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Abstract—Policy transfer is an efficient approach for 
developing specific robots. Its effectiveness depends on  
high-quality imitation datasets and a stable learning process. 
However, substantial differences in geometry and dynamics 
between source and target robots pose challenges. Purely 
kinematics-driven mapping methods and manual parameter 
tuning often fail to maintain kinematic-dynamic consistency. 
In this study, we transfer control policies from the quadruped 
robot Unitree Go1 to our self-developed heavy wheel-legged 
robot Tiangou. We propose a Consistency-Aware 
Retargeting (CAR) method. This extends conventional 
inverse kinematics by adding dynamic consistency 
constraints. Using motion data from Go1’s Model Predictive 
Controller (MPC), CAR generates a reference dataset for 
Tiangou. We then integrate Bayesian Optimization (BO) into 
the imitation learning framework. This enables autonomous 
tuning of policy model structures and optimization 
hyperparameters. Experiments show that CAR reduces  
foot-end position errors, mitigates joint angular velocity 
fluctuations, and decreases foot-end slippage. Moreover, 
Bayesian optimization improves sample efficiency and 
training stability. These contributions establish a practical 
foundation for policy transfer across heterogeneous robotic 
platforms.  
 
Keywords—imitation learning, motion retargeting, Bayesian 
optimization, policy transfer, wheel-legged robot 
 

I. INTRODUCTION 

Legged robots offer key advantages through discrete 
footholds [1, 2]. They excel in adapting to complex terrain 
and provide superior mobility. This makes them ideal for 
applications like disaster response [3], field  
exploration [4], and agricultural operations [5]. In recent 
years, several quadruped platforms have emerged, which 
have accelerated advancements in legged robot control [6]. 
However, pure leg structures limit mobility and energy 
efficiency due to the actuator’s reciprocating oscillation 
mode [7]. To overcome this, researchers have developed 
hybrid wheel-legged designs, such as mounting driving 
wheels at the foot end [8, 9]. Thus, they combine the  
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high-speed mobility of wheeled robots with the terrain 
adaptability of legged robots. Yet, such designs often 
restrict load capacity due to joint mechanical limits and 
require joint actuators for propulsion in wheeled-driven 
mode, which reduces efficiency and scalability. The 
wheeled robots dominate practical applications over 
legged ones. Therefore, we argue that wheel-legged robots 
should prioritize wheels for mobility and load-bearing. 
Legs should mainly provide terrain adaptability. Based on 
this principle, we designed Tiangou, a novel wheel-legged 
robot, as shown in Fig. 1. It attaches four mechanical legs 
to an Unmanned Ground Vehicle (UGV) chassis. Tiangou 
features 14 actuators: 12 for the legs and 2 for the wheels, 
utilizing high-torque servo motors (e.g., with a peak torque 
of 57.5 Nm) and integrated encoders for precise feedback. 
Two caster wheels connect to the frame via a single trailing 
suspension system, which absorbs vibrations in wheel 
mode. Each leg uses a 3 Degrees of Freedom (3-DoF) 
serial mechanism for walking, supported by an Inertial 
Measurement Unit (IMU) for pose estimation. The wheel 
and legged modes operate via independent control loops. 
In wheel mode, Tiangou supports a 150 kg payload and 
reaches a speed of 50 km/h. In legged mode, the wheels do 
not drive; instead, they extend the body length by over 
0.4 m to avoid interference. This results in a body-leg ratio 
of 1.83 for Tiangou versus 0.97 for Go1. Besides, Tiangou 
weighs 80 kg, a 7.7× mass disparity compared to Go1’s 
10.4 kg. These complicate legged locomotion control 
design and optimization. 

To address these control issues on heavy platforms like 
Tiangou, we utilize Imitation Learning (IL). This method 
has proven effective for robot control, particularly in 
facilitating the efficient transfer of policies across different 
platforms. For example, GenLoco [10] uses a size factor α 
(sampled from [0.8, 1.2]) for transfer among similar-sized 
quadrupeds. However, it ignores cases like Tiangou, with 
a large body and short legs. Such mismatches amplify 
dynamic differences, making GenLoco unsuitable—it fails 
to prevent joint overload or instability during transfer from 
lightweight to heavy robots. Moreover, training results 
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depend heavily on model parameters and algorithm 
hyperparameters. Standard tuning practices for general 
quadrupeds do not apply to specialized platforms, such as 
Tiangou. Manual tuning lacks sample efficiency and 
training stability.  

 

 
Fig. 1. Wheel-legged robot Tiangou with labeled components. (1) main 
control unit; (2) can transceiver; (3) battery pack; (4) power distribution 
board; (5) inertial measurement unit; (6) single trailing suspension;  
(7) hub motor; (8) extension motor & encoder; (9) thigh motor & encoder; 
(10) calf motor & encoder; (11) extension joint; (12) thigh; (13) calf;  
(14) foot. 

To address these gaps, we propose a policy transfer 
method that incorporates both kinematic and dynamic 
constraints. Specifically, our Consistency-Aware 
Retargeting (CAR) method extends inverse kinematics. It 
enforces dynamic consistency to handle body-leg ratios 
and mass differences in heterogeneous transfers. As a 
result, CAR generates high-quality datasets, reducing joint 
overload and instability. Additionally, we integrate 
Bayesian Optimization (BO) into the training process. This 
automates searches for policy model structures and 
hyperparameters, boosting learning efficiency and stability. 
This research aims to achieve reliable policy transfer from 
Unitree Go1 to Tiangou. It offers a pathway for intelligent 
control in heavy-duty robots.  

