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Abstract—High-precision mechanical assemblies require
accurate error propagation models to predict error
accumulation in the final assembly and ensure optimal
performance and reliability. Conventional linear models
exhibit limited accuracy in predicting geometric errors. To
address these limitations, this study proposes a modified
connective assembly model based on second-order nonlinear
error propagation using homogeneous transformation
matrices. The model is implemented in Python and validated
against existing linear and fully nonlinear assembly models to
evaluate predictive accuracy and computational efficiency.
At an angular orientation error of 1.0°, the linear model
exhibits Z-direction errors of 0.40 mm, 0.60 mm, and
0.80 mm for 4, 6, and 8 component assemblies, respectively,
whereas the fully nonlinear model predicts 0.10 mm,
—0.57 mm, and —2.18 mm. The developed model reduces these
discrepancies to 0.23 mm, —0.25 mm, and —1.59 mm,
achieving improved predictive accuracy of 56.67%, 72.65%,
and 80.20%, respectively, over the linear model. Similarly,
under a geometric run-out tolerance of 1.0 mm, the linear
model predicts an error of —1.60 mm, —2.40 mm, and
—3.20 mm, compared to —1.70 mm, —2.79 mm, and —4.18 mm
for the fully nonlinear model in the Z-direction. The proposed
model narrows these gaps to —1.66 mm, —2.68 mm, and
—3.99 mm, delivering predictive accuracy of 60.00%, 71.79%,
and 80.61%, respectively. Moreover, Monte Carlo simulation
results on 4-component assembly confirm that the proposed
model replicates the statistical characteristics of the fully
nonlinear model while reducing execution time from 9.34 s to
4.82 s, achieving a 48.39% reduction in execution time.

Keywords—high  precision  components, mechanical
assemblies, variation propagations, modified connective
assembly model

I. INTRODUCTION

The reliability, longevity, and performance of
high-precision mechanical assemblies mainly depend on
the dimensional and geometric accuracy of their individual
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components, and the style in which these components are
assembled [1]. However, due to manufacturing
imperfections, the components are often produced with
geometric errors. During the assembly process, these
component-level geometric errors propagate through the
mating surfaces and accumulate, ultimately causing the
final assembly to deviate from its intended nominal
geometry [2]. These geometric errors affect not only the
assembly’s functionality and dimensional accuracy but
also its mechanical behavior, long-term stability, and
overall performance.

In order to address these aforementioned challenges, a
substantial body of research has focused on modeling
geometric errors and their propagation using connective
assembly models to improve prediction accuracy in
assembled components. For instance, a precision
prediction method developed for aero-engine rotors by
incorporating surface morphology and non-uniform
contact deformation, which achieved a 10.6%
improvement in accuracy and a 60.2% reduction in
coaxiality errors using a genetic algorithm-based phase
optimization approach [3]. The stage-by-stage propagation
of mass eccentric deviations in multistage rotors was
analyzed through the development of a constrained
nonlinear programming model, which employed a genetic
algorithm to minimize initial unbalance in aero-engine
multistage rotors [4]. Similarly, the orientation of
individual rotors was optimized in order to minimize axial
deviations in multistage assemblies, and this approach was
further extended to integrate Monte Carlo simulations to
more effectively control assembly eccentricity [5, 6].
Similar strategies have also been applied to 2D
axisymmetric rotors by minimizing radial
Root-Mean-Square (RMS) errors at rotor interfaces [7]. In
order to improve the assembly accuracy, location and
orientation tolerances are considered to reduce cumulative
eccentric deviations by nearly 50% compared to the direct
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build methods [8]. This strategy was further improved
through an adjustment technique that incorporated
eccentric and tilt rotor stages and achieved 71% and 57%
maximum and average error reduction respectively, for
multistage rotor assemblies [9].

In order to mitigate such type of effects, predictive
models have incorporated decoupling algorithms that
integrate manufacturing variation data with intermediate
measurements [10]. Coaxiality measurement methods
using common datum axes have also been proposed to
improve accuracy and reduce deviations in aero-engine
rotor assemblies [11]. In parallel to this, deviation
propagation models based on Jacobian-Torsor theory have
been introduced to provide general formulations for
n-stage rotor assemblies that incorporate deviation

propagation functions and optimization objectives [12, 13].

