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Abstract—Recently, significant concerns have arisen
regarding the application of biologically inspired robots in
rehabilitation for individuals with movement disabilities.
These types of robots must ensure a high level of safety, which
is typically achieved through more flexible construction.
Pneumatic Artificial Muscles (PAMs), driven by compressed
air, exhibit performance similar to biological muscles.
Consequently, PAMs are considered strong candidates for
actuators in rehabilitation robots. This paper investigates a
control algorithm for a multi-fingered robot actuated by
PAMs for grasping and manipulating circular objects. A
dynamic model of the general robot—object system was
formulated using the Lagrange method, combined with the
natural force-length—velocity relationship of contracting
muscles. Based on this model, control algorithms were
proposed to achieve stable grasping and dexterous
manipulation of the object by the multi-fingered robot. The
asymptotic convergence of the closed-loop system was
analyzed using Lyapunov’s principle and the extended
LaSalle invariance theorem. Simulation results further
validated the effectiveness of the proposed control
algorithms.

Keywords—multi-fingered robot, Pneumatic Artificial
Muscle (PAM), stable grasp, dexterous manipulation,
circular object

I. INTRODUCTION

Traditional industrial robots are designed with a strong,
rigid structure to perform fast, precise, and high-force
operations in controlled environments like manufacturing
plants [1, 2]. However, these characteristics make them
potentially dangerous in biomedical applications,
particularly in scenarios involving close human-robot
interaction [3]. In rehabilitation settings, where robots
assist individuals with movement disabilities, safety
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becomes a critical concern. Industrial robots lack the
inherent compliance and adaptability to handle
unpredictable human movements, increasing the risk of
injury due to accidental collisions or excessive force [3].
These concerns have led to growing skepticism about the
direct use of conventional industrial robots in medical
rehabilitation, prompting the development of softer, more
responsive  biologically inspired robotic systems
prioritizing safety and human-robot collaboration [4].

A key solution to this challenge is Pneumatic Artificial
Muscles (PAMs). Specifically, electrical and hydraulic
actuators with a rigid structure and behavior should be
replaced by softer alternatives, such as PAMs driven by
compressed air [5]. PAMs are lightweight, compliant, and
capable of performing more specific tasks than
comparable-sized hydraulic actuators and electrical
motors [6-9]. Besides possessing all the advantages of
traditional pneumatic actuators, such as low cost, fast
response, and high power-to-weight and power-to-volume
ratios, PAMs exhibit natural compliance, and their
performance is similar to that of biological muscles. For
these reasons, PAMs are considered strong candidates for
actuators in rehabilitation robots [10]. To facilitate the
design of controllers, the dynamics of a PAM have been
constructed as a phenomenological model consisting of a
contractile element, a spring element, and a damping
element in parallel [11].

While initial research has explored PAM-actuated
systems, significant limitations remain. For instance, a
model of a robotic arm actuated by antagonistic PAM pairs
highlighted the wunique control properties of
bio-inspired designs but did not address dynamics or
control algorithms for targeted PAM-driven robots,
thereby  limiting its potential for real-world
applications [12]. Another study presented a control
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algorithm for a Two-Degree-of-Freedom (2-DOF)
manipulator, but a limitation lay in its reliance on inverse
kinematics, which makes the algorithm dependent on the
accuracy of the system’s dynamic model and
parameters [13]. Subsequent controllers proposed for
PAM-actuated 2-DOF manipulators were constrained to
joint-level control and did not account for the Cartesian
positioning of the end-effector or the interaction
forces [14, 15]. Furthermore, while dual-arm robots have
been developed to overcome the limits of single-armed
systems [16, 17], these studies often base their control on
simplified motion models that neglect the complexities of
object-robot interactions and dynamic modeling and
stability analysis during cooperative manipulation.
Specifically, the stable grasping and coordinated control of
circular objects have not been thoroughly explored.