The main contributions of this study are as follows: 
 We propose a CAR method that extends inverse 

kinematics with dynamic consistency constraints, 
including warm-start initialization, contact 
consistency, hybrid Z-mapping, root smoothing, 
and joint low-pass filtering.  

 We integrate BO with Thompson sampling into the 
Proximal Policy Optimization (PPO) framework, 
enabling automated tuning of network 
architectures and hyperparameters.  

 We demonstrate practical policy transfer from the 
lightweight Unitree Go1 to our self-developed 
heavy wheel-legged robot Tiangou (80 kg  
self-weight), providing a scalable foundation for 
heterogeneous robotic platforms in applications. 

The paper is structured as follows: Section II reviews 
related work; Section III details the framework and 
formulations; Section IV presents experimental results and 
discussions. Section V provides the conclusion. 

II. LITERATURE REVIEW 

In robotic policy transfer [11], motion retargeting and 
cross-platform adaptation address morphological 
differences across heterogeneous platforms. Existing 
studies can be categorized into three main areas: 
kinematics-based retargeting methods [12], unified 
learning frameworks for cross-morphology  
generalization [13], and imitation learning enhanced by 
Reinforcement Learning (RL) [14]. 

Motion retargeting captures key marker sequences and 
applies inverse kinematics for zero-shot transfer from 
source to target. For instance, Yoon et al. [15] proposed 
Spatio-Temporal Motion Retargeting (STMR). This 
generates executable sequences via inverse kinematics, 
efficiently reproducing animal motions on quadruped 
robots. Similarly, Fuchioka et al. [16] introduced  
OPT-Mimic, which optimizes trajectories to reduce noise. 
However, these methods focus on single-platform 
reproduction. Building upon this, policy transfer research 
has advanced toward constructing unified learning 
frameworks that enable multi-morphology adaptation 
through a single network. Liu et al. [17] presented the 
unified locomotion transformer. It achieves zero-shot 
generalization across diverse robot morphologies.  
Qin et al. [18] improved task-switching robustness via 
language-conditioned control. Yet, these methods require 
large datasets and high computation, and overlook 
dynamic discrepancies. Methods by Reske et al. [19] and 
Niu et al. [20] succeed on specific hardware. But they 
emphasize kinematics over nonlinear dynamics. This leads 
to failures when body proportions differ greatly. In 
particular, transfers from lightweight to heavy platforms 
cause oscillations and slippage. Another category 
optimizes imitation learning for better sample efficiency 
and generalization. Li et al. [21] proposed FastMimic. It 
integrates trajectory optimization with model-based 
controllers, imitating diverse gaits and minimizing 
hardware fine-tuning. Jin et al. [22] used staged objectives 
for simulation-to-reality transfer in high-speed running. 
Sood et al. [23] added a multi-critic RL framework. It 
balances imitation fidelity and task performance. This 
reduces reward tuning instability. Youm et al. [24] 
incorporated a fine-tuning method based on Model 
Predictive Control (MPC). Despite these advances, the 
RL-enhanced techniques have limitations. First, the PPO 
frameworks are sensitive to hyperparameters, making 
manual tuning labor-intensive. Second, relying solely on 
network augmentations cannot effectively address 
dynamic discrepancies across robot morphologies. 

Overall, prior works have advanced motion mapping 
and learning optimization. However, they often overlook 
dynamic discrepancies in heterogeneous platforms and 
lack automated parameter tuning. Unlike  
kinematics-focused methods, which are limited to 
lightweight quadrupeds, our CAR method addresses mass 
and proportion mismatches in heavy-duty robots. Thus, we 
enhance robustness and efficiency for transfers from  
open-source to custom platforms via CAR and use BO for 
automated hyperparameter search. 
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III. METHODS 

The proposed policy transfer framework is illustrated in 
Fig. 2. We generate source motion sequences from Go1’s 
locomotion, which MPC controls. Based on the Inverse 
Kinematics (IK) of robots, we introduce mechanisms like 
time-consistent initialization, stance-phase foot locking, 
body smoothness constraints, and joint low-pass filtering. 

These form the CAR method, which creates a motion 
dataset for Tiangou. In the imitation module, we define 
multiple candidate hyperparameter configurations. 
Gaussian Process (GP) modeling with Thompson 
sampling is employed to explore the training pipeline 
adaptively. Finally, the module outputs joint commands 
executed on Tiangou via a PD controller. 

 

 
Fig. 2. Policy transfer pipeline from Unitree Go1 to Tiangou. 

A. Problem Formulation 

This study transfers locomotion policies via an imitation 
learning framework. In IL, the policy drives the imitator to 
replicate the expert’s behavior. The quality of the source 
locomotion sequences sets an upper Bound on the imitated 
policy’s performance. Therefore, we select Go1’s official 
MPC controller [25] as demonstrations 𝒟௦௥௖, for its proven 
stability and gait diversity, ensuring high-fidelity datasets. 
Tiangou features distinct body and leg proportions, 
rendering direct imitation ineffective. Our objective is to 
learn a policy 𝜋ఏሺ𝑎௧|𝑜௧ሻ that maps target observations 
𝑜௧ ∈ ℝௗ  to actions 𝑎௧ ∈ ℝ௠, such that the policy should 
mimic source behaviors while adapting to target 
morphology. The optimization problem is shown in  
Eq. (1). 

