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Abstract—Recently, significant concerns have arisen 
regarding the application of biologically inspired robots in 
rehabilitation for individuals with movement disabilities. 
These types of robots must ensure a high level of safety, which 
is typically achieved through more flexible construction. 
Pneumatic Artificial Muscles (PAMs), driven by compressed 
air, exhibit performance similar to biological muscles. 
Consequently, PAMs are considered strong candidates for 
actuators in rehabilitation robots. This paper investigates a 
control algorithm for a multi-fingered robot actuated by 
PAMs for grasping and manipulating circular objects. A 
dynamic model of the general robot–object system was 
formulated using the Lagrange method, combined with the 
natural force–length–velocity relationship of contracting 
muscles. Based on this model, control algorithms were 
proposed to achieve stable grasping and dexterous 
manipulation of the object by the multi-fingered robot. The 
asymptotic convergence of the closed-loop system was 
analyzed using Lyapunov’s principle and the extended 
LaSalle invariance theorem. Simulation results further 
validated the effectiveness of the proposed control 
algorithms. 
 
Keywords—multi-fingered robot, Pneumatic Artificial 
Muscle (PAM), stable grasp, dexterous manipulation, 
circular object 
 

I. INTRODUCTION 

Traditional industrial robots are designed with a strong, 
rigid structure to perform fast, precise, and high-force 
operations in controlled environments like manufacturing 
plants [1, 2]. However, these characteristics make them 
potentially dangerous in biomedical applications, 
particularly in scenarios involving close human-robot 
interaction [3]. In rehabilitation settings, where robots 
assist individuals with movement disabilities, safety 
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becomes a critical concern. Industrial robots lack the 
inherent compliance and adaptability to handle 
unpredictable human movements, increasing the risk of 
injury due to accidental collisions or excessive force [3]. 
These concerns have led to growing skepticism about the 
direct use of conventional industrial robots in medical 
rehabilitation, prompting the development of softer, more 
responsive biologically inspired robotic systems 
prioritizing safety and human-robot collaboration [4]. 

A key solution to this challenge is Pneumatic Artificial 
Muscles (PAMs). Specifically, electrical and hydraulic 
actuators with a rigid structure and behavior should be 
replaced by softer alternatives, such as PAMs driven by 
compressed air [5]. PAMs are lightweight, compliant, and 
capable of performing more specific tasks than 
comparable-sized hydraulic actuators and electrical 
motors [6–9]. Besides possessing all the advantages of 
traditional pneumatic actuators, such as low cost, fast 
response, and high power-to-weight and power-to-volume 
ratios, PAMs exhibit natural compliance, and their 
performance is similar to that of biological muscles. For 
these reasons, PAMs are considered strong candidates for 
actuators in rehabilitation robots [10]. To facilitate the 
design of controllers, the dynamics of a PAM have been 
constructed as a phenomenological model consisting of a 
contractile element, a spring element, and a damping 
element in parallel [11]. 

While initial research has explored PAM-actuated 
systems, significant limitations remain. For instance, a 
model of a robotic arm actuated by antagonistic PAM pairs 
highlighted the unique control properties of  
bio-inspired designs but did not address dynamics or 
control algorithms for targeted PAM-driven robots, 
thereby limiting its potential for real-world  
applications [12]. Another study presented a control 
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algorithm for a Two-Degree-of-Freedom (2-DOF) 
manipulator, but a limitation lay in its reliance on inverse 
kinematics, which makes the algorithm dependent on the 
accuracy of the system’s dynamic model and  
parameters [13]. Subsequent controllers proposed for 
PAM-actuated 2-DOF manipulators were constrained to 
joint-level control and did not account for the Cartesian 
positioning of the end-effector or the interaction  
forces [14, 15]. Furthermore, while dual-arm robots have 
been developed to overcome the limits of single-armed 
systems [16, 17], these studies often base their control on 
simplified motion models that neglect the complexities of 
object-robot interactions and dynamic modeling and 
stability analysis during cooperative manipulation. 
Specifically, the stable grasping and coordinated control of 
circular objects have not been thoroughly explored. 

This study proposes control algorithms for a  
dual-fingered robotic hand actuated by PAMs, specifically 
developed for grasping and manipulating circular objects. 
The approach enables accurate contact force control 
without force sensors, inspired by human blind grasping 
behavior. The robot–object system dynamics are 
formulated using the Lagrange method and Hamilton’s 
principle, capturing the coupled interactions between the 
dual fingers and the manipulated object. Control schemes 
are designed to ensure stable grasping, with the asymptotic 
convergence of the closed-loop system rigorously verified 
through Lyapunov stability theory and the extended 
LaSalle invariance principle. The effectiveness of the 
proposed method is validated through MATLAB 
simulations, confirming its capability for stable and 
coordinated manipulation. Overall, the study establishes a 
mathematically grounded control framework for  
PAM-actuated dual-fingered robotic systems, enabling 
reliable manipulation of circular objects essential for tasks 
such as opening containers, handling tools, and assisting 
patients in daily activities. 

The structure of this paper is outlined as follows. 
Section II provides a review of existing literature on  
PAM-driven robotic systems and dual-arm manipulation. 
Section III introduces the dynamics of the PAM-driven 
multi-fingered robot. Section IV presents the simulation 
results, and Section V concludes with key findings and 
directions for future research. 

II. LITERATURE REVIEW 

Research on biologically inspired robotics has 
increasingly focused on pneumatic artificial muscles due 
to their compliance and similarity to human muscles. Early 
studies modeled PAM dynamics using phenomenological 
approaches with contractile, spring, and damping 
elements. Kumamoto et al. [12] introduced a model of a 
robotic arm actuated by two antagonistic pairs of  
mono-articular muscles and one antagonistic pair of  
bi-articular muscles. Their study highlighted the unique 
control properties that emerged from incorporating  
bi-articular muscle pairs, analyzed within the framework 
of mechanical engineering models. The paper 
demonstrated the advantages of bi-articular  
muscles—considered essential in human motion  

control—and applied them to robotic manipulator control. 
However, the study did not address the dynamics or 
control algorithms for targeted PAM-driven robots, 
limiting its applicability to real-world scenarios. Oh and 
Hori [13] presented a control algorithm for a 2-DOF 
robotic manipulator actuated by mono-articular and  
bi-articular muscle-like torque inputs. They established a 
relationship between the endpoint force/position and the 
three muscle torques, with a feedforward component that 
incorporated inverse dynamics derived from the muscle 
torque models to enhance motion control. Nevertheless, a 
key limitation of their method was its reliance on inverse 
kinematics, making the algorithm highly dependent on the 
accuracy of the system’s dynamic model and parameters. 
Subsequently, Kawai proposed several control 
approaches, including a passivity-based controller and the 
Robust Integral of the Sign of the Error (RISE)  
controller [14, 15]. However, the proposed algorithm was 
constrained to joint-level control. It did not account for the 
Cartesian positioning of the end-effector or the interaction 
forces between the end-effector and the manipulated 
object. These limitations highlight the need for further 
development to extend the framework toward complete 
spatial and force-aware manipulation. 