Further contributions in this area include repair
decision-making  frameworks [14], datum error
elimination strategies [15], and optimization approaches
that integrate tensor coordinate transformations with
multi-objective algorithms [16]. Multi-degree-of-freedom
Numerical Control (NC) platforms, combined with Monte
Carlo simulations, have also been employed to evaluate
and improve docking accuracy in  precision
assemblies [17, 18].

In addition to these analytical approaches, recent studies
have explored probabilistic  tolerance  analysis
methods [19], where deviation propagation is modeled
statistically to account for manufacturing uncertainty
distributions. Meanwhile, deep learning-based prediction
methods [20] have emerged, using data-driven surrogates
to model nonlinear assembly behavior and provide rapid

predictions. Similarly, digital twin modeling [21] has
gained attention as a way to integrate real measurement
data and simulations, enabling adaptive control of
variation during assembly. While these approaches are
powerful, but often rely on extensive datasets, high
computational resources, or continuous data integration,
which may limit their applicability in early design-phase
analysis.

Early formulations of assembly variation propagation
include the linear model, which offers computational
simplicity but may compromise accuracy, and the fully
nonlinear model, which achieves high fidelity at the cost
of significant computational demand [22]. In order to
address these limitations, the proposed study introduces a
modified connective assembly model that incorporates
second-order nonlinear error propagation using
Homogeneous Transformation Matrices (HTMs). Unlike
the fully nonlinear model, which retains all orders of
nonlinear terms and trigonometric expansions, the
proposed model retains only second-order nonlinear terms
in the matrix multiplication.

This formulation enables it to maintain higher predictive
accuracy than the linear model, while reducing execution
time compared to the fully nonlinear model, thereby
positioning it as a novel intermediate model that
effectively  balances  predictive  accuracy  and
computational efficiency. In order to underscore the
novelty of this study, Table I summarizes the comparative
features of the proposed model against the fully nonlinear,
linear, and Jacobian-Torsor models, emphasizing the key
differences among these approaches.

TABLE I. NOVELTY COMPARISON OF MODIFIED MODEL WITH THE EXISTING MODELS

Aspect Fully Nonlinear Model Modified Model Linear Model Jacobian-Torsor
Predictive Accuracy Highest High Lowest Moderate
Up to 2nd order

Nonlinear terms All orders retained

(closed form)

First-order only Varies by expansion

Full nonlinear

Error Propagation .
expansion

Retains 2nd order
nonlinear effects

Recomputed using

Simple Jacobians

Matrix operations  Fully nonlinear matrices

2nd order nonlinear terms

Linearized Jacobian only

Stable at small to moderate

Numerical stability ~ High across all ranges L Unstable in nonlinear regimes Sensitive
deviations
Execution Time Slowest Moderate Fastest Moderate-High
Interpretability Complex Moderate Simple Moderate
Memory requirements Highest Low to moderate Minimal Higher
Implementation effort High Moderate Low Moderate-High

This comparative analysis highlights the balanced
performance of the proposed model, demonstrating its
potential to improve predictive accuracy without the
computational and implementation burdens of fully
nonlinear approaches.

All computations in this study were performed using the
python programming language within a Jupyter Notebook
platform. Core computational tasks were performed using
the NumPy library for efficient matrix operations and
numerical analysis, while Matplotlib was employed for
visualizing results. All simulations and analyses were
carried out on a Dell Inspiron 5502 laptop equipped with
an 11th Gen Intel(R) Core(TM) i7-1165G7 CPU

@ 2.80 GHz, 8 GB of RAM, and a 64-bit Windows 11
operating system.

The structure of the paper is organized as follows:
Section II describes the methodology used to develop the
modified connective assembly model. Section III provides
a detailed analysis of the developed model, while
Section IV validates the effectiveness of the proposed
model. Section V discusses the key findings, and
Section VI concludes the paper.

II. RESEARCH METHODOLOGY

The research methodology adopted for the development
of the modified connective assembly model, as shown in
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Fig. 1, is structured to define component tolerances,
represent manufacturing variations through nominal and
differential transforms, and evaluate the propagation and

accumulation of these variations within the assembly
process.

|

Specifying Allowable Limit of
Radial & Axial Run-out

Identifying Impact of both Radial & Axial
Run-out Tolerances in Term of Six
Degrees of Freedom

|

Modeling Manufacturing Variations/Tolerances
of Assembly Components

Describing Assembly Component Variations
N using Differential Transforms

|

Specifying Nominal Dimensions of
Assembly Components

Nominal Transforms used to describe

y

Incorporating Nominal and Differential
Transforms Together

Chaining Combined Transforms
Together

Retaining Second-Order terms only in
the Combined Chain

l

Component Variations

Chaining Nominal Transforms
Together

l

Calculating Assembly Variations by Subtracting the Chain of Nominal Transforms
from the Chain of Second-Order Differential Transforms

|

Derivation of Generalized 3D Component
Assembly Model

|

Validate the Modified Model with the Existing

Linear & Fully Nonlinear Models

Fig. 1. Research methodology flow chart for developing the modified connective assembly model.