 𝜃∗ ൌ arg max
ఏ

𝔼୘~గഇ
ሾ∑ 𝛾௧𝑟ሺ𝑜௧, 𝑎௧ሻ்

௧ୀ଴ ሿ (1) 

where 𝛾  is the discount factor and 𝑟ሺ⋅ሻ  is an imitation 
reward aligned with reference trajectories. The trained 
policy 𝜋ఏ outputs joint angles as actions 𝑎௧, executed via a 
Proportional-Derivative (PD) controller with gains  
KP = 300 and KD = 10. 

B. Motion Retargeting 

To address morphological differences, we map source 
trajectories ሼ𝑞௧

௦௥௖ሽ  to feasible target trajectories ሼ𝑞௧
௧௔௥ሽ 

using an IK-based pipeline. These compute the target base 
pose and foot positions by aligning key skeletal markers. 
We define 19 markers: the joints of the four legs, the 

center, the head, and the tail. The root pose is calculated in 
Eq. (2). 

 
𝑝𝑡

𝑟𝑜𝑜𝑡 ൌ 1

2
൫𝑝𝑐𝑒𝑛𝑡𝑒𝑟 ൅ 𝑝ℎ𝑒𝑎𝑑൯,

𝑅𝑡
𝑟𝑜𝑜𝑡 ൌ 𝑄𝑢𝑎𝑡 ቀ𝑓ሺ𝑝𝑐𝑒𝑛𝑡𝑒𝑟, 𝑝ℎ𝑒𝑎𝑑, 𝑝ℎ𝑖𝑝𝑠ሻቁ

 (2) 

where 𝑓ሺ⋅ሻ  constructs an orthogonal frame from  
center–head and hip vectors and 𝑝∗  the part position.  
End-effector targets are then mapped by geometric transfer 
in Eq. (3). 

 𝑝௜,௧
௧௢௘,௧௔௥ ൌ 𝑝௜

௛௜௣,௧௔௥ ൅ ൫𝑝௜
௧௢௘,௦௥௖ െ 𝑝௜

௛௜௣,௦௥௖൯ ൅ ∆௢௙௙௦௘௧,௜ (3) 

where ∆௢௙௙௦௘௧,௜  donates the geometric difference of the 
source and target robots. 

To evaluate the performance of the motion retargeting 
method, we define three metrics: L2 norm of foot position 
error (Eq. (4)), joint angular velocity L2 norm (Eq. (5)), 
and foot slippage L2 norm (Eq. (6)). 

 𝐸𝐸_𝑃𝑜𝑠_𝐿2 ൌ
ଵ

ே
∑ ฮ𝑝௜

௙௞ െ 𝑝௜
௧௔௥ฮ

ଶ
ே
௜ୀଵ  (4) 

where 𝑝௜
௙௞  is the forward kinematics foot position and 

𝑝௜
௧௔௥ the target foot position. Lower values show precise 

foot execution. 

 𝐽𝑜𝑖𝑛𝑡_𝑉𝑒𝑙_𝐿2 ൌ ‖ሺ𝑞௧ െ 𝑞௧ିଵሻ ∆𝑡⁄ ‖ଶ (5) 

where 𝑞௧  is the joint angle vector and ∆𝑡  the interval. 
Lower values indicate smoother trajectories. 
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 𝐹𝑜𝑜𝑡_𝑆𝑙𝑖𝑝 ൌ ∑ ฯ൫𝑝௝,௧
௙௞ െ 𝑝௝,௧ିଵ

௙௞ ൯
௫௬

ฯ
ଶ

 
௝∈𝒞  (6) 

where 𝒞  is the contact set and ሺ∙ሻ௫௬ , the horizontal 
projection. Lower values reduce unwanted slippage. 

C. Consistency-Aware Retargeting Components 

Observations indicate that instability arises from 
mismatches in stance contact patterns, root placement, and 
joint feasibility. Thus, we add five enhancements to the IK 
backbone for CAR. The coefficients were empirically 
tuned based on the following considerations: smaller 
values for pose and joint filtering ensure a quick response 
and tracking. At the same time, the contact threshold is 
determined by foot geometry and simulation precision. 

1) Warm-start IK 

This component initializes the IK solver with the 
solution from the previous frame as an anchor, leveraging 
temporal continuity to improve trajectory smoothness and 
significantly improve solving efficiency. Thereby, it can 
reduce foot slip and joint velocity spikes. The joint 
solution at frame 𝑡  is defined as 𝑞௧ ൌ 𝐼𝐾ሺ𝑝௧௔௥

௧ , 𝑞௥௘௦௧ሻ . 
Where 𝑝௧௔௥

௧  denotes the target key marker position and 
𝑞௥௘௦௧ the rest pose. 𝑞௥௘௦௧ is equal to 𝑞௧ିଵ (𝑡 ൐ 0) otherwise 
𝑞ௗ௘௙௔௨௟௧, where 𝑞ௗ௘௙௔௨௟௧ means the default rest pose. 

2) Contact consistency 

Independent solving per frame of IK causes cumulative 
foot position deviations, which worsen as the differences 
increase. We use contact consistency to lock the feet’s 
horizontal positions upon contact, thereby reducing the 
cumulative slippage errors. This is an empirical constraint 
that enhances motion quality at the kinematic level. For 
end-effector 𝑖 (e.g., each foot), the stance phrase is deemed 
when the foot height 𝑧 ൏ 𝜖, where 𝜖 is set to 0.03 m. The 
target XY-positions are defined in Eq. (7). 