The robots discussed above are single-armed 
manipulation systems, which tend to struggle with tasks 
requiring two-handed coordination, such as opening or 
closing a bottle, folding papers, or tying cables. In 
everyday life, most human activities rely on the 
coordinated use of both arms. Dual-arm robots aim to 
overcome these limitations by enabling more precise, 
coordinated manipulation, improving handling of flexible 
objects, and facilitating learning from human 
demonstrations. Wang et al. [16] developed a  
rigid-flexible dual-arm robot for safe human-robot 
hugging, combining a rigid frame with pneumatic muscles 
and variable stiffness joints. Experiments confirmed its 
ability to deliver safe and responsive interactions. In a 
different approach, Wang and Xu [17] developed a  
dual-arm soft robotic manipulator driven by pneumatic 
actuators, with each arm composed of modular soft 
segments. Controlled via visual servo, the system 
demonstrated high flexibility and adaptability in assembly 
tasks. Numerous other studies have also explored this 
direction [18–21]. A key strength of this body of work is 
the demonstration of hardware safety and flexibility. 
However, a significant weakness is that these studies often 
base their control on simplified motion models that neglect 
the complexities of object-robot interactions and dynamic 
modeling and stability analysis during cooperative 
manipulation. Specifically, the stable grasping and 
coordinated control of circular objects, common in  
real-world applications, have not been thoroughly 
explored. While some control strategies exist for  
PAM-driven systems, few offer theoretical stability 
guarantees in multi-arm, object-interactive contexts. 

Dual-arm robots offer clear advantages over  
single-arm systems, yet they still fall short of replicating 
the dexterity of human fingers. Multi-fingered robotic 
hands offer a distinct advantage by enabling fine-grained 
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control and in-hand manipulation, which are essential for 
handling delicate objects and performing tasks that require 
nuanced motor skills [22]. However, a persistent challenge 
across all PAM-actuated systems is the control of 
interaction forces. While prior studies have extensively 
explored the use of PAMs in soft robotic systems, most of 
these works focus on performing free-space motions 
without interaction with external objects or  
environments [23, 24]. As a result, the control of 
interaction forces remains an open challenge. For example, 
a neural feedforward PID controller was developed to 
enhance force output performance in a 2-DOF PAM 
manipulator, but this force control algorithm requires force 
sensing, which increases system complexity and cost [25]. 
This reliance on sensing presents a practical barrier to 
widespread adoption. 

The literature reveals a clear trajectory from rigid, 
single-arm systems towards compliant, multi-limb 
systems. Existing research has successfully established the 
mechanical feasibility and basic control of PAM-actuated 
robots. However, a critical gap remains between 
demonstrated hardware capabilities and the availability of 
robust, theoretically-sound control frameworks. 
Specifically, there is a lack of control strategies that:  

(1) Explicitly model the dynamics of the robot-object 
system during cooperative tasks like grasping 
circular objects;  

(2) Provide rigorous theoretical guarantees of stability 
using tools like Lyapunov theory;  

(3) Achieve reliable force control without depending 
on force sensors.  

The present study is situated within this gap. It builds 
upon the foundational work in PAM modeling and the 
advancements in multi-limb system design but addresses 
their key limitations by developing a dynamic model for a 
dual-fingered hand and proposing a sensorless control law 
with Lyapunov-based stability proofs, directly addressing 
the need for mathematically grounded and practical control 
frameworks. 

III. DYNAMICS OF PAM-DRIVEN MULTI-FINGERED 

ROBOT 

A. Proposed PAM-Driven Multi-Fingered Robot in 
Manipulating a Circular Object 

The objective robot consists of two single-fingers, each 
finger consists of three links Lij and three joints Jij (for  
i = 1–3, j = 1–3) as shown in Fig. 1. 
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Fig. 1. Dual-fingered robot actuated by antagonistic pairs of mono- and 

bi-articular muscles. 

For each arm i = 1, 2, two pairs of antagonistic  
mono-articular muscles (fi1, ei1 and fi2, ei2) are mounted on 
joints Ji1 and Ji2, respectively. Additionally, one pair of 
antagonistic bi-articular muscles (fi3, ei3) spans both joints 
Ji1 and Ji2. At joint Ji2, another pair of mono-articular 
muscles (fi4, ei4) is installed. A pair of bi-articular muscles 
(fi5, ei5) connects joints Ji2 and Ji3, while the final pair  
(fi6, ei6) is mounted on joint Ji3. 

The coordinate frame {oxy} is mounted at the rotation 
axis of the first joint on the left arm, serving as the base 
reference of the system. The object frame {OXY} is 
located at the center of mass of the object, denoted as Oc.m. 
The angle between the two coordinate frames is 
represented by θ.  

Let 𝑞௜ ൌ ሺ𝑞௜ଵ, 𝑞௜ଶ,𝑞௜ଷሻ் be the joint vector of the ith arm. 
Let define the end point of last link of ith arm X0i and their 
position (x0i, y0i) in the base frame. At each contact point 
between the end-effector i and the object, we set 
coordinate frames {OiXiYi} where the Xi directs to the 
origin O of the object frame. The rotational angle between 
the contact frame {OiXiYi} and the object frame are 
defined as θi (for i = 1–2). Based on these definitions, the 
geometric constraints can be expressed as Eqs. (1) and (2): 

 
𝑄𝑖 ൌ ሺ𝑥 െ 𝑥0𝑖ሻ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ ൅ ሺ𝑦 െ 𝑦0𝑖ሻ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ    

൅ሺ𝑅 ൅ 𝑟ሻ ൌ 0
(1) 

𝑌𝑖
′ ൌ െሺ𝑥 െ 𝑥0𝑖ሻ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ ൅ ሺ𝑦 െ 𝑦0𝑖ሻ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ 

ൌ 0
(2) 

where 𝑒௜ ൌ ሺ1, 1, 1ሻ்  and c0i (for i = 1–2) are constants 
depending on the initial state of the dual arm-object 
system. These constrains are associated with two elements 
of the interactional forces. The constraints Qi with normal 
forces fi directing from the contact point Xi to the origin O 
of the object are for keeping contact with the object. The 
constraints Ri with the tangential forces λi are for 
preventing slipping from the object surfaces. We assume 
that the contacts between the object and two end-effectors 
are rolling. The rolling contact condition should satisfy the 
relation given in Eq. (3): 

 
𝑅1 ൌ 𝑌1

′ െ 𝑐01 െ 𝑟൫𝜃 ൅ 𝜃1 െ 𝑞1
𝑇𝑒1 െ 𝜋൯ ൅ 𝑅𝜃 ൌ 0 

𝑅2 ൌ 𝑌2
′ െ 𝑐02 െ 𝑟൫𝜃 ൅ 𝜃2 ൅ 𝑞2

𝑇𝑒2൯ െ 𝑅𝜃 ൌ 0
(3) 

There are two components in the dynamics of the  
dual-arm robot:  

(1) The dynamics of the mechanical system consisting 
of the left arm, the right arm, the object; 

(2) The dynamics of actuators driven for the dual-arm. 