A. Development of a Modified Connective Assembly
Model

Connective assembly models [23] are employed to
quantify the propagation of component-level variations
throughout the assembly process. These models use matrix
transformations to describe the spatial relationships
between coordinate frames attached to the mating features
of adjacent components. For Three-Dimensional (3D)
components, the geometric relationship between any two
coordinate frames is illustrated in Fig. 2.

Fig. 2. Geometric relationship between two coordinate frames [23].

As shown in Fig. 2, the geometric relationship between
coordinate frames 1 and 2 is represented by a matrix
transform 7. This matrix transform captures both rotation

14

and translation operations acting on a coordinate frame
aligned with a reference frame [23] and is given in Eq. (1).

[
1

Here, R is a 3x3 rotation matrix representing the
orientation of frame 2 relative to frame 1, and p is a 3x1
position vector indicating the location of frame 2 relative
to frame 1. The superscript 7 denotes the matrix transpose.

In a three-component assembly, as shown in Fig. 3(a),
the model assumes that the components are assembled
sequentially through their mating features [23].
Transformation matrices are used to define the position
and orientation of each component relative to these mating
features under nominal conditions. For the assembled
configuration shown in Fig. 3(b), the transformation
matrix representing the cumulative position and
orientations from the base of component 1 to the top of
component 3 is denoted as T¢',; . This cumulative
transformation is obtained by multiplying the individual
nominal transformation matrices along the assembly
sequence, is given in Eq. (2).

(1

N _ TN N N
Toos = Tosa X Tinp X Tl ()

Here, T}, represents the transformation matrix that
relates the position and orientation of the coordinate frame
from feature 0 to feature 1 on component 1. Similarly,
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TN, defines the transformation within component 2, from
feature 1 to feature 2. Finally, TJ,; describes the
transformation from the mating feature 2 to the top of
component 3. All these transformation matrices follow the
general form as in Eq. (1). Superscript N reflects nominal
geometry between the mating features.

Under the axisymmetric property of components, the
rotation matrix R is the identity matrix in Eq. (1),
representing the relative orientation between the frames,
and the position vector p is a zero vector except in the
Z-direction. The nominal individual transformation
matrices for the assembly of three components can be
written as in Egs. (3)—(6).

Component 3

%

T Z Y,
/O—é Xz

Component 2

ANITAN ANITAN

Component 1

0
Pl = IO (6)

Z;

Z; in Eq. (6) is the height of the i*" component.
Substituting Egs. (3)—(5) into Eq. (2) yields Eq. (7). In
Eq. (8), T&,,, is the transformation matrix representing the
assembly of n components, which relates the location and
orientation of the coordinate frame at the top of component
n to the coordinate frame at the base of component 1.

I N+ N+ N
=l PRI o
I Yy
Téin=[T Zt”l] ®)
0 1

In real practice, components often exhibit small
misalignments or dimensional deviations from their
nominal geometry. These imperfections introduce position
and orientation errors at mating features during assembly.
To incorporate these deviations into the assembly model,
a differential matrix transform DT; is introduced for each
component. This matrix considers both rotational and
translational errors and follows the same structure as the
transformation matrix defined in Eq. (1) as written in

Eq. (9).