 ሾ𝑥௧௔௥,௧
௜ , 𝑦௧௔௥,௧

௜ ሿ் ൌ ቊ
ሾ𝑥௧ିଵ

௜ , 𝑦௧ିଵ
௜ ሿ், 𝑧 ൏ 𝜖

ሾ𝑥௜௡௜௧
௜ , 𝑦௜௡௜௧

௜ ሿ், 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

where 𝑥௧ିଵ
௜ , 𝑦௧ିଵ

௜  denote the previous frame positions and 
𝑥௜௡௜௧

௜ , 𝑦௜௡௜௧
௜  the initial positions. 

3) Hybrid 𝑧-mapping 

Similar to contact consistency, this component locks the 
feet’s vertical positions upon contact. For each foot 𝑖, the 
target Z-positions 𝑧௧௔௥

௜  and the relative Z-increment 
∆𝑧௜ are defined in Eq. (8). 

 
𝑧𝑡𝑎𝑟

𝑖 ൌ ቊ
𝑧𝑖𝑛𝑖𝑡

𝑖 ൅ ∆𝑧𝑖, 𝑧 ൏ 𝜖
𝑧𝑠𝑟𝑐

𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∆𝑧𝑖 ൌ 𝑧𝑠𝑟𝑐
𝑖 െ 𝑧𝑠𝑟𝑐

𝑖,ℎ𝑖𝑝
 (8) 

where 𝑧௧௔௥
௜ , 𝑧௜௡௜௧

௜ , 𝑧௦௥௖
௜  denote the target Z-position, the 

initial Z-position, and the reference Z-position in source 
data of foot 𝑖, respectively. 𝑧௦௥௖

௜,௛௜௣ means the reference hip 
Z-position corresponding to the foot.  
 
 

4) Root smoothing 

Motion retargeting causes high-frequency jitter in the 
generated data due to the noise in the reference data, 
structural differences between robots, and sensitivity in 
geometric calculations. To overcome the abrupt changes in 
the body, this component uses temporal smoothing filters. 
It weights the current frame’s raw pose with the previous 
smoothed value. We set α = 0.18 for position averaging 
and β = 0.2 for orientation interpolation. Therefore, root 
smoothing retains motion trends while adding inertia and 
delay, as defined in Eq. (9). 

 

𝑝𝑡
𝑟𝑜𝑜𝑡 ൌ ሺ1 െ 𝛼ሻ𝑝𝑡െ1

𝑟𝑜𝑜𝑡 ൅ 𝛼𝑝𝑡
𝑟𝑜𝑜𝑡

𝑅𝑡
𝑟𝑜𝑜𝑡 ൌ 𝑅𝑡െ1

𝑟𝑜𝑜𝑡 sin൫ሺ1െ𝛽ሻΩ൯

sinሺΩሻ
൅ 𝑅𝑡

𝑟𝑜𝑜𝑡 sinሺ𝛽Ωሻ

sinሺΩሻ
 

Ω ൌ acos ሺ𝑅𝑡െ1
𝑟𝑜𝑜𝑡 ∙ 𝑅𝑡

𝑟𝑜𝑜𝑡ሻ

 (9) 

where 𝑝௧
௥௢௢௧ denotes the world position of the root at time 

𝑡, and 𝑅௧
௥௢௢௧ denotes the orientation. 

5) Joint low-pass filter 

Similar to root smoothing, this component performs 
temporal smoothing in joint space. It avoids  
high-frequency jitter in joint trajectories. A first-order 
exponential moving average low-pass filter is employed, 
with the factor 𝜂 ൌ 0.12 and updates recursively as shown 
in Eq. (10). Additionally, soft clipping is added to limit the 
joint Bounds, ensuring safer and biomechanically feasible 
motions. 

 𝑞௧
௧௔௥ ← ሺ1 െ 𝜂ሻ𝑞௧ିଵ

௧௔௥ ൅ 𝜂𝑞௧
௦௥௖ (10) 

where 𝑞௧
௧௔௥ denotes the filtered target joint position at time 

𝑡, 𝑞௧
௦௥௖ the original value computed via the IK solver. 

In summary, Warm-start IK addresses the root cause of 
abrupt trajectory changes in generated data. Contact 
consistency and hybrid Z-mapping impose dynamic 
constraints on horizontal and vertical directions to limit 
foot-end slippage. Root smoothing and joint low-pass filter 
suppress high-frequency jitter in root and joints, ensuring 
smooth motion. The complete CAR processing pipeline is 
shown in Algorithm 1. 

 

Algorithm 1: Motion Retarget Process via Car 

Initialize: prev_joints, prev_toe_fk, prev_root  
1. for each frame t: 
2. Compute original root pose. 
3. Apply root smoothing 
4. for each foot i 
5. Compute the foot target. 
6. Apply hybrid z-mapping 
7. Apply contact consistency 
8. Solve warm-start IK 
9. Apply a joint low-pass filter. 
10. Clip to limits 
11. Assemble pose 
12. Update states 

D. Learning with Bayesian Optimization 

Using retargeted demonstrations, we apply imitation 
learning within an actor–critic framework [26]. The policy 
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is a Multi-Layer Perceptron (MLP) optimized via PPO. 
The surrogate loss is shown in Eq. (11). 

