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Abstract—High-precision mechanical assemblies require 
accurate error propagation models to predict error 
accumulation in the final assembly and ensure optimal 
performance and reliability. Conventional linear models 
exhibit limited accuracy in predicting geometric errors. To 
address these limitations, this study proposes a modified 
connective assembly model based on second-order nonlinear 
error propagation using homogeneous transformation 
matrices. The model is implemented in Python and validated 
against existing linear and fully nonlinear assembly models to 
evaluate predictive accuracy and computational efficiency. 
At an angular orientation error of 1.0°, the linear model 
exhibits Z-direction errors of 0.40 mm, 0.60 mm, and 
0.80 mm for 4, 6, and 8 component assemblies, respectively, 
whereas the fully nonlinear model predicts 0.10 mm, 
−0.57 mm, and −2.18 mm. The developed model reduces these 
discrepancies to 0.23 mm, −0.25 mm, and −1.59 mm, 
achieving improved predictive accuracy of 56.67%, 72.65%, 
and 80.20%, respectively, over the linear model. Similarly, 
under a geometric run-out tolerance of 1.0 mm, the linear 
model predicts an error of −1.60 mm, −2.40 mm, and 
−3.20 mm, compared to −1.70 mm, −2.79 mm, and −4.18 mm 
for the fully nonlinear model in the Z-direction. The proposed 
model narrows these gaps to −1.66 mm, −2.68 mm, and 
−3.99 mm, delivering predictive accuracy of 60.00%, 71.79%, 
and 80.61%, respectively. Moreover, Monte Carlo simulation 
results on 4-component assembly confirm that the proposed 
model replicates the statistical characteristics of the fully 
nonlinear model while reducing execution time from 9.34 s to 
4.82 s, achieving a 48.39% reduction in execution time. 
 
Keywords—high precision components, mechanical 
assemblies, variation propagations, modified connective 
assembly model 
 

I. INTRODUCTION 

The reliability, longevity, and performance of  
high-precision mechanical assemblies mainly depend on 
the dimensional and geometric accuracy of their individual 
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components, and the style in which these components are 
assembled [1]. However, due to manufacturing 
imperfections, the components are often produced with 
geometric errors. During the assembly process, these 
component-level geometric errors propagate through the 
mating surfaces and accumulate, ultimately causing the 
final assembly to deviate from its intended nominal 
geometry [2]. These geometric errors affect not only the 
assembly’s functionality and dimensional accuracy but 
also its mechanical behavior, long-term stability, and 
overall performance. 

In order to address these aforementioned challenges, a 
substantial body of research has focused on modeling 
geometric errors and their propagation using connective 
assembly models to improve prediction accuracy in 
assembled components. For instance, a precision 
prediction method developed for aero-engine rotors by 
incorporating surface morphology and non-uniform 
contact deformation, which achieved a 10.6% 
improvement in accuracy and a 60.2% reduction in 
coaxiality errors using a genetic algorithm-based phase 
optimization approach [3]. The stage-by-stage propagation 
of mass eccentric deviations in multistage rotors was 
analyzed through the development of a constrained 
nonlinear programming model, which employed a genetic 
algorithm to minimize initial unbalance in aero-engine 
multistage rotors [4]. Similarly, the orientation of 
individual rotors was optimized in order to minimize axial 
deviations in multistage assemblies, and this approach was 
further extended to integrate Monte Carlo simulations to 
more effectively control assembly eccentricity [5, 6]. 
Similar strategies have also been applied to 2D 
axisymmetric rotors by minimizing radial  
Root-Mean-Square (RMS) errors at rotor interfaces [7]. In 
order to improve the assembly accuracy, location and 
orientation tolerances are considered to reduce cumulative 
eccentric deviations by nearly 50% compared to the direct 
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build methods [8]. This strategy was further improved 
through an adjustment technique that incorporated 
eccentric and tilt rotor stages and achieved 71% and 57% 
maximum and average error reduction respectively, for 
multistage rotor assemblies [9]. 

In order to mitigate such type of effects, predictive 
models have incorporated decoupling algorithms that 
integrate manufacturing variation data with intermediate 
measurements [10]. Coaxiality measurement methods 
using common datum axes have also been proposed to 
improve accuracy and reduce deviations in aero-engine 
rotor assemblies [11]. In parallel to this, deviation 
propagation models based on Jacobian-Torsor theory have 
been introduced to provide general formulations for  
n-stage rotor assemblies that incorporate deviation 
propagation functions and optimization objectives [12, 13]. 
Further contributions in this area include repair  
decision-making frameworks [14], datum error 
elimination strategies [15], and optimization approaches 
that integrate tensor coordinate transformations with 
multi-objective algorithms [16]. Multi-degree-of-freedom 
Numerical Control (NC) platforms, combined with Monte 
Carlo simulations, have also been employed to evaluate 
and improve docking accuracy in precision  
assemblies [17, 18].  

In addition to these analytical approaches, recent studies 
have explored probabilistic tolerance analysis  
methods [19], where deviation propagation is modeled 
statistically to account for manufacturing uncertainty 
distributions. Meanwhile, deep learning-based prediction 
methods [20] have emerged, using data-driven surrogates 
to model nonlinear assembly behavior and provide rapid 

predictions. Similarly, digital twin modeling [21] has 
gained attention as a way to integrate real measurement 
data and simulations, enabling adaptive control of 
variation during assembly. While these approaches are 
powerful, but often rely on extensive datasets, high 
computational resources, or continuous data integration, 
which may limit their applicability in early design-phase 
analysis. 