_[dR; dp;

DT; = oT 1

] =123 )

Here, dp; is the translation vector representing the
deviation of the mating feature on component i from its
nominal position, with small displacements along the x-,

(a) (b - . i
Fig. 3. Example of a three-component assembly: (a) before assembly, y-» and z-axes, as expressed in Eq. (10).
(b) after assembly.
dX;
dpP; = |dY;|,i=1,2,3 (10)
[] N7 dZ:
T = 3 ‘
The dR; is the rotation matrix that considers small
rotational errors due to manufacturing imperfections.
v _[I pN These rotational deviations are modeled by three
Ise = h () individual rotation matrices dRgy; , dARgy;, and dRy; ,
which represent rotations about the x, y, and z-axes,
respectively [23]. The combined rotation error matrix dR;
v _[I P is obtained by multiplying these individual rotation
T2os = o7 1 | ) matrices together to achieve Eq. (11).
€do,;Cdo, —€do,,;5d0,; 5do,,
dR; = |5d0,;5d0,,Cd0,; + Cd6,;Sdb,, (db,;Cdo, —Sdb,;Sd6,;Sd6,; Sdb,;Cdo,, (11)
$d0,;5d0, — €d0,;Sd0,,Cdo,; (db,;Sd0,;Sd0, + Sd6,;Cdl,; Cdo,;Cdo,,

where Sdf and Cd6 ,
respectively.

Applying small-angle approximations such that
SdO = df and CdO = 1 in Eq. (11), and assuming that the

denote Sind@ and Cosdo,

rotation angle errors are small, Eq. (11) can be
approximated as Eqs. (12) and (13). Consequently, Eq. (9)
becomes Eq. (14).
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0 —do, db,,
5Ri = d@zi 0 _dHXI (13)
—d0,; dOy 0
DT, = [’ +OfRi i) =123 (14)
For the three-component assembly, the total

transformation from the base of component 1 (frame 0) to
the top of component 3 (frame 3), considering the
manufacturing variation, is given in Eq. (15). Substituting
Eqgs. (3)—(5) and (14) into Eq. (15) yields Eq. (16).

R,6R,RyR5 + R,6R,R,6R,Rs +

Tooz =T X DT (15)

Toz =T,y X DTy X TN,, X DT, X TN,3 X DT5 (16)

In Eq. (16), TY,,, TY,, and T, describe the nominal
transformations  assuming perfect manufacturing,
while DT, , DT, and DT; represent the differential
transformations considering the manufacturing variation
in each component. The complete transformation
incorporating both nominal and differential effects is
shown in Eq. (17). After neglecting the third-order terms
and keeping the terms up to second order only, the
expression written as Eq. (18). The generalized summation
form of Eq. (18) for the assembly of » components is
written in Eq. (19).

R,6R,R,Ps + R,6R,R,6R,P; +

T | hahaadh + R h b, RiRaRadPs + RuRoSRaR,aP, + o
e e Ri0R{R,R3dP; + R{6R{R,6R,R;dP;
o7 1
Tys = |R;RyR38Rs + RyR,6R,R:86Rs + R 0R,R,P; + R,6R,R,6R,P; + RyRyRsdP; + (18)
l R,6R,R,R56R, R,R,8R,R5dP; + R,6R,R,R,dP; |
or 1
N i-1 N i
S ()Y [T
i=1 i=1
-1 ~
N 13
i=1 R + ((l_[ Rj) OR; z <Hk i 1Rk> Pz)
N N J=1 1=i+1 k'
+> (TR 5R;) .
Tyon = . j=1 N-1 N (19)
i+1
+Z ~ (IT4 R; . 6R; 6Ry) + (1_[ Rj> SR;6R; (Hk - 1Rk>P
7= j=1 . k1
l=i+1
i=1
> (T.)
+ -\ 5R,dP
i=1 J=1
o7 1
— N_l N -
N i i
Z' [T, (R)ar] + (TT,_, &) o MY=1 R | Py
i=1 . k'1
¥ i1 l=i+1
dpiy N-1 .
dp! | = (20)
+1 -
dp? + ((H; ) OR;6R; E (Hg=z—1 Rk) Pi)
. l=i+1 k1
i=1
N- 1
+Z 6R dPp;
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The term, T,., in Eq. (19), represents the overall
assembly transformation of n components, relating the
position and orientation of the coordinate frame at the top
of n®" component to the coordinate frame at the base of
component 1, while considering second-order nonlinear
effects induced by each component. Furthermore, the
accumulated translation and rotational errors resulting
from the assembly of N components are described in
Eq. (20) which is used to calculate the translation errors
dp{,dp} and dp? after the assembly of i*" component.

B.  Specifying Allowable Limits for Radial and Axial
Run-Outs

Manufacturing processes introduce dimensional and
geometric variations in components. These variations arise
not only from process limitations but also from material
properties, internal discontinues, and geometric properties
of the component [24]. In order to consider these variations
from the nominal, design engineers specify tolerances,
which define allowable limits of wvariation for each
component. Tolerances may be assigned to dimensions
(e.g., size) or to features, thereby constraining allowable
variations in shape, form, profile, or location of lines or
surfaces.

