Z-mapping impose dynamic
constraints on horizontal and vertical directions to limit
foot-end slippage. Root smoothing and joint low-pass filter
suppress high-frequency jitter in root and joints, ensuring
smooth motion. The complete CAR processing pipeline is
shown in Algorithm 1.

Algorithm 1: Motion Retarget Process via Car

Initialize: prev_joints, prev_toe fk, prev_root
. for each frame t:

. Compute original root pose.
. Apply root smoothing

. for each foot i

. Compute the foot target.

. Apply hybrid z-mapping

. Apply contact consistency

. Solve warm-start IK

. Apply a joint low-pass filter.
10. Clip to limits

11. Assemble pose

12. Update states

O 01NNk W —

D. Learning with Bayesian Optimization

Using retargeted demonstrations, we apply imitation
learning within an actor—critic framework [26]. The policy
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is a Multi-Layer Perceptron (MLP) optimized via PPO.
The surrogate loss is shown in Eq. (11).

L () = E.[min(h.(8)A,,clip(h.(6),1 F €)4,)]

11
h,(6) = T[H(atlst)/nﬂuld(atlst) )
where h,(8) donates the difference of two policies and A,
the Generalized Advantage Estimation (GAE), € is the
threshold constant.

The effectiveness of policy depends critically on
hyperparameters (e.g., learning rate, clipping ratio, batch
size) and network architecture (e.g., depth, activation
functions). We use a discrete search space for BO to
improve computational efficiency and reduce overfitting
risks. This choice limits candidates to practical values,
avoiding excessive evaluations in continuous spaces [27].

Parameter ranges extend from baseline values to cover
conservative and aggressive options. For network
architecture, we draw from OPT-Mimic’s standard
settings, with sizes ranging from 256 (ensuring sufficient
expression capacity) to 1024 (avoiding overfitting), and
common RL activations (Tanh, Rectified Linear Unit
(ReLU), Exponential Linear Unit (ELU)) [16]. For PPO
hyperparameters, ranges balance stability and exploration,
such as learning rates (5¢—4, le—5, 5e—5, le—4). We
employ the Radial Basis Function (RBF) kernel due to its
low computational complexity and suitability for discrete
jumps in candidates, such as activation types, where
continuous similarity is lacking. The RBF defines the
covariance matrix as k(h,h') = exp (—||lh — h'||%/
(212)), with [ as length scale. Each candidate h follows a
Gaussian posterior N (up,07) . Thompson sampling
selects the next h by sampling from this posterior, favoring
areas of high uncertainty or high mean values. The
posterior updates via Bayesian conjugate, depicted in
Eq. (12), for the new noisy average return y with variance
o2,

-1
Mh,new =Wy + k(O’% + 0121) (y - Mh)
o-izl,new = 0}21(1 - k)

k=o}(o}+03)"

(12)

where k is the kernel vector between h and the observed
points. p;, represents the expected performance level of the
robot under configuration h. o7 quantifies the uncertainty
in this performance, enabling Thompson sampling to
prioritize high-uncertainty or high-mean areas for efficient
optimization.

We adopt the reward formulation of GenLoco [10],
which establishes rewards based on body position,
velocity, and end-effector errors with scale normalization.
These terms ensure stable locomotion by aligning
behaviors. Scale normalization adjusts error tolerance
globally. We follow this design but fine-tune it for
Tiangou. The reward r; is given by Eq. (13).

T, = wPrP + wirf + Wbprtbp + whorpy

(13)
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where 7P and 1 encourage Tiangou to match the joint
angles and angular velocities of the reference dataset; the
reward 7,”P and r2? serve as corresponding body-level
constraints. Weights w* prioritize dynamics: wP = 0.6
emphasizes joint configurations’ matching to the reference
due to high inertia, as the highest priority; w” = 0.1 favors
motion smoothness over velocity tracking errors;
wPP = 0.15 and wP? = 0.15 ensure root attitude stability.

The overall algorithm is summarized in Algorithm 2,
presented as pseudo-code.