Early formulations of assembly variation propagation 
include the linear model, which offers computational 
simplicity but may compromise accuracy, and the fully 
nonlinear model, which achieves high fidelity at the cost 
of significant computational demand [22]. In order to 
address these limitations, the proposed study introduces a 
modified connective assembly model that incorporates 
second-order nonlinear error propagation using 
Homogeneous Transformation Matrices (HTMs). Unlike 
the fully nonlinear model, which retains all orders of 
nonlinear terms and trigonometric expansions, the 
proposed model retains only second-order nonlinear terms 
in the matrix multiplication.  

This formulation enables it to maintain higher predictive 
accuracy than the linear model, while reducing execution 
time compared to the fully nonlinear model, thereby 
positioning it as a novel intermediate model that 
effectively balances predictive accuracy and 
computational efficiency. In order to underscore the 
novelty of this study, Table I summarizes the comparative 
features of the proposed model against the fully nonlinear, 
linear, and Jacobian-Torsor models, emphasizing the key 
differences among these approaches.

TABLE I. NOVELTY COMPARISON OF MODIFIED MODEL WITH THE EXISTING MODELS 

Aspect Fully Nonlinear Model Modified Model Linear Model Jacobian-Torsor 
Predictive Accuracy Highest High Lowest Moderate 

Nonlinear terms All orders retained 
Up to 2nd order 
(closed form) 

First-order only Varies by expansion 

Error Propagation 
Full nonlinear 

expansion 
Retains 2nd order 
nonlinear effects 

Simple 
Recomputed using 

Jacobians 
Matrix operations Fully nonlinear matrices 2nd order nonlinear terms Linearized Jacobian only 

Numerical stability High across all ranges 
Stable at small to moderate 

deviations 
Unstable in nonlinear regimes Sensitive 

Execution Time Slowest Moderate Fastest Moderate-High 
Interpretability Complex Moderate Simple Moderate 

Memory requirements Highest Low to moderate Minimal Higher 
Implementation effort High Moderate Low Moderate-High 

 
This comparative analysis highlights the balanced 

performance of the proposed model, demonstrating its 
potential to improve predictive accuracy without the 
computational and implementation burdens of fully 
nonlinear approaches. 

All computations in this study were performed using the 
python programming language within a Jupyter Notebook 
platform. Core computational tasks were performed using 
the NumPy library for efficient matrix operations and 
numerical analysis, while Matplotlib was employed for 
visualizing results. All simulations and analyses were 
carried out on a Dell Inspiron 5502 laptop equipped with 
an 11th Gen Intel(R) Core(TM) i7-1165G7 CPU  

@ 2.80 GHz, 8 GB of RAM, and a 64-bit Windows 11 
operating system. 

The structure of the paper is organized as follows: 
Section II describes the methodology used to develop the 
modified connective assembly model. Section III provides 
a detailed analysis of the developed model, while 
Section IV validates the effectiveness of the proposed 
model. Section V discusses the key findings, and 
Section VI concludes the paper. 

II. RESEARCH METHODOLOGY 

The research methodology adopted for the development 
of the modified connective assembly model, as shown in 
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Fig. 1, is structured to define component tolerances, 
represent manufacturing variations through nominal and 
differential transforms, and evaluate the propagation and 

accumulation of these variations within the assembly 
process. 

 

 

Fig. 1. Research methodology flow chart for developing the modified connective assembly model. 

A. Development of a Modified Connective Assembly 
Model 

Connective assembly models [23] are employed to 
quantify the propagation of component-level variations 
throughout the assembly process. These models use matrix 
transformations to describe the spatial relationships 
between coordinate frames attached to the mating features 
of adjacent components. For Three-Dimensional (3D) 
components, the geometric relationship between any two 
coordinate frames is illustrated in Fig. 2. 

 

 
Fig. 2. Geometric relationship between two coordinate frames [23]. 

As shown in Fig. 2, the geometric relationship between 
coordinate frames 1 and 2 is represented by a matrix 
transform T. This matrix transform captures both rotation 

and translation operations acting on a coordinate frame 
aligned with a reference frame [23] and is given in Eq. (1). 

 𝑇 ൌ ൤
𝑅 𝑝
0் 1

൨ (1) 

Here, R is a 3×3 rotation matrix representing the 
orientation of frame 2 relative to frame 1, and p is a 3×1 
position vector indicating the location of frame 2 relative 
to frame 1. The superscript T denotes the matrix transpose.  

In a three-component assembly, as shown in Fig. 3(a), 
the model assumes that the components are assembled 
sequentially through their mating features [23]. 
Transformation matrices are used to define the position 
and orientation of each component relative to these mating 
features under nominal conditions. For the assembled 
configuration shown in Fig. 3(b), the transformation 
matrix representing the cumulative position and 
orientations from the base of component 1 to the top of 
component 3 is denoted as 𝑇଴→ଷ

ே . This cumulative 
transformation is obtained by multiplying the individual 
nominal transformation matrices along the assembly 
sequence, is given in Eq. (2). 

 𝑇଴→ଷ
ே ൌ 𝑇଴→ଵ

ே ൈ 𝑇ଵ→ଶ
ே ൈ 𝑇ଶ→ଷ

ே  (2) 

Here, 𝑇଴→ଵ
ே  represents the transformation matrix that 

relates the position and orientation of the coordinate frame 
from feature 0 to feature 1 on component 1. Similarly, 
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𝑇ଵ →ଶ
ே  defines the transformation within component 2, from 

feature 1 to feature 2. Finally, 𝑇ଶ→ଷ
ே  describes the 

transformation from the mating feature 2 to the top of 
component 3. All these transformation matrices follow the 
general form as in Eq. (1). Superscript N reflects nominal 
geometry between the mating features. 

Under the axisymmetric property of components, the 
rotation matrix R is the identity matrix in Eq. (1), 
representing the relative orientation between the frames, 
and the position vector p is a zero vector except in the  
Z-direction. The nominal individual transformation 
matrices for the assembly of three components can be 
written as in Eqs. (3)–(6). 