Shifted
Center

(c)
Fig. 4. Impact of radial and axial runouts on a 3D axi-symmetric cylindrical component: (a) tolerance applied; (b) axial run-out within size zone; (c)
radial run-out causing eccentricity; (d) resulting position and tilt errors [22].

The constraint bounds for translation errors due to radial
runout can be written in Eq. (21). The axial runout (T,,.)
as depicted in

Fig. 4(d), introduces positional deviation along the z-
axis as well as angular deviations about the
x- and y-axes. Specifically, axial runout causes the top

17

C. Identifying the Impact of Both Radial and Axial
Runout Tolerances in Terms of Six Degrees of
Freedom

In order to evaluate the impact of component-level
variations on assembly accuracy, these variations are
described in terms of six Degrees of Freedom (DoF): three
degrees of translational (dx, dy, dz) and three degrees of
rotational (d9x, ae,, dBZ) variations. For the purpose of
modeling these variations, a 3D axisymmetric cylindrical
component is analyzed under the combined effect of
dimensional and geometric runout tolerances as depicted
in Fig. 4(a). The radial runout (T},.) controls the circular
deviations of the component relative to the datum axis,
while the axial runout tolerance (T,,) controls surface
deviations normal to the datum axis and the dimensional
tolerance (+T;) specifies the allowable range for size
variations.

Fig. 4(b) illustrates how the tolerance zone for axial
runout is enclosed within the dimensional tolerance zone.
The tolerance limit for radial runout (7}.,.) is illustrated in
Fig. 4(c), which shows the top view of the component. The
radial runout results in a geometric shift of the
component’s actual circular profile from its ideal position,
causing displacement in the x and y directions.

Tar
)
I—L 2T,

surface of the component to be tilted and shift from its
nominal axis. When the angular deviation (66,) occurs
first, it consumes a portion of the allowable angular
tolerance, thereby reducing the remaining range available
for (60y) . Assuming the nominal diameter of the
component is unaffected by dimensional errors, the



International Journal of Mechanical Engineering and Robotics Research, Vol. 15, No. 1, 2026

angular constraint bounds due to axial runout can be
written as shown in Egs. (22) and (23). Similarly, the
positional deviations along the z-axis due to the combined
effects of axial runout and dimensional tolerance can be
written as shown in Eq. (24). Considering the combined
effect of dimensional and runout tolerances, the complete
variation vector across the six degrees of freedom for a 3D
component can be written as shown in Eq. (25).

~T,, <dX >T,, and—T,, <dY > T,, (21)

—tan11 < 59, < tan~1 1 22)
D x D

~ (tan1 % - 56, < 66, < (tan™1 "2 - 56, (23)

(n-2)sas(n-®) e

(dX,dY,dz,d6,, d6,,d6,)" (25)

where df, = 0.

III. ANALYSIS OF THE DEVELOPED MODEL

This section presents an analysis of the assembly
process involving the vertical stacking of four identical
axisymmetric cylindrical components to form a straight
structure, as illustrated in Fig. 5. The nominal dimensions
and modeling assumptions for the analyzed assembly are
illustrated in Fig. 6(a) and Table II. The components are
assembled sequentially, starting with the first component
placed concentrically on the geometric center of the
assembly table. Each subsequent component is then
positioned on top of the previous one, under the

100 mm

18

assumption that the base coordinate frame of the new
component is coaxial and coincident with the coordinate
frame located at the center of the top surface of the
component below it.

Fig. 5. Assembly of nominal and actual axisymmetric cylindrical
components.

/

— e e am . omm et

(b)

Fig. 6. A cylindrical component: (a) nominal geometry; (b) deviation from nominal dimensions [22].
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TABLE II. DIMENSIONS AND ASSUMPTIONS FOR CYLINDRICAL

COMPONENTS
Parameters Value
Number of components 4
Nominal height of each component 70 mm
Nominal diameter 100 mm
Translation errors (dei, ao,,;, dHZi) 0.1 mm
Size tolerance (£Ty) +0.1 mm

However, due to geometric imperfections in the
manufactured components, as shown in Fig. 6(b), the final
assembled structure deviates from its nominal vertical
alignment. For analysis, uniform translational errors
(dx;, dy;, dz;) are assumed for each component. A key
geometric characteristic used to evaluate deviation is the
eccentricity error, defined as the perpendicular offset
between the central axis of the component and the global
datum axis (AA), and can be calculated as shown in
Eq. (26).