Algorithm 2: Policy Transfer with Consistency-Aware
Retargeting and Bayesian Optimization

Input: Source dataset Dy, target robot model, number of
trials N, training steps K per trial, noise variance o2
Output: Optimized imitation policy mp

1. Retarget source motions using CAR — Dy,

By Initialize Thompson sampler with Gaussian priors of
" each hyperparameter h (e.g., N(u, = 0,57 = 100))
3. For trial=1,...,N do

/I Thompson Sampling

for each candidate h; do

Sample from posterior: s;~N (up, 67))

end for

Select h with maximum s;

// Train PPO with selected h for K steps on Dy,
Initialize robot state

for step =1 to K do

Observe the current state o,

Compute action a; = mg(a;|o;)

Execute action, update state

end for

// Test policy performance over episodes

Initialize evaluation episodes

for each episode do

Start with initial observation

Run policy for steps until termination, accumulate
reward

end for

Compute the average return y

// Update posterior for selected h

Compute Kalman gain k

Update mean piy, 50,y

Update variance gy ¢,

End For

Select h* with the highest posterior mean u;,
Retrain PPO policy my with h* until convergence

0. Return mp

=0 e

IV. RESULTS AND DISCUSSION

Using the proposed framework, we controlled Unitree
Gol to perform six gaits—Pace, Trot, Bound, Canter, Turn
Left, and Turn Right—sequentially on flat ground, thereby
collecting datasets. Ablation studies were followed by
subsequent real-world deployment to assess the
effectiveness of policy transfer.

A. Ablation Studies

In the Gym environment, we applied IK and CAR
retargeting to Gol’s six gaits and projected them onto
Tiangou. All metrics represent cumulative values
aggregated across all four legs and the entire motion
sequence, as defined in Egs. (6)—(8). CAR consistently
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reduced foot-end position errors across all gaits. For
instance, errors dropped from 0.197 m to 0.108 m in Pace
and from 0.17 m to 0.054 m in Turn Right, achieving a
37% average reduction. Ablation results show that
removing Contact Consistency (CC = False) causes a
significant increase in error, up to 138% in dynamic gaits,
such as Trot. Other removals, such as Root Smoothing
(RS =False), add less than 1% errors on average, as shown
in Fig. 3. Joint angular velocity spikes were suppressed
under CAR. Examples included a decline from 22.92 rad/s
to 12.55 rad/s in Canter and from 9.9 rad/s to 4.4 rad/s in
Pace, corresponding to a 45% average improvement. Here,
the Joint Vel L2 metric (rad/s) represents the L2 norm of
angular velocity changes, capturing both average
fluctuations and peak spikes over the sequence. Removing
joint low-pass filtering (JL = False) leads to the highest
velocity spikes, increasing by 131% in Trot and 84% in
Canter. Warm-Start (WS = False) and hybrid Z-mapping
(HZ = False) contribute less than 10% to smoothness in
stance-heavy gaits, as shown in Fig. 4. Undesired
stance-phase slippage diminished markedly, such as from
66.5 mm to 25.3 mm in Turn Left and from 25 mm to
472mm in Pace. Contact consistency removal
(CC =False) degrades slippage most, by 101% in Pace and
71% in Canter. Root Smoothing (RS = False) introduces
15% slippage in rotations, confirming synergies among
enhancements, as shown in Fig. 5. Notably, CAR incurs no
significant computational overhead, as evidenced by
comparable processing times in Fig. 6.

Enhancement for EE _Pos i in Retarget Motlon

0.35 -- IK 0] WS=Falsc
Il CC=False

AO'3O - CAR HZ=False
é 0.25 RS=False
JL=False

o
)
S

il
LA

Pace Trot Bound Canter Turn_L Turn R
Motion Type

EE Pos L2
o o
S @

0.05

0.00

Fig. 3. Comparison of end-effector position errors.