B. The Dynamics of the Robot-Object System without 
Considering PAMs 

The mechanical system, excluding all PAMs, is 
illustrated in Fig. 2. The dynamic equations of the system 
are developed using the Lagrange method combined with 
Hamilton’s principle. The Lagrangian function is defined 
as Eq. (4). 
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 𝐿 ൌ 𝐾 െ 𝑃 ൅ 𝑄 ൅ 𝑅 (4) 

where K denotes the kinetic energy, defined in Eq. (5): 

 
𝐾 ൌ 1

2
∑ 𝑞ሶ 𝑖

𝑇2
𝑖ൌ1 𝐻൫𝑞𝑖൯𝑞ሶ 𝑖 

൅ ቀ𝑀𝑥ሶ 2 ൅ 𝑀𝑦ሶ 2 ൅ 𝐼𝜃ሶ 2ቁ
 (5) 

The potential energy P is considered zero based on the 
assumption that the system operates entirely within a 
horizontal plane. The scalar functions Q and R, derived 
from the constraint conditions Qi and Ri, are formulated 
using Lagrange multipliers λi and fi, as given in Eqs. (6) 
and (7): 

 𝑄 ൌ ∑ 𝑓௜𝑄௜
ଶ
௜ୀଵ ሺ𝑞௜, 𝑥, 𝑦, 𝜃ሻ (6) 

 𝑅 ൌ ∑ 𝜆௜𝑅௜
ଶ
௜ୀଵ ሺ𝑞௜, 𝑥, 𝑦, 𝜃ሻ (7) 

The partial derivatives of 𝑄 and 𝑅 with respect to qi are 
given in Eqs. (8) and (9): 

 
డொ೔

డ௤೔
ൌ െ𝐽଴௜

் ൤
𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ
𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ

൨ (8) 

 
డோ೔

డ௤೔
ൌ 𝐽଴௜

் ൤
𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ

െ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ
൨ െ 𝑟௜ (9) 

Next, by applying Hamilton’s principle to the 
Lagrangian function L, the dynamic equations of the  
dual-arm system and the manipulated object are obtained. 
These are presented as Eq. (10) for the dual arms and  
Eq. (11) for the object. 

𝑇௜ ൌ 𝐻௜ሺ𝑞௜ሻ𝑞ሷ௜ ൅ ቀ
ଵ

ଶ
𝐻ሶ ሺ𝑞௜ሻ ൅ 𝑆ሺ𝑞௜, 𝑞ሶ௜ሻቁ 𝑞ሶ௜

൅𝐽଴௜
் ൤

𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ
𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ

൨ 𝑓௜ ൅ ൬𝑟𝑒௜ െ 𝐽଴௜
் ൤

𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ
െ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ

൨൰ 𝜆௜

(10) 

 

𝑀𝑥ሷ െ 𝑓1 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃1ሻ െ 𝑓2 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃2ሻ 
൅𝜆1 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃1ሻ ൅ 𝜆2 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃2ሻ ൌ 0
𝑀𝑦ሷ െ 𝑓1 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃1ሻ െ 𝑓2 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃2ሻ
െ𝜆1 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃1ሻ െ 𝜆2 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃2ሻ ൌ 0

𝐼𝜃ሷ ൅ ሺ𝜆1 െ 𝜆2ሻ𝑅 ൌ 0

 (11) 

where J0i (for i = 1, 2) are Jacobian matrices defined as: 

𝐽଴௜ ൌ ൤
𝜕𝑥଴௜

𝜕𝑞௜

𝜕𝑦଴௜

𝜕𝑞௜
൨

்

 

where 𝐻௜ሺ𝑞ሻ ∈ ℝ௡ൈ௡ are inertia matrices, 𝑆௜ሺ𝑞, 𝑞ሶ ሻ ∈ ℝ௡ൈ௡ 
are skew-symmetric matrices. 

 
Fig. 2. Multi-fingered robot grasp a rigid circular object. 

C. Formulating of the Dynamics of the Actuators 

The viscous-elastic-contractile model of PAM in Fig. 3 
was demonstrated by Reynolds [7]: 

 

 
Fig. 3. Schematic of the viscoelastic contractile muscle model. 

The generated output force F, governed by the 
contractile force u, is presented in Eq. (12). 

 𝐹 ൌ 𝑢 െ 𝑘𝑢𝑥 െ 𝑏𝑢𝑥ሶ  (12) 

where x denotes the contraction length of the muscle, and 
𝑥ሶ  represents the shortening velocity. The parameters k and 
b correspond to the elastic and viscous coefficients, 
respectively. Among these elements, the contractile force 
u is the only actively controlled component, while the 
others function passively. Therefore, u is regarded as the 
active activation level of the muscle. To generate 
bidirectional force, muscles must be arranged in an 
antagonistic configuration, typically in pairs denoted as eij 
and fij. 

Refer to the Fig. 1, the phenomenological model of the 
ith arm can be illustrated in Fig. 4.  

For the ith arm: 

 

𝑇𝑖1 ൌ ሺ𝐹𝑓𝑖1 െ 𝐹𝑒𝑖1ሻ𝑟 ൅ ሺ𝐹𝑓𝑖3 െ 𝐹𝑒𝑖3ሻ𝑟

𝑇𝑖2 ൌ ൫𝐹𝑓𝑖2 െ 𝐹𝑒𝑖2൯𝑟 ൅ ൫𝐹𝑓𝑖3 െ 𝐹𝑒𝑖3൯𝑟

൅൫𝐹𝑓𝑖4 െ 𝐹𝑒𝑖4൯𝑟 ൅ ൫𝐹𝑓𝑖5 െ 𝐹𝑒𝑖5൯𝑟
𝑇𝑖3 ൌ ሺ𝐹𝑓𝑖5 െ 𝐹𝑒𝑖5ሻ𝑟 ൅ ሺ𝐹𝑓𝑖6 െ 𝐹𝑒𝑖6ሻ

 (13) 

In Eq. (13), r represents the joint radius. The forces Ffij 
and Feij correspond to the outputs of the flexor and extensor 
muscles, respectively, and can be calculated as given in 
Eq. (14): 
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𝐹𝑓𝑖𝑗 ൌ 𝑢𝑓𝑖𝑗 െ 𝑘𝑢𝑓𝑖𝑗𝑥 െ 𝑏𝑢𝑓𝑖𝑗𝑥ሶ
𝐹𝑒𝑖𝑗 ൌ 𝑢𝑒𝑖𝑗 ൅ 𝑘𝑢𝑒𝑖𝑗𝑥 ൅ 𝑏𝑢𝑒𝑖𝑗𝑥ሶ

 (14) 

where 𝑢௙௜, 𝑢௘௜  are contractile forces or activation levels 
generated by flexor and extensor muscles, for i = 1–3. Note 
that joint angle q may create two different contacting 
lengths x due to the different direction in two  
muscles: 𝑥 ൌ െ𝑟𝑞  for the flexor muscle and 𝑥 ൌ 𝑟𝑞  for 
the extensor muscle. By substituting Eq. (14) into Eq. (13), 
the joint torques are obtained as shown in Eq. (15): 

 