 

 
 (a) (b) 

Fig. 3. Example of a three-component assembly: (a) before assembly, 
(b) after assembly. 

 𝑇଴→ଵ
ே ൌ ൤ 𝐼 𝑝ଵ

ே

0் 1
൨ (3) 

 𝑇ଵ→ଶ
ே ൌ ൤ 𝐼 𝑝ଶ

ே

0் 1
൨ (4) 

 𝑇ଶ→ଷ
ே ൌ ൤ 𝐼 𝑝ଷ

ே

0் 1
൨ (5) 

 𝑃௜
ே ൌ ൥

0
0
𝑍௜

൩ (6) 

𝑍௜  in Eq. (6) is the height of the 𝑖௧௛  component. 
Substituting Eqs. (3)–(5) into Eq. (2) yields Eq. (7). In  
Eq. (8), 𝑇଴→௡

ே  is the transformation matrix representing the 
assembly of n components, which relates the location and 
orientation of the coordinate frame at the top of component 
n to the coordinate frame at the base of component 1. 

 𝑇଴→ଷ
ே ൌ ൤ 𝐼 𝑝ଵ

ே ൅ 𝑝ଶ
ே ൅ 𝑝ଷ

ே

0் 1
൨ (7) 

 𝑇଴→௡
ே ൌ ቈ

𝐼 ෌ 𝑝௜
ே௡

௜

0் 1
቉ (8) 

In real practice, components often exhibit small 
misalignments or dimensional deviations from their 
nominal geometry. These imperfections introduce position 
and orientation errors at mating features during assembly. 
To incorporate these deviations into the assembly model, 
a differential matrix transform 𝐷𝑇௜ is introduced for each 
component. This matrix considers both rotational and 
translational errors and follows the same structure as the 
transformation matrix defined in Eq. (1) as written in  
Eq. (9). 

 𝐷𝑇௜ ൌ ൤
𝑑𝑅௜ 𝑑𝑝௜

0் 1
൨ ,=1,2,3 (9) 

Here, 𝑑𝑝௜  is the translation vector representing the 
deviation of the mating feature on component 𝑖 from its 
nominal position, with small displacements along the x-, 
y-, and z-axes, as expressed in Eq. (10). 

 𝑑𝑃௜ ൌ ൥
𝑑𝑋௜
𝑑𝑌௜
𝑑𝑍௜

൩ , 𝑖 =1,2,3 (10) 

The 𝑑𝑅௜  is the rotation matrix that considers small 
rotational errors due to manufacturing imperfections. 
These rotational deviations are modeled by three 
individual rotation matrices 𝑑𝑅ఏ௫௜ , 𝑑𝑅ఏ௬௜ , and 𝑑𝑅ఏ௭௜ , 
which represent rotations about the x, y, and z-axes, 
respectively [23]. The combined rotation error matrix 𝑑𝑅௜ 
is obtained by multiplying these individual rotation 
matrices together to achieve Eq. (11).

 𝑑𝑅௜ ൌ ቎
𝐶𝑑𝜃௬௜𝐶𝑑𝜃௭௜ െ𝐶𝑑𝜃௬௜𝑆𝑑𝜃௭௜ 𝑆𝑑𝜃௬௜

𝑆𝑑𝜃௫௜𝑆𝑑𝜃௬௜𝐶𝑑𝜃௭௜ ൅ 𝐶𝑑𝜃௫௜𝑆𝑑𝜃௭௜ 𝐶𝑑𝜃௫௜𝐶𝑑𝜃௭௜ െ 𝑆𝑑𝜃௫௜𝑆𝑑𝜃௬௜𝑆𝑑𝜃௭௜ 𝑆𝑑𝜃௫௜𝐶𝑑𝜃௬௜

𝑆𝑑𝜃௫௜𝑆𝑑𝜃௭௜ െ 𝐶𝑑𝜃௫௜𝑆𝑑𝜃௬௜𝐶𝑑𝜃௭௜ 𝐶𝑑𝜃௫௜𝑆𝑑𝜃௬௜𝑆𝑑𝜃௭௜ ൅ 𝑆𝑑𝜃௫௜𝐶𝑑𝜃௭௜ 𝐶𝑑𝜃௫௜𝐶𝑑𝜃௬௜

቏ (11) 

where 𝑆𝑑𝜃  and 𝐶𝑑𝜃 , denote 𝑆𝑖𝑛𝑑𝜃  and 𝐶𝑜𝑠𝑑𝜃, 
respectively. 

Applying small-angle approximations such that  
𝑆𝑑𝜃 ൌ 𝑑𝜃 and 𝐶𝑑𝜃 ൌ 1 in Eq. (11), and assuming that the 

rotation angle errors are small, Eq. (11) can be 
approximated as Eqs. (12) and (13). Consequently, Eq. (9) 
becomes Eq. (14). 

Component 3

Component 2

Component 1

00

Z0 Y0

X0

T0     1

01

Z1 Y1

X1

01

Z1 Y1

X1

T1    2

02

Z2 Y2

X2

02

Z2 Y2

X2

T2     3

03

Z3 Y3

X3

00

Z0 Y0

X0

T0     1

01

Z1 Y1

X1

T1     2

02

Z2 Y2

X2

T2     3

03

Z3 Y3

X3
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 𝑑𝑅௜ ൌ 𝐼 ൅ 𝛿𝑅௜ (12) 

 𝛿𝑅௜ ൌ ቎
0 െ𝑑𝜃௭௜ 𝑑𝜃௬௜

𝑑𝜃௭௜ 0 െ𝑑𝜃௫௜
െ𝑑𝜃௬௜ 𝑑𝜃௫௜ 0

቏ (13) 

 𝐷𝑇௜ ൌ ൤
𝐼 ൅ 𝛿𝑅௜ 𝑑𝑝௜

0் 1
൨ , 𝑖=1,2,3 (14) 

For the three-component assembly, the total 
transformation from the base of component 1 (frame 0) to 
the top of component 3 (frame 3), considering the 
manufacturing variation, is given in Eq. (15). Substituting 
Eqs. (3)–(5) and (14) into Eq. (15) yields Eq. (16). 