Enhancement for Joint Vel in Retarget Motion
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=

W

Trot Bound Canter
Motion_Type

Pace Turn L Turn R

Fig. 4. Comparison of joint angular velocity smoothness.
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Enhancement for Foot Slip in Retarget Motion
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Fig. 5. Comparison of foot slip rates.
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Fig. 6. Comparison of motion retargeting processing time.

B.  Policy Training

To evaluate BO’s role in the imitation module, we
utilized CAR-generated reference data and expanded the
baseline policy with combinations of activation functions
and network sizes, yielding 21 candidate configurations
(Table I). Similarly, we defined six combinations of
sensitive PPO hyperparameters, including learning rates
(Table II). The search space encompassed 64,512
combinations, finally.

Due to computational constraints, we adopted a
hierarchical approach for BO optimization instead of
exhaustively traversing the whole 64,512-combination
space. Ultimately, this process resulted in a pool of
28 configurations. Fig. 7 illustrates the BO convergence
over 40 trials in the final 28 candidates. The blue line
shows per-trial scores, while the red dashed line tracks the
best-so-far cumulative optimum. The highest score, 5.748,
occurred at trial 12, corresponding to the optimal
combination detailed in Table III. The sampling frequency
of the optimization process for the final 28 candidates is
presented in a heatmap, as shown in Fig. 8. The rows
represent hyperparameter triplets, and the columns denote
activation types. Hotspots cluster around ReLU with small
learning rates (on the order of 1e—5), moderate clip values
(0.03-0.1), and batch sizes (64—128), reflecting adaptive
sampling based on surrogate model predictions.
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TABLE I. CANDIDATE OPTIMIZATION SPACE OF NETWORK ARCHITECTURE PARAMETERS

Parameter Baseline Optimization Candidates
Activation Function ReLU [Tanh, ReLU, Elu]
Actor Network [512,512] [256, 256], [512, 256], [256, 512], [512, 512], [1024, 512], [512, 1024], [1024, 1024]
Critic Network [512,512] [256, 256], [512, 256], [256, 512], [512, 512], [1024, 512], [512, 1024], [1024, 1024]

TABLE II. CANDIDATE OPTIMIZATION SPACE OF PPO

HYPERPARAMETERS
Parameter Baseline Optimization Candidates
Learning Rate le—5 [Se—4, 1e—5, Se—5, 1e—4]
Clipping Parameter 0.2 [0.1,0.2,0.3,0.4]
Optimization Epoch 1 [1,2,3]
Batch Size 64 [32, 64, 128, 256]
Discount Factor 0.95 [0.93,0.94, 0.95, 0.96]
GAE 14 0.95 [0.93, 0.94, 0.95, 0.96]

60 Bayesian Optimization Convergence

—e— Score per Trial —-—- Best So Far

Mean Return

Trial

Fig. 7. BO convergence of the final optimization.
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Fig. 8. Sampling frequency heatmap of the final optimization.

TABLE III THE OPTIMAL PARAMETERS YIELDED VIA BAYESIAN
OPTIMIZATION

Parameter Optimal Parameter Optimal
Activation Function ReLU Learning Rate le—5
Actor Network [512, 256] Batch Size 128
Critic Network [512,256] Discount Factor 0.95
Clipping Parameter 0.1 Optimization Epoch 1
GAE 14 0.95 - -
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We performed a grid search using Thompson Sampling
and limited the BO process to 1ES steps. To demonstrate
the superiority of our BO strategy in enhancing training
stability and efficiency, we further constructed
Actor-Critic training architectures based on Denoising
Diffusion Probabilistic Model (DDPM) and Transformer.
DDPM was selected for its probabilistic generative nature,
which excels in modeling complex distributions but often
introduces early variance in robotics tasks. The
Transformer was chosen due to its attention mechanisms,
which enable effective sequence handling while being
sensitive to hyperparameters in policy learning. In contrast
to the baseline, which converged at around 2E7 steps with
an episode reward of 65, the BO-augmented policy
surpassed 70 at the same point and stabilized above 120
after 6E7 steps. The DDPM policy showed initial
oscillations but reached 100 after 4E7 steps. The
Transformer-Based policy achieved over 140, but with
frequent fluctuations, as shown in Fig. 9. Moreover, total
loss fluctuations were minimized under BO, dropping
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rapidly below 0.1 and stabilizing between 0.3 and 0.4. The
DDPM loss oscillates rapidly between 0.4 and 1.0 before
2E7 steps, and finally decreases to around 0.5. In contrast,
the loss of the Transformer fluctuates continuously
between 1.0 and 3.0, as shown in Fig. 10.