𝑇௜ଵ ൌ ሺ𝑢௙௜ଵ െ 𝑢௘௜ଵሻ𝑟 െ ሺ𝑢௙௜ଵ ൅ 𝑢௘௜ଵሻ𝑘𝑟ଶ𝑞௜ଵ

െ൫𝑢௙௜ଵ ൅ 𝑢௘௜ଵ൯𝑏𝑟ଶ𝑞ሶ௜ଵ ൅ ൫𝑢௙௜ଷ െ 𝑢௘௜ଷ൯𝑟

െ൫𝑢௙௜ଷ ൅ 𝑢௘௜ଷ൯𝑘𝑟ଶሺ𝑞௜ଵ ൅ 𝑞ଵ௜ሻ

െ൫𝑢௙௜ଷ ൅ 𝑢௘௜ଷ൯𝑏𝑟ଶሺ𝑞ሶ௜ଵ ൅ 𝑞ሶ௜ଶሻ 

𝑇௜ଶ ൌ ൫𝑢௙௜ଶ െ 𝑢௘௜ଶ൯𝑟 െ ൫𝑢௙௜ଶ ൅ 𝑢௘௜ଶ൯𝑘𝑟ଶ𝑞௜ଶ

െ൫𝑢௙௜ଶ ൅ 𝑢௘௜ଶ൯𝑏𝑟ଶ𝑞ሶ௜ଶ ൅ ൫𝑢௙௜ଷ െ 𝑢௘௜ଷ൯𝑟

െ൫𝑢௙௜ଷ ൅ 𝑢௘௜ଷ൯𝑘𝑟ଶሺ𝑞௜ଵ ൅ 𝑞௜ଶሻ

െ൫𝑢𝑓𝑖3 ൅ 𝑢𝑒𝑖3൯𝑏𝑟2൫𝑞ሶ 𝑖1 ൅ 𝑞ሶ 𝑖2൯

൅൫𝑢𝑓𝑖4 െ 𝑢𝑒𝑖4൯𝑟 െ ൫𝑢𝑓𝑖4 ൅ 𝑢𝑒𝑖4൯𝑘𝑟2𝑞𝑖2

െ൫𝑢𝑓𝑖4 ൅ 𝑢𝑒𝑖4൯𝑏𝑟2𝑞ሶ 𝑖2 ൅ ൫𝑢𝑓𝑖5 െ 𝑢𝑒𝑖5൯𝑟

െ൫𝑢𝑓𝑖5 ൅ 𝑢𝑒𝑖5൯𝑘𝑟2൫𝑞𝑖2 ൅ 𝑞𝑖3൯

െ൫𝑢𝑓𝑖5 ൅ 𝑢𝑒𝑖5൯𝑏𝑟2൫𝑞ሶ 𝑖2 ൅ 𝑞ሶ 𝑖3൯

𝑇𝑖3 ൌ ൫𝑢𝑓𝑖5 െ 𝑢𝑒𝑖5൯𝑟 െ ൫𝑢𝑓𝑖5 ൅ 𝑢𝑒𝑖5൯𝑘𝑟2൫𝑞𝑖2 ൅ 𝑞𝑖3൯

െ൫𝑢𝑓𝑖5 ൅ 𝑢𝑒𝑖5൯𝑏𝑟2൫𝑞ሶ 𝑖2 ൅ 𝑞ሶ 𝑖3൯ ൅ ൫𝑢𝑓𝑖6 െ 𝑢𝑒𝑖6൯𝑟

െሺ𝑢𝑓𝑖6 ൅ 𝑢𝑒𝑖6ሻ𝑘𝑟2𝑞𝑖3 െ ሺ𝑢𝑓𝑖6 ൅ 𝑢𝑒𝑖6ሻ𝑏𝑟2𝑞ሶ 𝑖3

(15) 

The antagonistic mono-articular muscles maintained 
near-maximal activation throughout changes in the 
direction of the output force. In contrast, the bi-articular 
muscle pair exhibited a criss-cross activation pattern. The 
muscle activation levels required to generate the maximum 
output force at the end-effector 𝐸 are defined as given in 
Eq. (16) [23]: 

 𝑢௙௜௝ ൅ 𝑢௘௜௝ ൌ 100% 𝑓𝑜𝑟 𝑖 ൌ 1 െ 2, 𝑗 ൌ 1 െ 6 (16) 

Since the contractile force of the flexor muscle ufi can 
be actively controlled by an actuator, the resulting muscle 
torques are expressed in Eqs. (17) and (18) [12]: 

 

𝑇𝑖 ൌ ൥
𝑇𝑖1
𝑇𝑖2
𝑇𝑖3

൩ ൌ ൥
𝜏𝑖1
𝜏𝑖2
𝜏𝑖3

൩

െ𝑟2 ቎
𝑘1 ൅ 𝑘3 𝑘3 0

𝑘3 𝑘2 ൅ 𝑘3 ൅ 𝑘4 ൅ 𝑘5 𝑘5
0 𝑘5 𝑘4 ൅ 𝑘5

቏ 𝑞𝑖

െ𝑟2 ቎
𝑏1 ൅ 𝑏3 𝑏3 0

𝑏3 𝑏2 ൅ 𝑏3 ൅ 𝑏4 ൅ 𝑏5 𝑏5
0 𝑏5 𝑏5 ൅ 𝑏6

቏ 𝑞ሶ 𝑖

 (17) 

where: 

𝜏௜ ൌ ൥
𝜏௜ଵ
𝜏௜ଶ
𝜏௜ଷ

൩

ൌ 𝑟 ቎

2ሺ𝑢௙௜ଵ െ 1ሻ ൅ 2ሺ𝑢௙௜ଷ െ 1ሻ
2ሺ𝑢௙௜ଶ െ 1ሻ ൅ 2ሺ𝑢௙௜ଷ െ 1ሻ ൅ 2ሺ𝑢௙௜ସ െ 1ሻ ൅ 2ሺ𝑢௙௜ହ െ 1ሻ

2ሺ𝑢௙௜ହ െ 1ሻ ൅ 2ሺ𝑢௙௜଺ െ 1ሻ
቏

(18) 

Then, Eq. (17) can be expressed in the form of Eq. (19). 

 𝑇 ൌ ൤
𝑇ଵ
𝑇ଶ

൨ ൌ ቂ
𝜏ଵ௜
𝜏ଶ௜

ቃ െ 𝑟ଶ ൤
𝐾ଵ 0
0 𝐾ଶ

൨ 𝑞 െ 𝑟ଶ ൤
𝐵ଵ 0
0 𝐵ଶ

൨ 𝑞ሶ  (19) 

where Ki and Bi are defined in Eqs. (20) and (21), 
respectively. 