Eccentricity = /(dp)? + (dp))?  (26)

The terms, dpj*, and dp), in Eq. (26), represent the
errors along the x, and y axes, respectively, and are
computed using Eq. (20). The rotation matrix R; is
considered to be the identity matrix, while the translation
vector p; is defined as [0,0,70]7.

The analysis considers the worst-case assembly of
components, where each component’s translational and
rotational error is assumed to reach its maximum limit. The
performance of the developed model is evaluated across a
range of angular orientation errors (in degrees) as defined
by Eq. (27) for assemblies comprising 4, 6, and 8
components.

Moreover, to assess the impact of geometric variations
on assembly variation propagation, the model performance
is also evaluated across a set of geometric run-out
tolerances in mm as defined in Eq. (28), using defined
geometric tolerances, axial run-out (T,,.) and radial
run-out (T,,.) and size tolerance (+T;) for each assembly
configuration.

_ _ ~[0.001,0.005,0.01,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,
A6y = dOy; = dby; = [0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0] deg 27)
T = [0.001,0.005,0.01,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45, 28)
ar = frr = 0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.0

Monte Carlo Simulation (MCS) is a widely adopted
numerical method for analyzing the statistical behavior of
assemblies  influenced by random  geometric
variations [25]. It is a standard approach in tolerance
analysis and is based on generating random samples of
component tolerances [26]. In this study, MCS is
employed to simulate the assembly process by sequentially
joining the mating features of individual components.
Manufacturing variations are modeled as zero-mean
Gaussian random variables, with the standard deviation
(o) is taken as one-third of the specified tolerance. The
results are  calculated for assembly  errors
(dpf,dp!,dp?,) and the corresponding eccentricity of
the final assembly.

The study investigates run-out tolerances (T,,) and
(T,,) at three distinct values of 0.01, 0.1, and 1 mm, while
taking the size tolerance (£Ty) fixed at 0.1 mm. The
simulation generates 10,000 random assembly iterations
within these tolerance bounds.

IV. VALIDATION OF THE DEVELOPED MODEL

The effectiveness of the proposed model is validated by
comparing its performance with two established
approaches described in Ref. [22]: the linear connective
assembly model and the fully nonlinear connective
assembly model. The linear model simplifies geometric
relationships using a first-order approximation, allowing it
for efficient execution time but with reduced accuracy in
predicting geometric deviations. In contrast, the fully

nonlinear connective assembly model incorporates full
trigonometric expansions to account for higher-order
deviations, offering high predictive accuracy at the
expense of computational cost.

The proposed model retains second-order nonlinear
terms in the homogeneous transformation matrices,
offering improved accuracy over the linear model while
maintaining significantly lower computational complexity
than the fully nonlinear model. For a robust comparative
evaluation, numerical analyses have been conducted for
assemblies consisting of 4, 6, and 8§ axisymmetric
cylindrical components. The evaluation is based on two
principal criteria: (1) angular orientation errors, (2)
geometric runout tolerances, and the results are presented
in Figs. 7-12.

In order to further validate these findings, Monte Carlo
simulations, conducted within a defined dimensional
tolerance zone of (+T,) = 0.1 mm. The run-out tolerances
at 0.01 mm, 0.1 mm and 1.0 mm were selected to represent
high, moderate, and low assembly precision levels, thereby
covering the practical spectrum of deviations encountered
in high-precision assemblies. The size tolerance (£T's) was
held fixed at 0.1 mm, as industrial practice generally
maintains size tolerance as fixed to isolate the influence of
run-out on variation propagation. This ensures that the
observed differences in predictive performance are
directly linked to runout effects.