 𝑇଴→ଷ ൌ 𝑇 ൈ 𝐷𝑇 (15) 

 𝑇଴→ଷ ൌ 𝑇଴→ଵ
ே ൈ 𝐷𝑇ଵ ൈ 𝑇ଵ→ଶ

ே ൈ 𝐷𝑇ଶ ൈ 𝑇ଶ→ଷ
ே ൈ 𝐷𝑇ଷ (16) 

In Eq. (16), 𝑇଴→ଵ
ே , 𝑇ଵ→ଶ

ே  and 𝑇ଶ→ଷ
ே  describe the nominal 

transformations assuming perfect manufacturing, 
while 𝐷𝑇ଵ , 𝐷𝑇ଶ  and 𝐷𝑇ଷ  represent the differential 
transformations considering the manufacturing variation 
in each component. The complete transformation 
incorporating both nominal and differential effects is 
shown in Eq. (17). After neglecting the third-order terms 
and keeping the terms up to second order only, the 
expression written as Eq. (18). The generalized summation 
form of Eq. (18) for the assembly of n components is 
written in Eq. (19).

 𝑇଴→ଷ ൌ

⎣
⎢
⎢
⎢
⎢
⎡ 𝑅ଵ𝑅ଶ𝑅ଷ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ ൅
𝑅ଵ𝑅ଶ𝑅ଷ𝛿𝑅ଷ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝛿𝑅ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ𝛿𝑅ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝛿𝑅ଷ

𝑃ଵ ൅ 𝑅ଵ𝑃ଶ ൅ 𝑅ଵ𝑅ଶ𝑃ଷ ൅ 𝑅ଵ𝑑𝑃ଵ ൅ 𝑅ଵ𝑅ଶ𝑑𝑃ଶ ൅
𝑅ଵ𝛿𝑅ଵ𝑃ଶ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑑𝑃ଶ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑃ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑃ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑃ଷ ൅
𝑅ଵ𝑅ଶ𝑅ଷ𝑑𝑃ଷ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝑑𝑃ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ𝑑𝑃ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝑑𝑃ଷ

0் 1 ⎦
⎥
⎥
⎥
⎥
⎤

 (17) 

 𝑇଴→ଷ ൌ

⎣
⎢
⎢
⎢
⎡

𝑅ଵ𝑅ଶ𝑅ଷ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ ൅
𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ ൅
𝑅ଵ𝑅ଶ𝑅ଷ𝛿𝑅ଷ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝛿𝑅ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ𝛿𝑅ଷ

𝑃ଵ ൅ 𝑅ଵ𝑃ଶ ൅ 𝑅ଵ𝑅ଶ𝑃ଷ ൅ 𝑅ଵ𝑑𝑃ଵ ൅ 𝑅ଵ𝑅ଶ𝑑𝑃ଶ ൅
𝑅ଵ𝛿𝑅ଵ𝑃ଶ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑑𝑃ଶ ൅ 𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑃ଷ ൅

𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑃ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑃ଷ ൅ 𝑅ଵ𝑅ଶ𝑅ଷ𝑑𝑃ଷ ൅
𝑅ଵ𝑅ଶ𝛿𝑅ଶ𝑅ଷ𝑑𝑃ଷ ൅ 𝑅ଵ𝛿𝑅ଵ𝑅ଶ𝑅ଷ𝑑𝑃ଷ

0் 1 ⎦
⎥
⎥
⎥
⎤

 (18) 

 𝑇଴→௡ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

∏ 𝑅௜
ே
௜ୀଵ

൅ ෍ ൫∏ 𝑅௜
ே
௜ୀଵ . 𝛿𝑅௝൯

ே

௝ୀଵ

൅ ෍ ൫∏ 𝑅௜
ே
௜ୀଵ . 𝛿𝑅௜  𝛿𝑅௝൯

ே

௝ୀଵ

෎ ቆෑ 𝑅௝

௜ିଵ

௝ୀ଴
ቇ 𝑃௜

ே

௜ୀଵ

൅ ෎ ቈෑ ൫𝑅௝൯𝑑𝑃௜

௜

௝ୀଵ
቉

ே

௜ୀଵ

൅ ා ൭ቆෑ 𝑅௝

௜

௝ୀଵ
ቇ 𝛿𝑅௜ ෎ ቆ∏ 𝑅௞

ேିଵ
௞ୀ௟ିଵ

௞¹ଵ
ቇ 𝑃௟

ே

௟ୀ௜ାଵ

൱

ேିଵ

௜ୀଵ

൅ ා ൭ቆෑ 𝑅௝

௜ାଵ

௝ୀଵ
ቇ 𝛿𝑅௜𝛿𝑅௝ ෎ ቆ∏ 𝑅௞

ேିଵ
௞ୀ௟ିଵ

௞¹ଵ
ቇ 𝑃௜

ே

௟ୀ௜ାଵ

൱

ேିଵ

௜ୀଵ

൅ ෎ ቆෑ 𝑅௝

௜

௝ୀଵ
ቇ 𝛿𝑅௜𝑑𝑃௝

ேିଵ

௜ୀଵ

0் 1 ⎦
⎥
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The term, 𝑇଴→௡  in Eq. (19), represents the overall 
assembly transformation of n components, relating the 
position and orientation of the coordinate frame at the top 
of 𝑛௧௛ component to the coordinate frame at the base of 
component 1, while considering second-order nonlinear 
effects induced by each component. Furthermore, the 
accumulated translation and rotational errors resulting 
from the assembly of N components are described in  
Eq. (20) which is used to calculate the translation errors 
𝑑𝑝௜

௑, 𝑑𝑝௜
௒ and 𝑑𝑝௜

௓ after the assembly of 𝑖௧௛ component. 