 𝐾௜ ൌ ൥
𝑘ଵ ൅ 𝑘ଷ 𝑘ଷ 0

𝑘ଷ 𝑘ଶ ൅ 𝑘ଷ ൅ 𝑘ସ ൅ 𝑘ହ 𝑘ହ
0 𝑘ହ 𝑘ସ ൅ 𝑘ହ

൩ (20) 

 𝐵௜ ൌ ൥
𝑏ଵ ൅ 𝑏ଷ 𝑏ଷ 0

𝑏ଷ 𝑏ଶ ൅ 𝑏ଷ ൅ 𝑏ସ ൅ 𝑏ହ 𝑏ହ
0 𝑏ହ 𝑏ସ ൅ 𝑏ହ

൩ (21) 

It is evident that both Ki and Bi are positive definite 
matrices. By substituting Eq. (19) into Eq. (10), the 
dynamic equation of the dual-arm system can be expressed 
as Eq. (22): 

𝜏𝑖 ൌ 𝐻𝑖ሺ𝑞𝑖ሻ𝑞ሷ 𝑖 ൅ ቀ
1

2
𝐻ሶ ሺ𝑞𝑖ሻ ൅ 𝑆ሺ𝑞𝑖, 𝑞ሶ 𝑖ሻቁ 𝑞ሶ 𝑖

൅𝐽0𝑖
𝑇 ൬

𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ
𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ

൰ 𝑓𝑖 

൅ ቆ𝑟𝑒𝑖 െ 𝐽0𝑖
𝑇 ൬

𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ
െ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ

൰ቇ 𝜆𝑖 ൅ 𝑟2𝐾𝑖𝑞𝑖 ൅ 𝑟2𝐵𝑖𝑞ሶ 𝑖

(22) 

 
Fig. 4. Phenomenological model of ith arm. 
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This allows the formulation of the control problem, 
which consists of two main objectives:  

(1) Maintaining a stable grasp on the object; 
(2) Rotating it to the desired orientation and 

positioning it at the target location. 

D. Control Law for Stable Grasping 

Stable grasping can be achieved when sum of forces and 
moments apply on the object equal to zero and the normal 
contact forces for securely keeping the object attained the 
desired contact force. The first control inputs 𝑢௙௜  (for  
i = 1, 2) for maintaining the desired contact force fd are 
given in Eq. (23): 

𝑢௙௜ ൌ 𝐽଴௜
் ቂ 𝑐𝑜𝑠 𝜃

െ 𝑠𝑖𝑛 𝜃
ቃ 𝑓ௗ ൅ 𝑟𝑓ௗ 𝑠𝑖𝑛 𝜃௜ 𝑒ଷ െ 𝐾௩௜𝑞ሶ௜ ൅ 𝐾௜𝑞௜ (23) 

Then control 𝑢௠௜ (i = 1, 2) is for balancing the moments 
applying on the object and is proposed as given in Eq. (24). 

 𝑢௠௜ ൌ ሺെ1ሻ௜ ௖௢௦ ఏ೔

∑ ሺିଵሻ೔మ
೔సభ ௖௢௦ ఏ೔

𝑓ௗ𝑅ሺ𝑠𝑖𝑛 𝜃ଵ െ 𝑠𝑖𝑛 𝜃ଶሻ𝑒ଷ (24) 

Applying principle of superposition, a control input for 
stable grasping 𝑢௜ ൌ 𝑢௙௜ ൅ 𝑢௠௜  is proposed and 
substituted into the dynamic Eq. (10) of the dual-arm 
system, the closed-loop dynamics of the system can be 
expressed as Eq. (25): 

 

൬𝐻𝑖ሺ𝑞𝑖ሻ
𝑑

𝑑𝑡
൅ 1

2
𝐻ሶ 𝑖ሺ𝑞𝑖ሻ ൅ 𝑆𝑖ሺ𝑞𝑖, 𝑞ሶ 𝑖ሻ ൅ ሺ𝐾𝑣𝑖 ൅ 𝐵𝑖ሻ൰ 𝑞ሶ 𝑖

ൌ െ𝐽𝑜𝑖
𝑇 ൤

𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ
െ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ

൨ 𝛥𝑓𝑖

൅ ൬𝐽0𝑖
𝑇 ൤

𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃𝑖ሻ
𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃𝑖ሻ

൨ െ 𝑟𝑒3൰ 𝛥𝜆𝑖

െሺ1ሻ𝑖 𝑐𝑜𝑠 𝜃𝑖
∑ 𝑐𝑜𝑠 𝜃𝑖

2
𝑖ൌ1

𝑓𝑑𝑅ሺ𝑠𝑖𝑛 𝜃1 െ 𝑠𝑖𝑛 𝜃2ሻ𝑒3

 (25) 

where contact force errors fi are defined as:  

 
𝛥𝑓𝑖 ൌ 𝑓𝑖 െ 𝑓𝑑 𝑐𝑜𝑠ሺ 𝜃𝑖 ൅ 𝜃ሻ
𝛥𝜆𝑖 ൌ 𝑓𝑖 െ 𝑓𝑑 𝑠𝑖𝑛ሺ 𝜃𝑖 ൅ 𝜃ሻ

 (26) 

Substituting Eq. (26) into Eq. (11) yields Eq. (27): 

𝑀𝑥ሷ ൅ ∑ 𝛥𝑓௜ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻଶ
௜ୀଵ ൅ ∑ 𝛥𝜆௜ 𝑠𝑖𝑛ሺ 𝜃௜ ൅ 𝜃ሻଶ

௜ୀଵ ൌ 0
𝑀𝑦ሷ ൅ ∑ 𝛥𝑓௜ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻଶ

௜ୀଵ െ ∑ 𝛥𝜆௜ 𝑠𝑖𝑛ሺ 𝜃௜ ൅ 𝜃ሻଶ
௜ୀଵ ൌ 0

𝐼𝜃ሷ െ ሺ𝛥𝜆ଵ െ 𝛥𝜆ଶሻ𝑅 െ 𝑓ௗሺ𝑌ଵ െ 𝑌ଶሻ ൌ 0

 (27) 

where Yi is determined by Eq. (28): 

 𝑌௜ ൌ 𝑅 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ (28) 

Differentiating Eq. (3) to leads to Eq. (29): 

 𝜃ሶ௜ ൌ
௥

௥ାோ
𝑞ሶ௜

்𝑒ଷ െ
௥

ோା௥
𝜃ሶ  (29) 

Differentiating Eq. (28) and substituting Eq. (29) into 
the resulting equation yields Eq. (30): 

 
௒ሶభି௒ሶమ
௞భି௞మ

ൌ
௞భ

௞భି௞మ
𝑞ሶଵ்𝑒ଷ െ

௞మ

௞భି௞మ
𝑞ሶଶ

்𝑒ଷ െ 𝜃ሶ  (30) 

where ki is determined by Eq. (31): 

 𝑘௜ ൌ
ோ௥ ௖௢௦ሺఏାఏ೔ሻ

௥ାோ
 (31) 

Since the left arm workspace is confined in the left side 
of the circular object and the right arm is confined in the 
right side, this leads to Eq. (32): 

 
𝜋/2 ൏ 𝜃 ൅ 𝜃1 ൏ 3𝜋/2
െ𝜋/2 ൏ 𝜃 ൅ 𝜃2 ൏ 𝜋/2 (32) 

and the term (k1−k2) is always positive. 
By implementing in the following way: 

෍ 𝑞ሶ௜
்

ଶ

௜ୀଵ

ൈ 𝐸𝑞. ሺ25ሻ ൅ ൣ𝑥ሶ , 𝑦ሶ , 𝜃ሶ ൧ ൈ 𝐸𝑞. ሺ27ሻ 

and referring to Eq. (22), Eq. (33) can be obtained: 