This setup enables a statistically robust assessment of
the proposed model’s sensitivity and reliability under
varying runout tolerances [22]. This approach is consistent
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with GD&T practice, where run-out tolerance is specified  Fig. 13—15 illustrate the improved predictive accuracy of
independently of size tolerance based on functional and  the proposed model.
rotational requirements [27]. The results presented in
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(c) errors in Z-direction, and (d) eccentricity errors for 6 components.
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Fig. 10. Comparison of final-stage assembly variations across a range of geometric runout tolerances: (a) errors in X-direction, (b) errors in
Y-direction, (c) errors in Z-direction, and (d) eccentricity errors for 4 components.
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Fig. 11. Comparison of final-stage assembly variations across a range of geometric runout tolerances: (a) errors in X-direction, (b) errors in
Y-direction, (c) errors in Z-direction, and (d) eccentricity errors for 6 components.
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Fig. 15. Probability density functions of final assembly errors: (a) errors in X-direction, (b) errors in Y-direction, (c) errors in Z-direction,
and (d) eccentricity errors for 4 components at axial and radial runout tolerance of 1.0 mm.

V. RESULT AND DISCUSSION

Accurate  prediction of geometric errors in
high-precision assemblies is essential to maintain
dimensional accuracy and functional performance, and
manufacturing reliability. The performance of the
proposed assembly model was evaluated by comparing it
with the existing linear and the fully nonlinear models for
assemblies composed of 4, 6, and 8 axisymmetric
cylindrical components. The comparative analysis focused
on angular orientation errors, geometric run-out tolerances,
and MCS results. As illustrated in Figs. 7-9, the variation
in positional errors (dpx, dpy, dpz) and eccentricity under
increasing angular orientation errors ranging from 0.001°
to 1.0° highlights the effectiveness of the modified model.

Across all three assembly models, the proposed model
shows strong agreement with both reference models for
errors (dpx, dpy) and eccentricity, indicating that the
proposed model can accurately predict radial and axial
deviations across a wide range of angular orientation
errors. More significant differences are evidenced in the
Z-direction error (dp,) . At small orientation errors
(<0.1°), all three models exhibit similar behavior.
However, at 1.0°, their discrepancies are clear. For the
assembly of 4 components, the linear model predicts a
Z-error of 0.40 mm, while the modified model predicts
0.23 mm, closer to the 0.10 mm obtained from the fully
nonlinear model. For the assembly of 6 components, the
linear model predicts 0.60 mm, compared to —0.25 mm
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from the modified model, and —0.57 mm from the fully
nonlinear model. The divergence is more significant in the
assembly of 8 components, where the linear model predicts
0.80 mm, while the modified model predicts —1.59 mm,
closely aligning with —2.18 mm predicted by the fully
nonlinear model. The comparison of results are further
illustrated in Table III, which shows that the modified
model reduces the Z-direction error by 56.67%, 72.65%,
and 80.20% for assemblies of 4, 6, and 8 components,
respectively, thereby confirming its capability to predict
the nonlinear assembly behavior more effectively than the
linear model.

TABLE III. COMPARISON OF Z-DIRECTION ERRORS AT 1° ANGULAR

ORIENTATION
No. of Models Z-Error Improvement vs. Linear
Components (mm) Model (%)
Linear 0.40 -
4 Modified 0.23 56.67
Fully 0.10 ;
nonlinear
Linear 0.60 -
6 Modified -0.25 72.65
Fully 4 57 ;
nonlinear
Linear 0.80 -
Q Modified -1.59 80.20
Fully =) 18 -
nonlinear
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A Similar trend was also observed in Figs. 10-12, which
illustrates the influence of geometric runout tolerances on
assembly errors for stacks of 4, 6, and 8 cylindrical
components. The modified model remains in close
agreement with both the linear and fully nonlinear models
for errors (dpx, dpy) and eccentricity. The Z-direction
error (dp,) once again highlights the distinction between
the models. At small runout tolerances (<0.2 mm), all three
models predict nearly identical results. As the tolerance
increases, the linear model diverges, underestimating the
nonlinear error response. In contrast, the modified model
continues to follow the fully nonlinear trend more closely,
particularly as the tolerance approaches 1.00 mm.

For the assembly of 4 components, the linear model
predicts a Z-error of —1.60 mm, the modified model
predicts —1.66 mm, and the fully nonlinear model predicts
—1.70 mm. In the assembly of 6 components, the linear
model predicts —2.40 mm, compared to —2.68 mm from
the modified model and —2.79 mm from the fully nonlinear
model. This discrepancy becomes more significant for the
assembly of 8 components, where the linear model predicts
—3.20 mm, whereas the modified model predicts
—3.99 mm, which is close to the —4.18 mm obtained from
the fully nonlinear model. As summarized in Table IV, the
modified model improves prediction accuracy relative to
the linear model by approximately 60.00% for
4 components, 71.79% for 6 components, and 80.61% for
8 components, respectively confirming its robustness in
modeling nonlinear effects under increasing geometric
runout tolerances.