C. Real-World Experiment

We deployed the trained policy on Tiangou’s central
controller, while Gol retained its MPC controller from the
data collection phase. Both robots utilized the
Lightweight Communications and Marshalling (LCM)
protocol, which included noise offsets from differing
encoders. The Inertial Measurement Unit (IMU)
was mitigated via low-pass filtering. Joystick
commands—*“forward—backward—turn—stand”—enabled
comparisons of behavioral differences of the two robots.
We then evaluated Tiangou’s mobility and load-bearing
capabilities, as illustrated in Fig. 11.

Fig. 11. Real-world testing of the transferred policy.
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Under a 0.9 m/s forward and —0.8 m/s backward
command, Gol tracked +0.8 m/s, whereas Tiangou
achieved 1.1 m/s forward and —0.8 m/s backward (Fig. 12).
For steering at 1.0 rad/s, Gol reached 0.8 rad/s, but
Tiangou stabilized at 0.6-0.7 rad/s, requiring a forward
velocity component to avoid anomalies Fig. 13.

Furthermore, FR-Hip joint torque peaked at 5 Nm for
Tiangou versus 2 Nm for Gol, with both maintaining
stable angles and velocities (Fig. 14). The body orientation
curves remained consistent. However, Tiangou’s larger
size reduced yaw agility (Fig. 15).

Velocity (rad/s) Angle (rad) Torque (Nm)

10 15

20
Time (s)

Fig. 14. Dynamic characteristics of FR-Hip during locomotion.
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Fig. 15. Body behavior during locomotion.
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In Tiangou’s capability tests, the no-load maximum
speed reached 1.233 m/s, with averages ranging from
0.6 to 0.8 m/s. Under a 40 kg payload, maximum speed fell
to 0.719 m/s. Averages shifted to 0.2—0.6 m/s, as shown in
Fig. 16. During initial loading, body height dipped from
0.50 m to 0.39 m before recovering to 0.42 m; turning
phases showed stable height with yaw varying smoothly
from O to over 5 rad, as shown in Fig. 17.
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Fig. 17. Tiangou turning performance test.

D. Discussion

The experimental results demonstrate that the CAR
method, by incorporating dynamic consistency constraints
into inverse kinematics, effectively reduces foot-end
position errors, joint angular velocity fluctuations, and
foot-end slippage while preserving computational
efficiency. This enhancement stems from mechanisms
such as contact consistency, which ensures that projected
trajectories adhere to physical laws and mitigate dynamic
discrepancies between heterogeneous robots. In particular,
CAR generates higher-fidelity imitation datasets for
platforms with significant morphological differences,
providing a robust basis for PPO-based training.
Integrating BO further boosts cumulative rewards and
training stability, with optimized policies nearly doubling
reward values and reducing loss fluctuations.
Mechanistically, BO’s use of Thompson sampling enables
efficient exploration of the hyperparameter space, thereby
avoiding the overhead associated with manual or
grid-based searches. This automated approach enhances
the robustness of imitation learning in reinforcement
learning contexts.