 
𝑞ሶ 1

𝑇 ൈ ሺെ𝜏𝑚1ሻ ൅ 𝑞ሶ 2
𝑇 ൈ ሺെ𝜏𝑚2ሻ

ൌ
𝑓𝑑

2ሺ𝑘1െ𝑘2ሻ

𝑑

𝑑𝑡
ሺ𝑌1 െ 𝑌2ሻ2  (33) 

Differentiating constraints Qi (Eq. (6)) and Ri (Eq. (7)) 
yields Eqs. (34) and (35): 

 ∑ 𝑓௜ ቀ𝑞ሶ௜
் డொ೔

డ௤೔
൅ 𝑥ሶ

డொ೔

డ௫
൅ 𝑦ሶ

డொ೔

డ௬
൅ 𝜃ሶ డொ೔

డఏ
ቁଶ

௜ୀଵ ൌ 0 (34) 

 ∑ 𝜆௜ ቀ𝑞ሶ௜
் డோ೔

డ௤೔
൅ 𝑥ሶ

డோ೔

డ௫
൅ 𝑦ሶ

డோ೔

డ௬
൅ 𝜃ሶ డோ೔

డఏ
ቁଶ

௜ୀଵ ൌ 0 (35) 

By taking the inner products 𝑞ሶ௜  with Eq. (25) and 
𝑞ሶ௜, 𝑧ሶ ൌ ሺ𝑥ሶ , 𝑦ሶ , 𝜃ሶ ሻ்  with Eq. (27), respectively, and 
summing the resulting expressions, while referencing  
Eqs. (8), (9), (33), (34), and (35), the following 
relationship can be derived as Eq. (36): 

 
ௗ

ௗ௧
𝐸ଵ ൌ െ ∑ 𝑞ሶ௜

்ሺ𝐾௩௜ ൅ 𝐵௜ሻ
ଶ
௜ୀଵ 𝑞ሶ௜ (36) 

where E1 is determined by Eq. (37): 

 𝐸ଵ ൌ
ଵ

ଶ
൭

∑ 𝑞ሶ௜
்𝐻௜ሺ𝑞௜ሻ𝑞ሶ௜

ଶ
௜ୀଵ ൅ 𝑀𝑥ሶ ଶ

൅𝑀𝑦ሶ ଶ ൅ 𝐼𝜃ሶ ଶ ൅
௙೏ሺ௒భି௒మሻమ

ሺ௞భି௞మሻ

൱ (37) 

It is clear that E1 is non-negative function in  
𝑞ሶ௜, 𝑧ሶ ൌ ሺ𝑥ሶ , 𝑦ሶ , 𝜃ሶ ሻ்  and ሺ𝑌ଵ െ 𝑌ଶሻ . Since 𝑧ሶ, 𝑞ሶ ௜  are  
norm-bounded in 𝐿ଶሺ0,∞ሻ, position vectors q and z must 
be bounded and then 𝑧ሷ, 𝑞ሷ ௜ uniform bounded. By choosing 
control damping matrix Kvi such that matrix (Kvi+Bi) is 
positive definite function, Eq. (36) guarantees that E1 will 
be non-increasing function and implies that 𝑞ሶ௜ → 0  as  
𝑡 → ∞ , then the right-hand side of Eq. (25) comes to  
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zero. Then the vector 𝐽଴௜
் ሾ𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ, 

𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ், 𝐽଴௜
் ሾ𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ, 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ்  and 

𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ/ ∑ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ
ଶ
௜ୀଵ are independent. Then  

Eq. (25) equals zero only when: 

ቐ
𝛥𝑓௜ ൌ 𝑓௜ െ 𝑓ௗ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃௜ሻ → 0
𝛥𝜆௜ ൌ 𝜆௜ െ 𝑓ௗ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃௜ሻ → 0
𝑓ௗሺ𝑌ଵ െ 𝑌ଶሻ → 0

 

This result confirms that both force and moment balance 
are achieved, which guarantees stable grasping of the 
object and prevents further sliding or rotation under the 
proposed control input. Based on this, a control algorithm 
is formulated to regulate the position of the grasped object, 
ensuring that its center of mass reaches the desired 
coordinates xd and yd along the x-axis and y-axis of the 
{oxy} coordinate frame. 

E. Control Law for Desired Position of the Grasping 
Object 

From Fig. 2, the geometrical relations can be derived 
and expressed as Eqs. (38) and (39): 

 ൜
𝑥 ൌ 𝑥଴ଵ ൅ ሺ𝑅 ൅ 𝑟ሻ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଵሻ
ൌ 𝑥଴ଶ ൅ ሺ𝑅 ൅ 𝑟ሻ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଶሻ  (38) 

 ൜
𝑦 ൌ 𝑦଴ଵ ൅ ሺ𝑅 ൅ 𝑟ሻ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଵሻ
ൌ 𝑦଴ଶ െ ሺ𝑅 ൅ 𝑟ሻ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଶሻ  (39) 

By differentiating Eq. (38) and performing the 
necessary transformations, the following result is 
obtained: 

 

𝑥ሶ ൌ 𝑞ሶଵ் ቀ𝐽଴ଵ
் ቂ1

0
ቃ െ 𝑟 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଵሻ𝑒ଷቁ

௦௜௡ሺఏାఏమሻ

௦௜௡ሺఏାఏమሻି௦௜௡ሺఏାఏభሻ

൅𝑞ሶଶ
் ቀ𝐽଴ଶ

் ቂ0
1

ቃ ൅ 𝑟 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଶሻ𝑒ଷቁ
௦௜௡ሺఏାఏభሻ

௦௜௡ሺఏାఏమሻି௦௜௡ሺఏାఏభሻ

 (40) 

Based on Eq. (40), a control law uxi is proposed to 
regulate the object’s center of mass toward the desired 
coordinate xd, defined in Eq. (41): 

ቐ
𝑢௫ଵ ൌ ቀ𝐽଴ଵ

் ቂ1
0

ቃ െ 𝑟 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଵሻ𝑒ଷቁ
௄ೣሺ௫ି௫೏ሻ ௦௜௡ሺఏାఏమሻ

௦௜௡ሺఏାఏమሻି௦௜௡ሺఏାఏభሻ

𝑢௫ଶ ൌ ቀ𝐽଴ଶ
் ቂ1

0
ቃ െ 𝑟 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଶሻ𝑒ଷቁ

௄ೣሺ௫ି௫೏ሻ ௦௜௡ሺఏାఏభሻ

௦௜௡ሺఏାఏమሻି௦௜௡ሺఏାఏభሻ

 (41) 

From Eq. (41), Eq. (42) can be obtained as follows: 

 െ ∑ 𝑞ሶ௜
்ଶ

௜ୀଵ 𝑢௫௜ ൌ 𝐾௫
ሺ௫ି௫೏ሻమ

ଶ
 (42) 

Similar transformation with Eq. (39) can be resulting: 

 