TABLE IV. COMPARISON OF Z-DIRECTION ERRORS AT 1 MM RUNOUT

TOLERANCE
No. of Models Z-Error Improvement vs. Linear
Components (mm) Model (%)
Linear -1.60 -
4 Modified -1.66 60.00
Fully ~1.70 ;
nonlinear
Linear -2.40 -
6 Modified -2.68 71.79
Fully -2.79 ;
nonlinear
Linear -3.20 -
3 Modified -3.99 80.61
Fu.lly ~4.18 )
nonlinear

TABLE V. COMPARISON OF MODELS FOR EXECUTION TIME

Models Execution Time (s) Time Reduction
Linear 2.53 -
Modified 4.82 48.39%
Fully nonlinear 9.34 Baseline Model

Further validation of the modified model was carried
out using MCS for the 4 components assembly only, as
illustrated in Figs. 13—15. The statistical analysis confirms
that the modified model closely follows the results of the
fully nonlinear model. The positional errors follow
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zero-mean Gaussian distributions, while the eccentricity
follows a Rayleigh distribution. When increasing the
geometric runout tolerance from 0.01 mm to 1.0 mm
results in a proportional increase in the magnitude of
positional errors and eccentricity, while the general shape
of the distribution remains relatively unchanged.

This behavior shows that tolerance amplification affects
error magnitude but does not alter the underlying statistical
nature of deviations. In terms of computational efficiency,
the modified model shows a considerable advantage. As
shown in Table V, the linear model provides the shortest
execution time of 2.53 s, but its predictions lack accuracy.
The fully nonlinear model delivers the most accurate
results but requires 9.34 s, making it computationally
intensive. By contrast, the modified model achieves nearly
the same accuracy as the fully nonlinear model but with a
reduced execution time of 4.82 s, representing a 48.39%
improvement in computational efficiency. The reduction
in computational time is achieved not through algorithmic
shortcuts, but by retaining only second-order terms in the
matrix multiplications to avoid the higher-order
trigonometric expansions inherent to the fully non-linear
model. This enables the modified model to achieve an
effective balance between prediction accuracy and
execution time.

In existing literature, the comparison between linear and
fully non-linear models has predominantly been
undertaken through MCS, owing to the inherent
complexity of the fully non-linear model, which precludes
direct analysis via conventional numerical methods.
Conversely, for the linear model, an independent
numerical framework was developed and validated
separately. In the present study, MCS serves as the sole
approach for uncertainty quantification and validation of
the second-order assembly variation propagation model.
To strengthen the robustness and generalizability of the
findings, future research will aim to integrate advanced
probabilistic  methodologies to  facilitate  more
comprehensive comparative analyses and enhance the
computational efficiency of uncertainty propagation.

VI.  CONCLUSION

This study presented the development and validation of
a modified connective assembly model for predicting
geometric errors in high-precision multi-stage assemblies
of axisymmetric cylindrical components. The model was
compared with the linear model and the fully nonlinear
model under angular orientation errors, geometric runout
tolerances, and MCS. The findings show that while the
linear model provides acceptable predictions only at very
small deviations, it fails to predict nonlinear effects at
larger angular or geometric tolerances. In contrast, the
modified model shows strong agreement with the fully
nonlinear model across all investigated cases. For angular
orientation errors at 1.0°, the modified model achieved
predictive accuracy of 56.67% for 4-component assembly,
72.65% for 6 components, and 80.20% for
8 components when compared with the linear model.
Similarly, for geometric runout tolerances at 1.0 mm, the
modified model improved accuracy by 60.00% for
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4 components, 71.79% for 6 components, and 80.61% for
8 components relative to the linear model. Monte Carlo
simulations, performed on the 4-component assembly
across tolerance ranges from 0.01 mm to 1.0 mm, further
validated the effectiveness of the modified model. The
results confirmed that positional errors (dpx, dp,, dpz)
follow zero-mean Gaussian distributions, while
eccentricity follows a Rayleigh distribution, consistent
with the fully nonlinear model. Furthermore, the modified
model achieved these results with a significantly reduced
computational cost, requiring only 4.82 s compared to
9.344 s for the fully nonlinear model, representing 48.39%
improvement in computational efficiency.
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