B. Specifying Allowable Limits for Radial and Axial 
Run-Outs 

Manufacturing processes introduce dimensional and 
geometric variations in components. These variations arise 
not only from process limitations but also from material 
properties, internal discontinues, and geometric properties 
of the component [24]. In order to consider these variations 
from the nominal, design engineers specify tolerances, 
which define allowable limits of variation for each 
component. Tolerances may be assigned to dimensions 
(e.g., size) or to features, thereby constraining allowable 
variations in shape, form, profile, or location of lines or 
surfaces. 

C. Identifying the Impact of Both Radial and Axial 
Runout Tolerances in Terms of Six Degrees of 
Freedom 

In order to evaluate the impact of component-level 
variations on assembly accuracy, these variations are 
described in terms of six Degrees of Freedom (DoF): three 
degrees of translational ሺ𝑑𝑥, 𝑑𝑦, 𝑑𝑧ሻ and three degrees of 
rotational ൫𝑑𝜃௫, 𝑑𝜃௬, 𝑑𝜃௭൯ variations. For the purpose of 
modeling these variations, a 3D axisymmetric cylindrical 
component is analyzed under the combined effect of 
dimensional and geometric runout tolerances as depicted 
in Fig. 4(a). The radial runout ሺ𝑇௥௥ሻ controls the circular 
deviations of the component relative to the datum axis, 
while the axial runout tolerance ሺ𝑇௔௥ሻ  controls surface 
deviations normal to the datum axis and the dimensional 
tolerance ሺേ𝑇௦ሻ  specifies the allowable range for size 
variations.  

Fig. 4(b) illustrates how the tolerance zone for axial 
runout is enclosed within the dimensional tolerance zone. 
The tolerance limit for radial runout ሺ𝑇௥௥ሻ is illustrated in  
Fig. 4(c), which shows the top view of the component. The 
radial runout results in a geometric shift of the 
component’s actual circular profile from its ideal position, 
causing displacement in the x and y directions. 

 

 
Fig. 4. Impact of radial and axial runouts on a 3D axi-symmetric cylindrical component: (a) tolerance applied; (b) axial run-out within size zone; (c) 

radial run-out causing eccentricity; (d) resulting position and tilt errors [22].

The constraint bounds for translation errors due to radial 
runout can be written in Eq. (21). The axial runout ሺ𝑇௔௥ሻ 
as depicted in  

Fig. 4(d), introduces positional deviation along the z-
axis as well as angular deviations about the  
x- and y-axes. Specifically, axial runout causes the top 

surface of the component to be tilted and shift from its 
nominal axis. When the angular deviation ሺ𝛿𝜃௫ሻ occurs 
first, it consumes a portion of the allowable angular 
tolerance, thereby reducing the remaining range available 
for ൫𝛿𝜃௬൯ . Assuming the nominal diameter of the 
component is unaffected by dimensional errors, the 
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angular constraint bounds due to axial runout can be 
written as shown in Eqs. (22) and (23). Similarly, the 
positional deviations along the z-axis due to the combined 
effects of axial runout and dimensional tolerance can be 
written as shown in Eq. (24). Considering the combined 
effect of dimensional and runout tolerances, the complete 
variation vector across the six degrees of freedom for a 3D 
component can be written as shown in Eq. (25). 

 െ𝑇௥௥ ൑ 𝑑𝑋 ൒ 𝑇௥௥  and െ𝑇௥௥ ൑ 𝑑𝑌 ൒ 𝑇௥௥ (21) 

 െtanିଵ ்ೌ ೝ

஽
൑ 𝛿𝜃௫ ൑ tanିଵ ்ೌ ೝ

஽
 (22) 
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஽
െ 𝛿𝜃௫ቁ ൑ 𝛿𝜃௬ ൑ ቀtanିଵ ்ೌ ೝ

஽
െ 𝛿𝜃௫ቁ (23) 

 െ ቀ𝑇௦ െ
்ೌ ೝ

ଶ
ቁ ൑ 𝑑𝑍 ൑ ቀ𝑇௦ െ

்ೌ ೝ

ଶ
ቁ (24) 

 ൫𝑑𝑋, 𝑑𝑌, 𝑑𝑍, 𝑑𝜃௫, 𝑑𝜃௬, 𝑑𝜃௭൯
்
 (25) 

where 𝑑𝜃௭ ൌ 0. 

III. ANALYSIS OF THE DEVELOPED MODEL 

This section presents an analysis of the assembly 
process involving the vertical stacking of four identical 
axisymmetric cylindrical components to form a straight 
structure, as illustrated in Fig. 5. The nominal dimensions 
and modeling assumptions for the analyzed assembly are 
illustrated in Fig. 6(a) and Table II. The components are 
assembled sequentially, starting with the first component 
placed concentrically on the geometric center of the 
assembly table. Each subsequent component is then 
positioned on top of the previous one, under the 

assumption that the base coordinate frame of the new 
component is coaxial and coincident with the coordinate 
frame located at the center of the top surface of the 
component below it. 

 

AA

yo zo

xo

Assembly Table

 
Fig. 5. Assembly of nominal and actual axisymmetric cylindrical 

components. 