Compared to prior policy transfer models, such as
GenLoco [10], which rely on kinematics-based scaling for
quadrupeds of similar size, CAR excels in heterogeneous
settings. Quantitatively, CAR reduces foot-end position
errors by 40% on average versus the IK baseline (inspired
by GenLoco’s retargeting), as shown in Fig. 3. It improves
joint velocity smoothness by 45% (Fig. 4) and decreases
foot slippage (Fig. 5). In imitation learning, our
BO-augmented PPO outperforms standard MLP baselines,
such as in FastMimic [21], by doubling cumulative
rewards (from 65 to over 120, Fig. 9) and stabilizing loss
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below 0.4 (Fig. 10). The DDPM baseline exhibited early
oscillations in reward curves due to its stochastic denoising
process, which introduces variance in initial trajectory
sampling. DDPM loss values generally met expectations,
settling at 0.5. However, the major drawback lies in its low
computational efficiency, resulting in training times that
are 15 times longer compared to MLP and BO-MLP. The
Transformer achieved higher rewards over 140 but showed
frequent curve fluctuations and larger losses above 1.0
with evident overshoots. Transformer-based networks
require more fine-tuned hyperparameters to mitigate the
risk of overfitting. Future work on optimizing Transformer
parameters could be an interesting direction. Qualitatively,
CAR enforces contact and smoothness constraints, unlike
kinematics-only methods that ignore dynamic mismatches.
This enables stable transfer to heavy platforms, such as
Tiangou. Furthermore, our method advances beyond
kinematics-focused retargeting by achieving more stable
velocity tracking and posture control in real-world
transfers from Gol to Tiangou. Although Tiangou showed
slight latency in turning (0.6-0.7 rad/s response versus
Gol’s 0.8 rad/s), trajectories remained smooth without
overshoot, consistent with its higher inertia. Load tests
under 40 kg confirmed policy robustness: the peak velocity
dropped by about 40%, but posture recovery was rapid,
and yaw variations remained minimal, indicating
adaptability to disturbances. These outcomes underscore
the engineering value of dynamic constraints for
heavy-legged robots.

Despite these advancements, CAR shows limitations in
extreme scenarios. For instance, limited leg lift height
prevents crossing 15 cm steps. Compared to our direct
dynamics-based control of Tiangou, this study reduces
energy efficiency in legged mode, lasting only 40 min
versus 2.5 h. In experiments, Tiangou handles load
variations from 0 to 40 kg; beyond this range, the actuators
overheat rapidly. Sudden acceleration commands cause
falls, indicating poor response to abrupt inputs. These
failure cases highlight CAR’s constrained generalization
to varied terrain, heavy payloads, and dynamic commands.
Additionally, BO’s sampling efficiency diminishes in
high-dimensional spaces, potentially requiring more
iterations for complex sets. Future work could integrate
adaptive dynamics modeling to enhance robustness.

Future work could address these by extending
evaluations to diverse platforms and scenarios,
incorporating meta-learning for faster adaptation, and
integrating energy optimization to improve deployment
efficiency. Overall, this study highlights the integration of
dynamics-aware retargeting and automated optimization
as a foundation for policy transfer across heterogeneous
systems, with implications for industrial applications that
require heavy loads.

V. CONCLUSION

This study introduces the CAR method, incorporating
dynamic consistency constraints on top of inverse
kinematics, and integrates it with Bayesian optimization
within a PPO framework. This enables effective policy
transfer from Unitree Gol to the heavy wheel-legged
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Tiangou. Experimental results validated that CAR
achieved an average 40% reduction in foot-end position
errors, 45% improvement in joint angular velocity
smoothness, and substantial decreases in foot-end
slippage. BO nearly doubled cumulative rewards from 65
to over 120 and enhanced training stability. Thus, our
approach outperforms kinematics-only methods by
ensuring robustness across significant morphological
differences, including a 7.7x mass disparity. Although
limited to flat terrain and a single platform, this work
establishes a novel paradigm for transferring
heterogeneous robot policies. It demonstrates practical
feasibility for heavy-duty applications in disaster response
and industrial operations. Future directions prioritize
extending validations to multiple platforms for
cross-morphology generalization, incorporating
meta-learning for rapid adaptation, and adding energy
optimization for enhanced efficiency. Overall, these
advancements pave the way for scalable imitation learning
in robotics, fostering broader deployment in real-world
scenarios.
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