 
𝐿 ሺ𝜃ሻ ൌ 𝔼𝑡ሾmin

 
ሺℎ𝑡ሺ𝜃ሻ𝐴෡𝑡, 𝑐𝑙𝑖𝑝ሺℎ𝑡ሺ𝜃ሻ, 1 ∓ 𝜖ሻ𝐴෡𝑡ሻሿ

ℎ𝑡ሺ𝜃ሻ ൌ 𝜋𝜃ሺ𝑎𝑡|𝑠𝑡ሻ 𝜋𝜃𝑜𝑙𝑑
ሺ𝑎𝑡|𝑠𝑡ሻൗ

 (11) 

where ℎ௧ሺ𝜃ሻ donates the difference of two policies and 𝐴መ௧ 
the Generalized Advantage Estimation (GAE), 𝜖  is the 
threshold constant. 

The effectiveness of policy depends critically on 
hyperparameters (e.g., learning rate, clipping ratio, batch 
size) and network architecture (e.g., depth, activation 
functions). We use a discrete search space for BO to 
improve computational efficiency and reduce overfitting 
risks. This choice limits candidates to practical values, 
avoiding excessive evaluations in continuous spaces [27].  

Parameter ranges extend from baseline values to cover 
conservative and aggressive options. For network 
architecture, we draw from OPT-Mimic’s standard 
settings, with sizes ranging from 256 (ensuring sufficient 
expression capacity) to 1024 (avoiding overfitting), and 
common RL activations (Tanh, Rectified Linear Unit 
(ReLU), Exponential Linear Unit (ELU)) [16]. For PPO 
hyperparameters, ranges balance stability and exploration, 
such as learning rates (5e−4, 1e−5, 5e−5, 1e−4). We 
employ the Radial Basis Function (RBF) kernel due to its 
low computational complexity and suitability for discrete 
jumps in candidates, such as activation types, where 
continuous similarity is lacking. The RBF defines the 
covariance matrix as 𝑘ሺℎ, ℎᇱሻ ൌ exp ሺെ‖ℎ െ ℎᇱ‖ଶ/
ሺ2𝑙ଶሻሻ, with 𝑙 as length scale. Each candidate ℎ follows a 
Gaussian posterior 𝒩ሺ𝜇௛, 𝜎௛

ଶሻ . Thompson sampling 
selects the next ℎ by sampling from this posterior, favoring 
areas of high uncertainty or high mean values. The 
posterior updates via Bayesian conjugate, depicted in 
Eq. (12), for the new noisy average return 𝑦 with variance 
𝜎௡

ଶ. 

 

𝜇ℎ,𝑛𝑒𝑤
 ൌ 𝜇ℎ

 ൅ 𝑘൫𝜎ℎ
2 ൅ 𝜎𝑛

2൯
െ1

ሺ𝑦 െ 𝜇ℎ
 ሻ

𝜎ℎ,𝑛𝑒𝑤
2 ൌ 𝜎ℎ

2ሺ1 െ 𝑘ሻ 

𝑘 ൌ 𝜎ℎ
2൫𝜎ℎ

2 ൅ 𝜎𝑛
2൯

െ1

 (12) 

where 𝑘 is the kernel vector between ℎ and the observed 
points. 𝜇௛

  represents the expected performance level of the 
robot under configuration ℎ. 𝜎௛

ଶ quantifies the uncertainty 
in this performance, enabling Thompson sampling to 
prioritize high-uncertainty or high-mean areas for efficient 
optimization. 

We adopt the reward formulation of GenLoco [10], 
which establishes rewards based on body position, 
velocity, and end-effector errors with scale normalization. 
These terms ensure stable locomotion by aligning 
behaviors. Scale normalization adjusts error tolerance 
globally. We follow this design but fine-tune it for 
Tiangou. The reward 𝑟௧ is given by Eq. (13). 

 𝑟௧ ൌ 𝑤௣𝑟௧
௣ ൅ 𝑤௩𝑟௧

௩ ൅ 𝑤௕௣𝑟௧
௕௣ ൅ 𝑤௕௩𝑟௧

௕௩ (13) 

where 𝑟௧
௣ and 𝑟௧

௩ encourage Tiangou to match the joint 
angles and angular velocities of the reference dataset; the 
reward 𝑟௧

௕௣  and 𝑟௧
௕௩  serve as corresponding body-level 

constraints. Weights 𝑤∗ prioritize dynamics: 𝑤௣ ൌ 0.6 
emphasizes joint configurations’ matching to the reference 
due to high inertia, as the highest priority; 𝑤௩ ൌ 0.1 favors 
motion smoothness over velocity tracking errors;  
𝑤௕௣ ൌ 0.15 and 𝑤௕௩ ൌ 0.15 ensure root attitude stability. 

The overall algorithm is summarized in Algorithm 2, 
presented as pseudo-code. 
 

Algorithm 2: Policy Transfer with Consistency-Aware 
Retargeting and Bayesian Optimization 

Input: Source dataset 𝒟௦௥௖ , target robot model, number of 
trials 𝑁, training steps 𝐾 per trial, noise variance 𝜎௡

ଶ 
Output: Optimized imitation policy 𝜋ఏ

∗  
1. Retarget source motions using CAR → 𝒟௧௔௥ 

2. 
Initialize Thompson sampler with Gaussian priors of 
each hyperparameter ℎ (e.g., 𝑁ሺ𝜇௛ ൌ 0, 𝜎௛

ଶ ൌ 100ሻ) 
3. For trial = 1, . . . , 𝑁 do 

// Thompson Sampling 
for each candidate ℎ௜ do 
Sample from posterior: 𝑠௜~𝑁ሺ𝜇௛, 𝜎௛

ଶሻ) 
end for 
Select ℎ with maximum 𝑠௜ 

4. 