 

 
 (a) (b) 

Fig. 6. A cylindrical component: (a) nominal geometry; (b) deviation from nominal dimensions [22].
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TABLE II. DIMENSIONS AND ASSUMPTIONS FOR CYLINDRICAL 

COMPONENTS 

Parameters Value 

Number of components 4 

Nominal height of each component 70 mm 

Nominal diameter 100 mm 

Translation errors ൫𝑑𝜃௫௜, 𝑑𝜃௬௜, 𝑑𝜃௭௜൯ 0.1 mm 

Size tolerance ሺേ𝑇௦ሻ േ0.1 mm 

 
However, due to geometric imperfections in the 

manufactured components, as shown in Fig. 6(b), the final 
assembled structure deviates from its nominal vertical 
alignment. For analysis, uniform translational errors 
ሺ𝑑𝑥௜, 𝑑𝑦௜, 𝑑𝑧௜ሻ are assumed for each component. A key 
geometric characteristic used to evaluate deviation is the 
eccentricity error, defined as the perpendicular offset 
between the central axis of the component and the global 
datum axis (AA), and can be calculated as shown in  
Eq. (26). 

 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 ൌ ඥሺ𝑑𝑝௜
௑ሻଶ ൅ ሺ𝑑𝑝௜

௒ሻଶ (26) 

The terms, 𝑑𝑝௜
௑ , and 𝑑𝑝௜

௒ , in Eq. (26), represent the 
errors along the x, and y axes, respectively, and are 
computed using Eq. (20). The rotation matrix 𝑅௜  is 
considered to be the identity matrix, while the translation 
vector 𝑝௜ is defined as ሾ0,0,70ሿ். 

The analysis considers the worst-case assembly of 
components, where each component’s translational and 
rotational error is assumed to reach its maximum limit. The 
performance of the developed model is evaluated across a 
range of angular orientation errors (in degrees) as defined 
by Eq. (27) for assemblies comprising 4, 6, and 8 
components. 

Moreover, to assess the impact of geometric variations 
on assembly variation propagation, the model performance 
is also evaluated across a set of geometric run-out 
tolerances in mm as defined in Eq. (28), using defined 
geometric tolerances, axial run-out ሺ𝑇௔௥ሻ  and radial  
run-out ሺ𝑇௥௥ሻ and size tolerance ሺേ𝑇௦ሻ for each assembly 
configuration. 

 

 𝑑𝜃௫௜ ൌ 𝑑𝜃௬௜ ൌ 𝑑𝜃௭௜ ൌ ൤
0.001,0.005,0.01,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,
0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0൨ deg (27)

 𝑇௔௥ ൌ 𝑇௥௥ ൌ ൤
0.001,0.005,0.01,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,

0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0 ൨ 𝑚𝑚 (28) 

Monte Carlo Simulation (MCS) is a widely adopted 
numerical method for analyzing the statistical behavior of 
assemblies influenced by random geometric  
variations [25]. It is a standard approach in tolerance 
analysis and is based on generating random samples of 
component tolerances [26]. In this study, MCS is 
employed to simulate the assembly process by sequentially 
joining the mating features of individual components. 
Manufacturing variations are modeled as zero-mean 
Gaussian random variables, with the standard deviation 
ሺ𝜎ሻ is taken as one-third of the specified tolerance. The 
results are calculated for assembly errors 
ሺ𝑑𝑝௜

௑, 𝑑𝑝௜
௒, 𝑑𝑝௜

௓, ሻ  and the corresponding eccentricity of 
the final assembly. 

The study investigates run-out tolerances ሺ𝑇௔௥ሻ  and 
ሺ𝑇௥௥ሻ at three distinct values of 0.01, 0.1, and 1 mm, while 
taking the size tolerance ሺേ𝑇௦ሻ  fixed at 0.1 mm. The 
simulation generates 10,000 random assembly iterations 
within these tolerance bounds. 

IV. VALIDATION OF THE DEVELOPED MODEL 

The effectiveness of the proposed model is validated by 
comparing its performance with two established 
approaches described in Ref. [22]: the linear connective 
assembly model and the fully nonlinear connective 
assembly model. The linear model simplifies geometric 
relationships using a first-order approximation, allowing it 
for efficient execution time but with reduced accuracy in 
predicting geometric deviations. In contrast, the fully 

nonlinear connective assembly model incorporates full 
trigonometric expansions to account for higher-order 
deviations, offering high predictive accuracy at the 
expense of computational cost.  

The proposed model retains second-order nonlinear 
terms in the homogeneous transformation matrices, 
offering improved accuracy over the linear model while 
maintaining significantly lower computational complexity 
than the fully nonlinear model. For a robust comparative 
evaluation, numerical analyses have been conducted for 
assemblies consisting of 4, 6, and 8 axisymmetric 
cylindrical components. The evaluation is based on two 
principal criteria: (1) angular orientation errors, (2) 
geometric runout tolerances, and the results are presented 
in Figs. 7–12. 

In order to further validate these findings, Monte Carlo 
simulations, conducted within a defined dimensional 
tolerance zone of ሺേ𝑇௦ሻ = 0.1 mm. The run-out tolerances 
at 0.01 mm, 0.1 mm and 1.0 mm were selected to represent 
high, moderate, and low assembly precision levels, thereby 
covering the practical spectrum of deviations encountered 
in high-precision assemblies. The size tolerance (±𝑇𝑠) was 
held fixed at 0.1 mm, as industrial practice generally 
maintains size tolerance as fixed to isolate the influence of 
run-out on variation propagation. This ensures that the 
observed differences in predictive performance are 
directly linked to runout effects. 