𝑦ሶ ൌ 𝑞ሶ 1
𝑇 ቀ𝐽01

𝑇 ቂ1
0

ቃ െ 𝑟 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃1ሻ𝑒3ቁ

𝑐𝑜𝑠ሺ𝜃൅𝜃2ሻ

𝑐𝑜𝑠ሺ𝜃൅𝜃2ሻ൅𝑐𝑜𝑠ሺ𝜃൅𝜃1ሻ

൅𝑞ሶ 2
𝑇 ቀ𝐽02

𝑇 ቂ0
1

ቃ ൅ 𝑟 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃2ሻ𝑒3ቁ

𝑐𝑜𝑠ሺ𝜃൅𝜃1ሻ

𝑐𝑜𝑠ሺ𝜃൅𝜃2ሻ൅𝑐𝑜𝑠ሺ𝜃൅𝜃1ሻ

 (43) 

Based on Eq. (43), a control law uyi is proposed to 
regulate the object’s center of mass toward the desired 
coordinate yd, expressed in Eq. (44): 

ቐ
𝑢௬ଵ ൌ ቀ𝐽଴ଵ

் ቂ1
0

ቃ െ 𝑟 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଵሻ𝑒ଷቁ
௄೤ሺ௬ ି௬೏ሻ ௖௢௦ሺఏାఏమሻ

௖௢௦ሺఏାఏమሻା௖௢௦ሺఏାఏభሻ

𝑢௬ଶ ൌ ቀ𝐽଴ଵ
் ቂ1

0
ቃ െ 𝑟 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଵሻ𝑒ଷቁ

௄೤ሺ௬ ି௬೏ሻ ௖௢௦ሺఏାఏభሻ

௖௢௦ሺఏାఏమሻା௖௢௦ሺఏାఏభሻ

 (44) 

where Kx, Ky is a diagonal positive matrix. 
It is possible to have: 

െ ෍ 𝑞ሶ௜
்

ଶ

௜ୀଵ

𝑢௬௜ ൌ 𝐾௬
ሺ𝑦 െ 𝑦ௗሻଶ

2
 

Building upon the premise that complex dexterous 
movements can be decomposed into a set of fundamental 
motion primitives that can be independently acquired and 
executed, the overall control input for a complete motion 
is synthesized through the principle of linear 
superposition. Specifically, the control input is formulated 
as a combination of the components ufi, uxi, and uyi, as 
described in Eq. (45): 

 𝑢௜ ൌ 𝑢௙௜ ൅ 𝑢௠௜ ൅ 𝑢௫௜ ൅ 𝑢௬௜ (45) 

By substituting ui from Eq. (44) into the dynamic 
equations of the overall system and performing the 
necessary transformations, the following relation is 
obtained as Eq. (46): 

 
ௗ

ௗ௧
𝐸ଶ ൌ െ ∑ 𝑞ሶ௜

்𝐾௩௜𝑞ሶ௜
ଶ
௜ୀଵ െ 𝛼𝜃ሶ ଶ (46) 

where 𝐸ଶ ൌ 𝐸ଵ ൅
௄೤ሺ௬ି௬೏ሻమ

ଶ
൅

௄ೣሺ௫ି௫೏ሻమ

ଶ
. 

It is clear that function E2 is non-negative function in 
𝑞ሶ௜, 𝑧ሶ ൌ ሺ𝑥ሶ , 𝑦ሶ , 𝜃ሶ ሻ் , ሺ𝑌ଵ െ 𝑌ଶሻ  and (y−yd) and (x−xd). 
According to Lyapunov stability theorem, the convergence 
of the system can be demonstrated as shown in Eq. (47): 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑞ሶଵ, 𝑞ሶଶ, 𝑥ሶ , 𝑦ሶ , 𝜃ሶ → 0

𝛥𝑓ଵ ൌ 𝑓ଵ െ 𝑓ௗଵ ൌ 𝑓ଵ െ 𝑓ௗ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଵሻ → 0
𝛥𝑓ଶ ൌ 𝑓ଶ െ 𝑓ௗଶ ൌ 𝑓ଶ െ 𝑓ௗ 𝑐𝑜𝑠ሺ 𝜃 ൅ 𝜃ଶሻ → 0
𝛥𝜆ଵ ൌ 𝜆ଵ െ 𝜆ௗଵ ൌ 𝜆ଵ െ 𝑓ௗ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଵሻ → 0
𝛥𝜆ଶ ൌ 𝜆ଶ െ 𝜆ௗଶ ൌ 𝜆ଶ െ 𝑓ௗ 𝑠𝑖𝑛ሺ 𝜃 ൅ 𝜃ଶሻ → 0
𝑌ଵ െ 𝑌ଶ → 0
𝛥𝑥 ൌ 𝑥 െ 𝑥ௗ → 0
𝛥𝑦 ൌ 𝑦 െ 𝑦ௗ → 0

 (47) 

as t→∞. 
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That means the objective of propose control for stable 
grasping and dexterous manipulating the object has been 
achieved. 

IV. SIMULATION RESULTS 

In this simulation, the dual-finger robot is tasked with 
manipulating a circular object on a horizontal plane. The 
robot must securely grasp the object and transport it to a 
designated position within the workspace. Initially, the 
joint positions of both the dual-finger robot and the object 
are configured to satisfy the grasping constraints and 
maintain a stable grasp. The parameters of the dual-finger 
robot and the manipulated object are listed in Table I. The 
mass and length of the arms are chosen to approximate 
those of an average human multi-fingered hand, thereby 
enhancing the anthropomorphic fidelity of the simulation. 

TABLE I. PHYSICAL PARAMETERS 

Notation Sym Value Unit 
Mass of 1st link mi1 0.0385 [kg] 
Mass of 2nd link mi2 0.032 [kg] 
Mass of 3rd link mi3 0.026 [kg] 

Length of 1st link li1 0.077 [m] 
Length of 2nd link li2 0.064 [m] 
Length of 3rd link li3 0.052 [m] 
Mass of the object M 0.05 [kg] 
Radius of object R 0.037 [m] 

Elastic coefficient k 3000 [N/m] 
Viscous coefficient b 400 [Ns/m] 

Radius of joint i r 0.02 [m] 

 
The Constraint Stabilization Method (CSM) is 

employed to capture the system’s dynamic behavior 
accurately. CSM is a numerical technique commonly used 
in the simulation of mechanical systems subject to 
kinematic or dynamic constraints. In such systems, 
constraint equations may be violated due to numerical 
inaccuracies or the accumulation of integration errors over 
time, leading to constraint drift and potentially unstable or 
unreliable simulation outcomes. To address these issues, 
CSM introduces auxiliary conditions into the system’s 
equations of motion and applies correction terms to reduce 
constraint deviations. Among the various stabilization 
strategies, the Baumgarte Stabilization Method is widely 
adopted [26]. This approach modifies the constraint 
equations by incorporating damping and stiffness-like 
terms, as shown in Eq. (48): 

 
𝑅ሷ 1 ൅ 𝛾1𝑅ሶ 1 ൅ 𝜔1𝑅1 ൌ 0

𝑅ሷ 2 ൅ 𝛾1𝑅ሶ 2 ൅ 𝜔1𝑅2 ൌ 0
 (48) 

where i,i are tuning parameters selected to achieve the 
desired level of stability. The underlying concept is to 
reformulate the constraint dynamics as a damped 
oscillatory system, thereby enabling the system to 
naturally converge toward a constraint-satisfying state 
over time. Then Eq. (48) is integrated into the closed-loop 
dynamic system to perform simulations and evaluate the 
system’s characteristics when the proposed control 
algorithm is applied. 