// Train PPO with selected ℎ for 𝐾 steps on 𝒟௧௔௥ 
Initialize robot state 
for step =1 to 𝐾 do 
Observe the current state 𝑜௧ 
Compute action 𝑎௧ ൌ 𝜋ఏሺ𝑎௧|𝑜௧ሻ 
Execute action, update state 
end for 

5. 

// Test policy performance over episodes 
Initialize evaluation episodes 
for each episode do 
Start with initial observation 
Run policy for steps until termination, accumulate 
reward 
end for 
Compute the average return 𝑦 

6. 

// Update posterior for selected ℎ 
Compute Kalman gain 𝑘 
Update mean 𝜇௛,௡௘௪

  
Update variance 𝜎௛,௡௘௪

ଶ  
7. End For 
8. Select ℎ∗ with the highest posterior mean 𝜇௛

  
9. Retrain PPO policy 𝜋ఏ with ℎ∗ until convergence 
10. Return 𝜋ఏ

∗  

IV. RESULTS AND DISCUSSION 

Using the proposed framework, we controlled Unitree 
Go1 to perform six gaits—Pace, Trot, Bound, Canter, Turn 
Left, and Turn Right—sequentially on flat ground, thereby 
collecting datasets. Ablation studies were followed by 
subsequent real-world deployment to assess the 
effectiveness of policy transfer. 

A. Ablation Studies 

In the Gym environment, we applied IK and CAR 
retargeting to Go1’s six gaits and projected them onto 
Tiangou. All metrics represent cumulative values 
aggregated across all four legs and the entire motion 
sequence, as defined in Eqs. (6)–(8). CAR consistently 
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reduced foot-end position errors across all gaits. For 
instance, errors dropped from 0.197 m to 0.108 m in Pace 
and from 0.17 m to 0.054 m in Turn Right, achieving a 
37% average reduction. Ablation results show that 
removing Contact Consistency (CC = False) causes a 
significant increase in error, up to 138% in dynamic gaits, 
such as Trot. Other removals, such as Root Smoothing  
(RS = False), add less than 1% errors on average, as shown 
in Fig. 3. Joint angular velocity spikes were suppressed 
under CAR. Examples included a decline from 22.92 rad/s 
to 12.55 rad/s in Canter and from 9.9 rad/s to 4.4 rad/s in 
Pace, corresponding to a 45% average improvement. Here, 
the Joint_Vel_L2 metric (rad/s) represents the 𝐿2 norm of 
angular velocity changes, capturing both average 
fluctuations and peak spikes over the sequence. Removing 
joint low-pass filtering (JL = False) leads to the highest 
velocity spikes, increasing by 131% in Trot and 84% in 
Canter. Warm-Start (WS = False) and hybrid Z-mapping 
(HZ = False) contribute less than 10% to smoothness in 
stance-heavy gaits, as shown in Fig. 4. Undesired  
stance-phase slippage diminished markedly, such as from 
66.5 mm to 25.3 mm in Turn Left and from 25 mm to 
4.72 mm in Pace. Contact consistency removal  
(CC = False) degrades slippage most, by 101% in Pace and 
71% in Canter. Root Smoothing (RS = False) introduces 
15% slippage in rotations, confirming synergies among 
enhancements, as shown in Fig. 5. Notably, CAR incurs no 
significant computational overhead, as evidenced by 
comparable processing times in Fig. 6. 

 

 
Fig. 3. Comparison of end-effector position errors. 

 
Fig. 4. Comparison of joint angular velocity smoothness. 

 
Fig. 5. Comparison of foot slip rates. 

 
Fig. 6. Comparison of motion retargeting processing time. 

B. Policy Training 

To evaluate BO’s role in the imitation module, we 
utilized CAR-generated reference data and expanded the 
baseline policy with combinations of activation functions 
and network sizes, yielding 21 candidate configurations 
(Table I). Similarly, we defined six combinations of 
sensitive PPO hyperparameters, including learning rates 
(Table II). The search space encompassed 64,512 
combinations, finally. 

Due to computational constraints, we adopted a 
hierarchical approach for BO optimization instead of 
exhaustively traversing the whole 64,512-combination 
space. Ultimately, this process resulted in a pool of 
28 configurations. Fig. 7 illustrates the BO convergence 
over 40 trials in the final 28 candidates. The blue line 
shows per-trial scores, while the red dashed line tracks the 
best-so-far cumulative optimum. The highest score, 5.748, 
occurred at trial 12, corresponding to the optimal 
combination detailed in Table III. The sampling frequency 
of the optimization process for the final 28 candidates is 
presented in a heatmap, as shown in Fig. 8. The rows 
represent hyperparameter triplets, and the columns denote 
activation types. Hotspots cluster around ReLU with small 
learning rates (on the order of 1e−5), moderate clip values 
(0.03–0.1), and batch sizes (64–128), reflecting adaptive 
sampling based on surrogate model predictions. 
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TABLE I. CANDIDATE OPTIMIZATION SPACE OF NETWORK ARCHITECTURE PARAMETERS 

Parameter Baseline Optimization Candidates 
Activation Function ReLU [Tanh, ReLU, Elu] 