This setup enables a statistically robust assessment of 
the proposed model’s sensitivity and reliability under 
varying runout tolerances [22]. This approach is consistent 
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with GD&T practice, where run-out tolerance is specified 
independently of size tolerance based on functional and 
rotational requirements [27]. The results presented in  

Fig. 13–15 illustrate the improved predictive accuracy of 
the proposed model. 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 7. Comparison of final-stage assembly variations across a range of angular orientation errors: (a) errors in X-direction, (b) errors in Y-direction, 
(c) errors in Z-direction, and (d) eccentricity errors for 4 components.   

 
 (a) (b) 

 
 (c) (d) 

Fig. 8. Comparison of final-stage assembly variations across a range of angular orientation errors: (a) errors in X-direction, (b) errors in Y-direction, 
(c) errors in Z-direction, and (d) eccentricity errors for 6 components. 
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 (a) (b) 

 
 (c) (d) 

Fig. 9. Comparison of final-stage assembly variations across a range of angular orientation errors: (a) errors in X-direction, (b) errors in Y-direction, 
(c) errors in Z-direction, and (d) eccentricity errors for 8 components. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 10. Comparison of final-stage assembly variations across a range of geometric runout tolerances: (a) errors in X-direction, (b) errors in  
Y-direction, (c) errors in Z-direction, and (d) eccentricity errors for 4 components. 
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 (a) (b) 

 
 (c) (d) 

Fig. 11. Comparison of final-stage assembly variations across a range of geometric runout tolerances: (a) errors in X-direction, (b) errors in  
Y-direction, (c) errors in Z-direction, and (d) eccentricity errors for 6 components. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 12. Comparison of final-stage assembly variations across a range of geometric runout tolerances: (a) errors in X-direction, (b) errors in  
Y-direction, (c) errors in Z-direction, and (d) eccentricity errors for 8 components. 
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 (a) (b) 

 
 (c) (d) 

Fig. 13. Probability density functions of final assembly errors: (a) errors in X-direction, (b) errors in Y-direction, (c) errors in Z-direction,  
and (d) eccentricity errors for 4 components at axial and radial runout tolerance of 0.01 mm.  

 
 (a) (b) 

 
 (c) (d) 

Fig. 14. Probability density functions of final assembly errors: (a) errors in X-direction, (b) errors in Y-direction, (c) errors in Z-direction,  
and (d) eccentricity errors for 4 components at axial and radial runout tolerance of 0.1 mm. 
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 (a) (b) 

 
 (c) (d) 

Fig. 15. Probability density functions of final assembly errors: (a) errors in X-direction, (b) errors in Y-direction, (c) errors in Z-direction,  
and (d) eccentricity errors for 4 components at axial and radial runout tolerance of 1.0 mm. 

V. RESULT AND DISCUSSION 

Accurate prediction of geometric errors in  
high-precision assemblies is essential to maintain 
dimensional accuracy and functional performance, and 
manufacturing reliability. The performance of the 
proposed assembly model was evaluated by comparing it 
with the existing linear and the fully nonlinear models for 
assemblies composed of 4, 6, and 8 axisymmetric 
cylindrical components. The comparative analysis focused 
on angular orientation errors, geometric run-out tolerances, 
and MCS results. As illustrated in Figs. 7–9, the variation 
in positional errors ൫𝑑𝑝௫, 𝑑𝑝௬, 𝑑𝑝௭൯ and eccentricity under 
increasing angular orientation errors ranging from 0.001° 
to 1.0° highlights the effectiveness of the modified model.  

Across all three assembly models, the proposed model 
shows strong agreement with both reference models for 
errors ൫𝑑𝑝௫, 𝑑𝑝௬൯  and eccentricity, indicating that the 
proposed model can accurately predict radial and axial 
deviations across a wide range of angular orientation 
errors. More significant differences are evidenced in the  
Z-direction error ሺ𝑑𝑝௭ሻ . At small orientation errors  
(<0.1°), all three models exhibit similar behavior. 
However, at 1.0°, their discrepancies are clear. For the 
assembly of 4 components, the linear model predicts a  
Z-error of 0.40 mm, while the modified model predicts 
0.23 mm, closer to the 0.10 mm obtained from the fully 
nonlinear model. For the assembly of 6 components, the 
linear model predicts 0.60 mm, compared to −0.25 mm 

from the modified model, and −0.57 mm from the fully 
nonlinear model. The divergence is more significant in the 
assembly of 8 components, where the linear model predicts 
0.80 mm, while the modified model predicts −1.59 mm, 
closely aligning with −2.18 mm predicted by the fully 
nonlinear model. The comparison of results are further 
illustrated in Table III, which shows that the modified 
model reduces the Z-direction error by 56.67%, 72.65%, 
and 80.20% for assemblies of 4, 6, and 8 components, 
respectively, thereby confirming its capability to predict 
the nonlinear assembly behavior more effectively than the 
linear model. 

TABLE III. COMPARISON OF Z-DIRECTION ERRORS AT 1° ANGULAR 

ORIENTATION 

No. of 
Components 

Models Z-Error 
(mm) 

Improvement vs. Linear 
Model (%) 

4 

Linear 0.40 - 

Modified 0.23 56.67 

Fully 
nonlinear 

0.10 - 

6 

Linear 0.60 - 

Modified −0.25 72.65 

Fully 
nonlinear 

−0.57 - 

8 

Linear 0.80 - 

Modified −1.59 80.20 

Fully 
nonlinear 

−2.18 - 
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A Similar trend was also observed in Figs. 10–12, which 
illustrates the influence of geometric runout tolerances on 
assembly errors for stacks of 4, 6, and 8 cylindrical 
components. The modified model remains in close 
agreement with both the linear and fully nonlinear models 
for errors ൫𝑑𝑝௫, 𝑑𝑝௬ ൯  and eccentricity. The Z-direction 
error ሺ𝑑𝑝௭ሻ once again highlights the distinction between 
the models. At small runout tolerances (<0.2 mm), all three 
models predict nearly identical results. As the tolerance 
increases, the linear model diverges, underestimating the 
nonlinear error response. In contrast, the modified model 
continues to follow the fully nonlinear trend more closely, 
particularly as the tolerance approaches 1.00 mm.  