The control parameters used in the simulation are 
presented in Table II. 

TABLE II. CONTROL PARAMETERS 

Symbol Notation Value 
Kvi (i = 1, 2) D-gain 0.075 

i  Constraint Stabilization 
Method (CSM) parameter 

160 

i  CSM parameter 80 

𝛤௫ P-gain 0.15 

𝛤௬ P-gain 0.15 

fd desired force 1 N 
xd Desired position in x-axis 0.099 m 
yd Desired position in y-axis 0.085 m 

 
To validate the effectiveness of the proposed control 

laws, numerical simulations were conducted using 
MATLAB. The analysis focuses on the behavior of key 
physical quantities, including the normal contact forces f1 
and f2 acting on the object surfaces, the moment applied to 
the object fd(Y1-Y2), the rotational velocity, and the 
translational velocities of the object. 

 

 
(a) 

 
(b) 

Fig. 5. Normal contact force f1 (a) and f2 (b). 

Fig. 5 illustrates the time responses of the normal 
contact forces f1 and f2, respectively. The results show that 
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both forces converge to their desired values f1d, f2d within 
approximately 10 s, confirming the effectiveness of the 
force control scheme. Similarly, the tangential contact 
forces λ1 and λ2 closely follow their corresponding 
reference values λ1d and λ2d, as depicted in Fig. 6. The 
results in Fig. 7 show that both the rotational and 
translational velocities converge to zero, indicating that the 
object ceases rotation and translation around  
the 10 s. This result demonstrates that the object becomes 
fully stationary under the influence of the proposed control 
law. Correspondingly, the moment applied to the grasped 
object, illustrated in Fig. 8, also stabilizes at zero, 
confirming the complete cessation of motion. These 
findings confirm that stable grasping of the object has been 
successfully achieved using the dual-finger PAM-driven 
robot. 

 

 
(a) 

 
(b) 

Fig. 6. Tangential contact force 1 (a) and 2 (b). 

Additionally, Fig. 9 illustrates the asymptotic 
convergence of the object’s actual position to its desired 
reference trajectory across both x- and y-axis coordinates. 
This effective positional tracking, alongside the previously 
demonstrated regulation of force and velocity, validates 
the dual capabilities of the control algorithm. Specifically, 
it ensures stable grasp conditions through appropriate force 
distribution while also achieving precise positional control 
within the task space. These simulation results generally 
confirm that the proposed control strategy facilitates robust 

grasping and accurate manipulation of the target object. 
However, the effectiveness of the algorithm remains 
limited to theoretical validation, due to several reasons: to 
simplify the validation of the proposed control algorithms 
on the robot-object dynamic system, this study assumes 
ideal conditions by neglecting the effects of disturbances, 
uncertainties in kinematic and dynamic parameters, and 
actuator delays. Theoretically, the proposed control 
algorithms have not yet demonstrated asymptotic stability 
of the closed-loop dynamic system under the influence of 
external disturbances and system uncertainties. 

 

 
(a) 

 
(b) 

Fig. 7. Rotational velocity (a) and translational velocities (b) of the 
grasped object. 

 
Fig. 8. Applied moment on the object. 
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(a) 

 
(b) 

Fig. 9. Coordinate of center-mass of the object in (a) x-axis and  
(b) y-axis. 

Developing a multi-fingered robotic system driven by 
PAMs involves several complex challenges. Primary 
factors, such as pneumatic delays, nonlinear friction, 
sensor noise, and parameter mismatches, must be 
considered and evaluated via simulation. Then the system 
requires precise hardware integration, stable air pressure 
regulation, and real-time data acquisition systems capable 
of handling multiple degrees of freedom. Ensuring 
mechanical robustness while maintaining modularity for 
testing different configurations is also critical. These 
challenges must be addressed to validate control strategies 
under realistic operating conditions and to bridge the gap 
between simulation and practical deployment. 

It is confirmed from simulation works that the proposed 
control algorithms facilitate stable grasping during  
robot–object interaction by ensuring that the contact forces 
are consistently maintained at the required states. These 
states are derived from the static stability condition of the 
grasped object, where the resultant forces and moments 
acting on the object’s center of mass are zero. The 
controller is designed based on the principle of linear 
superposition of input signals and its stability has been 
rigorously proven using Lyapunov and LaSalle stability 
criteria. Simulation results have further demonstrated that 
the robot achieves both stable grasp and dexterous object 
manipulation. This capability represents a critical step 

toward transitioning from simulation to an experimental 
robotic system designed for motor function rehabilitation 
in elderly individuals or patients. By automatically 
regulating the contact forces between the robotic fingers 
and the object, the system can ensure user safety while 
enabling appropriate and effective training exercises. 

V. CONCLUSIONS 

This study develops a control framework for a dual-arm 
robot actuated by Pneumatic Artificial Muscles (PAMs) to 
grasp and manipulate circular objects stably. Using the 
Lagrange method and Hamilton’s principle, the derived 
control laws ensure asymptotic stability of object motion 
and contact forces, as proven via Lyapunov theory and 
LaSalle’s invariance principle. 

The effectiveness of the proposed control strategy is 
verified through detailed numerical simulations in 
MATLAB. Results show that the normal and tangential 
contact forces converge rapidly to their desired values, 
while both rotational and translational velocities of the 
object diminish to zero within six seconds, indicating a 
fully stabilized grasp. The applied moment on the object 
also converges to zero, and the object’s center of mass 
asymptotically tracks the desired trajectory along both 
spatial axes. These outcomes collectively demonstrate the 
controller’s ability to simultaneously ensure grasp stability 
and precise object positioning. 

The novelty of this research lies in developing control 
algorithms for stable grasping and dexterous manipulation 
of grasped objects using a dual-finger PAM-driven robotic 
system. Unlike conventional approaches that rely on force 
sensors to regulate contact forces, the proposed method 
achieves desired contact force control without force 
sensing, inspired by human blind grasping behavior. This 
sensor-less force regulation is possible through a  
model-based control strategy that leverages kinematic 
transformations and Lyapunov-based stability analysis.  

Furthermore, the system is designed to operate under 
idealized conditions—on a horizontal plane and without 
gravitational influence—allowing simplification of the 
dynamic model and reducing dependency on uncertain 
parameters. Simulation results demonstrate the 
algorithm’s robustness to small disturbances, and future 
work will extend the framework to incorporate adaptive 
and robust control mechanisms for more complex 
interaction scenarios. 

In future work, the proposed framework could be 
extended to accommodate more complex object 
geometries, uncertainties in model parameters, and  
real-time implementation on physical robot platforms. In 
addition, future studies may involve the development of 
experimental systems to validate the theoretical findings. 
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