Actor Network [512, 512] [256, 256], [512, 256], [256, 512], [512, 512], [1024, 512], [512, 1024], [1024, 1024] 
Critic Network [512, 512] [256, 256], [512, 256], [256, 512], [512, 512], [1024, 512], [512, 1024], [1024, 1024] 

TABLE II. CANDIDATE OPTIMIZATION SPACE OF PPO 

HYPERPARAMETERS 

Parameter Baseline Optimization Candidates 
Learning Rate 1e−5 [5e−4, 1e−5, 5e−5, 1e−4] 

Clipping Parameter 0.2 [0.1, 0.2, 0.3, 0.4] 
Optimization Epoch 1 [1, 2, 3] 

Batch Size 64 [32, 64, 128, 256] 
Discount Factor 0.95 [0.93, 0.94, 0.95, 0.96] 

GAE 𝜆 0.95 [0.93, 0.94, 0.95, 0.96] 

 

 
Fig. 7. BO convergence of the final optimization. 

 
Fig. 8. Sampling frequency heatmap of the final optimization. 

TABLE III THE OPTIMAL PARAMETERS YIELDED VIA BAYESIAN 

OPTIMIZATION 

Parameter Optimal Parameter Optimal 
Activation Function ReLU Learning Rate 1e−5 

Actor Network [512, 256] Batch Size 128 
Critic Network [512, 256] Discount Factor 0.95 

Clipping Parameter 0.1 Optimization Epoch 1 
GAE 𝜆 0.95 - - 

 
 

 
Fig. 9. Comparison of episodic rewards. 

 
Fig. 10. Comparison of total loss. 

We performed a grid search using Thompson Sampling 
and limited the BO process to 1E5 steps. To demonstrate 
the superiority of our BO strategy in enhancing training 
stability and efficiency, we further constructed  
Actor-Critic training architectures based on Denoising 
Diffusion Probabilistic Model (DDPM) and Transformer. 
DDPM was selected for its probabilistic generative nature, 
which excels in modeling complex distributions but often 
introduces early variance in robotics tasks. The 
Transformer was chosen due to its attention mechanisms, 
which enable effective sequence handling while being 
sensitive to hyperparameters in policy learning. In contrast 
to the baseline, which converged at around 2E7 steps with 
an episode reward of 65, the BO-augmented policy 
surpassed 70 at the same point and stabilized above 120 
after 6E7 steps. The DDPM policy showed initial 
oscillations but reached 100 after 4E7 steps. The 
Transformer-Based policy achieved over 140, but with 
frequent fluctuations, as shown in Fig. 9. Moreover, total 
loss fluctuations were minimized under BO, dropping 
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rapidly below 0.1 and stabilizing between 0.3 and 0.4. The 
DDPM loss oscillates rapidly between 0.4 and 1.0 before 
2E7 steps, and finally decreases to around 0.5. In contrast, 
the loss of the Transformer fluctuates continuously 
between 1.0 and 3.0, as shown in Fig. 10. 

C. Real-World Experiment 

We deployed the trained policy on Tiangou’s central 
controller, while Go1 retained its MPC controller from the 
data collection phase. Both robots utilized the  
Lightweight Communications and Marshalling (LCM)  
protocol, which included noise offsets from differing  
encoders. The Inertial Measurement Unit (IMU)  
was mitigated via low-pass filtering. Joystick  
commands—“forward–backward–turn–stand”—enabled 
comparisons of behavioral differences of the two robots. 
We then evaluated Tiangou’s mobility and load-bearing 
capabilities, as illustrated in Fig. 11. 

 

 
Fig. 11. Real-world testing of the transferred policy. 

 
Fig. 12. Forward command tracking ability. 

 
Fig. 13. Turning command tracking ability. 

Under a 0.9 m/s forward and −0.8 m/s backward 
command, Go1 tracked ±0.8 m/s, whereas Tiangou 
achieved 1.1 m/s forward and −0.8 m/s backward (Fig. 12). 
For steering at 1.0 rad/s, Go1 reached 0.8 rad/s, but 
Tiangou stabilized at 0.6–0.7 rad/s, requiring a forward 
velocity component to avoid anomalies Fig. 13.  

Furthermore, FR-Hip joint torque peaked at 5 Nm for 
Tiangou versus 2 Nm for Go1, with both maintaining 
stable angles and velocities (Fig. 14). The body orientation 
curves remained consistent. However, Tiangou’s larger 
size reduced yaw agility (Fig. 15). 

 

 
Fig. 14. Dynamic characteristics of FR-Hip during locomotion. 

 
Fig. 15. Body behavior during locomotion. 

 
Fig. 16. Tiangou mobility test. 
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In Tiangou’s capability tests, the no-load maximum 
speed reached 1.233 m/s, with averages ranging from 
0.6 to 0.8 m/s. Under a 40 kg payload, maximum speed fell 
to 0.719 m/s. Averages shifted to 0.2–0.6 m/s, as shown in 
Fig. 16. During initial loading, body height dipped from 
0.50 m to 0.39 m before recovering to 0.42 m; turning 
phases showed stable height with yaw varying smoothly 
from 0 to over 5 rad, as shown in Fig. 17. 

 

 
Fig. 17. Tiangou turning performance test. 