For the assembly of 4 components, the linear model 
predicts a Z-error of −1.60 mm, the modified model 
predicts −1.66 mm, and the fully nonlinear model predicts 
−1.70 mm. In the assembly of 6 components, the linear 
model predicts −2.40 mm, compared to −2.68 mm from 
the modified model and −2.79 mm from the fully nonlinear 
model. This discrepancy becomes more significant for the 
assembly of 8 components, where the linear model predicts 
−3.20 mm, whereas the modified model predicts 
−3.99 mm, which is close to the −4.18 mm obtained from 
the fully nonlinear model. As summarized in Table IV, the 
modified model improves prediction accuracy relative to 
the linear model by approximately 60.00% for  
4 components, 71.79% for 6 components, and 80.61% for  
8 components, respectively confirming its robustness in 
modeling nonlinear effects under increasing geometric 
runout tolerances. 

TABLE IV. COMPARISON OF Z-DIRECTION ERRORS AT 1 MM RUNOUT 

TOLERANCE 

No. of 
Components 

Models Z-Error 
(mm) 

Improvement vs. Linear 
Model (%) 

4 

Linear −1.60 - 

Modified −1.66 60.00 

Fully 
nonlinear 

−1.70 - 

6 

Linear −2.40 - 

Modified −2.68 71.79 

Fully 
nonlinear 

−2.79 - 

8 

Linear −3.20 - 

Modified −3.99 80.61 

Fully 
nonlinear 

−4.18 - 

TABLE V. COMPARISON OF MODELS FOR EXECUTION TIME 

Models Execution Time (s) Time Reduction 

Linear 2.53 - 

Modified 4.82 48.39% 

Fully nonlinear 9.34 Baseline Model 

 
Further validation of the modified model was carried 

out using MCS for the 4 components assembly only, as 
illustrated in Figs. 13–15. The statistical analysis confirms 
that the modified model closely follows the results of the 
fully nonlinear model. The positional errors follow  

zero-mean Gaussian distributions, while the eccentricity 
follows a Rayleigh distribution. When increasing the 
geometric runout tolerance from 0.01 mm to 1.0 mm 
results in a proportional increase in the magnitude of 
positional errors and eccentricity, while the general shape 
of the distribution remains relatively unchanged.  

This behavior shows that tolerance amplification affects 
error magnitude but does not alter the underlying statistical 
nature of deviations. In terms of computational efficiency, 
the modified model shows a considerable advantage. As 
shown in Table V, the linear model provides the shortest 
execution time of 2.53 s, but its predictions lack accuracy. 
The fully nonlinear model delivers the most accurate 
results but requires 9.34 s, making it computationally 
intensive. By contrast, the modified model achieves nearly 
the same accuracy as the fully nonlinear model but with a 
reduced execution time of 4.82 s, representing a 48.39% 
improvement in computational efficiency. The reduction 
in computational time is achieved not through algorithmic 
shortcuts, but by retaining only second-order terms in the 
matrix multiplications to avoid the higher-order 
trigonometric expansions inherent to the fully non-linear 
model. This enables the modified model to achieve an 
effective balance between prediction accuracy and 
execution time. 

In existing literature, the comparison between linear and 
fully non-linear models has predominantly been 
undertaken through MCS, owing to the inherent 
complexity of the fully non-linear model, which precludes 
direct analysis via conventional numerical methods. 
Conversely, for the linear model, an independent 
numerical framework was developed and validated 
separately. In the present study, MCS serves as the sole 
approach for uncertainty quantification and validation of 
the second-order assembly variation propagation model. 
To strengthen the robustness and generalizability of the 
findings, future research will aim to integrate advanced 
probabilistic methodologies to facilitate more 
comprehensive comparative analyses and enhance the 
computational efficiency of uncertainty propagation. 

VI. CONCLUSION 

This study presented the development and validation of 
a modified connective assembly model for predicting 
geometric errors in high-precision multi-stage assemblies 
of axisymmetric cylindrical components. The model was 
compared with the linear model and the fully nonlinear 
model under angular orientation errors, geometric runout 
tolerances, and MCS. The findings show that while the 
linear model provides acceptable predictions only at very 
small deviations, it fails to predict nonlinear effects at 
larger angular or geometric tolerances. In contrast, the 
modified model shows strong agreement with the fully 
nonlinear model across all investigated cases. For angular 
orientation errors at 1.0°, the modified model achieved 
predictive accuracy of 56.67% for 4-component assembly, 
72.65% for 6 components, and 80.20% for  
8 components when compared with the linear model. 
Similarly, for geometric runout tolerances at 1.0 mm, the 
modified model improved accuracy by 60.00% for  
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4 components, 71.79% for 6 components, and 80.61% for 
8 components relative to the linear model. Monte Carlo 
simulations, performed on the 4-component assembly 
across tolerance ranges from 0.01 mm to 1.0 mm, further 
validated the effectiveness of the modified model. The 
results confirmed that positional errors ൫𝑑𝑝௫, 𝑑𝑝௬, 𝑑𝑝௭൯ 
follow zero-mean Gaussian distributions, while 
eccentricity follows a Rayleigh distribution, consistent 
with the fully nonlinear model. Furthermore, the modified 
model achieved these results with a significantly reduced 
computational cost, requiring only 4.82 s compared to 
9.344 s for the fully nonlinear model, representing 48.39% 
improvement in computational efficiency. 
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