D. Discussion 

The experimental results demonstrate that the CAR 
method, by incorporating dynamic consistency constraints 
into inverse kinematics, effectively reduces foot-end 
position errors, joint angular velocity fluctuations, and 
foot-end slippage while preserving computational 
efficiency. This enhancement stems from mechanisms 
such as contact consistency, which ensures that projected 
trajectories adhere to physical laws and mitigate dynamic 
discrepancies between heterogeneous robots. In particular, 
CAR generates higher-fidelity imitation datasets for 
platforms with significant morphological differences, 
providing a robust basis for PPO-based training. 
Integrating BO further boosts cumulative rewards and 
training stability, with optimized policies nearly doubling 
reward values and reducing loss fluctuations. 
Mechanistically, BO’s use of Thompson sampling enables 
efficient exploration of the hyperparameter space, thereby 
avoiding the overhead associated with manual or  
grid-based searches. This automated approach enhances 
the robustness of imitation learning in reinforcement 
learning contexts. 

Compared to prior policy transfer models, such as 
GenLoco [10], which rely on kinematics-based scaling for 
quadrupeds of similar size, CAR excels in heterogeneous 
settings. Quantitatively, CAR reduces foot-end position 
errors by 40% on average versus the IK baseline (inspired 
by GenLoco’s retargeting), as shown in Fig. 3. It improves 
joint velocity smoothness by 45% (Fig. 4) and decreases 
foot slippage (Fig. 5). In imitation learning, our  
BO-augmented PPO outperforms standard MLP baselines, 
such as in FastMimic [21], by doubling cumulative 
rewards (from 65 to over 120, Fig. 9) and stabilizing loss 

below 0.4 (Fig. 10). The DDPM baseline exhibited early 
oscillations in reward curves due to its stochastic denoising 
process, which introduces variance in initial trajectory 
sampling. DDPM loss values generally met expectations, 
settling at 0.5. However, the major drawback lies in its low 
computational efficiency, resulting in training times that 
are 15 times longer compared to MLP and BO-MLP. The 
Transformer achieved higher rewards over 140 but showed 
frequent curve fluctuations and larger losses above 1.0 
with evident overshoots. Transformer-based networks 
require more fine-tuned hyperparameters to mitigate the 
risk of overfitting. Future work on optimizing Transformer 
parameters could be an interesting direction. Qualitatively, 
CAR enforces contact and smoothness constraints, unlike 
kinematics-only methods that ignore dynamic mismatches. 
This enables stable transfer to heavy platforms, such as 
Tiangou. Furthermore, our method advances beyond 
kinematics-focused retargeting by achieving more stable 
velocity tracking and posture control in real-world 
transfers from Go1 to Tiangou. Although Tiangou showed 
slight latency in turning (0.6–0.7 rad/s response versus 
Go1’s 0.8 rad/s), trajectories remained smooth without 
overshoot, consistent with its higher inertia. Load tests 
under 40 kg confirmed policy robustness: the peak velocity 
dropped by about 40%, but posture recovery was rapid, 
and yaw variations remained minimal, indicating 
adaptability to disturbances. These outcomes underscore 
the engineering value of dynamic constraints for  
heavy-legged robots. 

Despite these advancements, CAR shows limitations in 
extreme scenarios. For instance, limited leg lift height 
prevents crossing 15 cm steps. Compared to our direct 
dynamics-based control of Tiangou, this study reduces 
energy efficiency in legged mode, lasting only 40 min 
versus 2.5 h. In experiments, Tiangou handles load 
variations from 0 to 40 kg; beyond this range, the actuators 
overheat rapidly. Sudden acceleration commands cause 
falls, indicating poor response to abrupt inputs. These 
failure cases highlight CAR’s constrained generalization 
to varied terrain, heavy payloads, and dynamic commands. 
Additionally, BO’s sampling efficiency diminishes in 
high-dimensional spaces, potentially requiring more 
iterations for complex sets. Future work could integrate 
adaptive dynamics modeling to enhance robustness. 

Future work could address these by extending 
evaluations to diverse platforms and scenarios, 
incorporating meta-learning for faster adaptation, and 
integrating energy optimization to improve deployment 
efficiency. Overall, this study highlights the integration of 
dynamics-aware retargeting and automated optimization 
as a foundation for policy transfer across heterogeneous 
systems, with implications for industrial applications that 
require heavy loads. 

V. CONCLUSION 

This study introduces the CAR method, incorporating 
dynamic consistency constraints on top of inverse 
kinematics, and integrates it with Bayesian optimization 
within a PPO framework. This enables effective policy 
transfer from Unitree Go1 to the heavy wheel-legged 
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Tiangou. Experimental results validated that CAR 
achieved an average 40% reduction in foot-end position 
errors, 45% improvement in joint angular velocity 
smoothness, and substantial decreases in foot-end 
slippage. BO nearly doubled cumulative rewards from 65 
to over 120 and enhanced training stability. Thus, our 
approach outperforms kinematics-only methods by 
ensuring robustness across significant morphological 
differences, including a 7.7× mass disparity. Although 
limited to flat terrain and a single platform, this work 
establishes a novel paradigm for transferring 
heterogeneous robot policies. It demonstrates practical 
feasibility for heavy-duty applications in disaster response 
and industrial operations. Future directions prioritize 
extending validations to multiple platforms for  
cross-morphology generalization, incorporating  
meta-learning for rapid adaptation, and adding energy 
optimization for enhanced efficiency. Overall, these 
advancements pave the way for scalable imitation learning 
in robotics, fostering broader deployment in real-world 
scenarios. 
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