This study proposes control algorithms for a
dual-fingered robotic hand actuated by PAMs, specifically
developed for grasping and manipulating circular objects.
The approach enables accurate contact force control
without force sensors, inspired by human blind grasping
behavior. The robot-object system dynamics are
formulated using the Lagrange method and Hamilton’s
principle, capturing the coupled interactions between the
dual fingers and the manipulated object. Control schemes
are designed to ensure stable grasping, with the asymptotic
convergence of the closed-loop system rigorously verified
through Lyapunov stability theory and the extended
LaSalle invariance principle. The effectiveness of the
proposed method is validated through MATLAB
simulations, confirming its capability for stable and
coordinated manipulation. Overall, the study establishes a
mathematically grounded control framework for
PAM-actuated dual-fingered robotic systems, enabling
reliable manipulation of circular objects essential for tasks
such as opening containers, handling tools, and assisting
patients in daily activities.

The structure of this paper is outlined as follows.
Section II provides a review of existing literature on
PAM-driven robotic systems and dual-arm manipulation.
Section III introduces the dynamics of the PAM-driven
multi-fingered robot. Section IV presents the simulation
results, and Section V concludes with key findings and
directions for future research.

II. LITERATURE REVIEW

Research on biologically inspired robotics has
increasingly focused on pneumatic artificial muscles due
to their compliance and similarity to human muscles. Early
studies modeled PAM dynamics using phenomenological
approaches with contractile, spring, and damping
elements. Kumamoto et al. [12] introduced a model of a
robotic arm actuated by two antagonistic pairs of
mono-articular muscles and one antagonistic pair of
bi-articular muscles. Their study highlighted the unique
control properties that emerged from incorporating
bi-articular muscle pairs, analyzed within the framework

of mechanical engineering models. The paper
demonstrated  the  advantages of  bi-articular
muscles—considered essential in  human motion

control—and applied them to robotic manipulator control.
However, the study did not address the dynamics or
control algorithms for targeted PAM-driven robots,
limiting its applicability to real-world scenarios. Oh and
Hori [13] presented a control algorithm for a 2-DOF
robotic manipulator actuated by mono-articular and
bi-articular muscle-like torque inputs. They established a
relationship between the endpoint force/position and the
three muscle torques, with a feedforward component that
incorporated inverse dynamics derived from the muscle
torque models to enhance motion control. Nevertheless, a
key limitation of their method was its reliance on inverse
kinematics, making the algorithm highly dependent on the
accuracy of the system’s dynamic model and parameters.
Subsequently, Kawai  proposed several control
approaches, including a passivity-based controller and the
Robust Integral of the Sign of the Error (RISE)
controller [14, 15]. However, the proposed algorithm was
constrained to joint-level control. It did not account for the
Cartesian positioning of the end-effector or the interaction
forces between the end-effector and the manipulated
object. These limitations highlight the need for further
development to extend the framework toward complete
spatial and force-aware manipulation.

The robots discussed above are single-armed
manipulation systems, which tend to struggle with tasks
requiring two-handed coordination, such as opening or
closing a bottle, folding papers, or tying cables. In
everyday life, most human activities rely on the
coordinated use of both arms. Dual-arm robots aim to
overcome these limitations by enabling more precise,
coordinated manipulation, improving handling of flexible
objects, and facilitating learning from human
demonstrations. Wang et al. [16] developed a
rigid-flexible dual-arm robot for safe human-robot
hugging, combining a rigid frame with pneumatic muscles
and variable stiffness joints. Experiments confirmed its
ability to deliver safe and responsive interactions. In a
different approach, Wang and Xu [17] developed a
dual-arm soft robotic manipulator driven by pneumatic
actuators, with each arm composed of modular soft
segments. Controlled via visual servo, the system
demonstrated high flexibility and adaptability in assembly
tasks. Numerous other studies have also explored this
direction [18-21]. A key strength of this body of work is
the demonstration of hardware safety and flexibility.
However, a significant weakness is that these studies often
base their control on simplified motion models that neglect
the complexities of object-robot interactions and dynamic
modeling and stability analysis during cooperative
manipulation. Specifically, the stable grasping and
coordinated control of circular objects, common in
real-world applications, have not been thoroughly
explored. While some control strategies exist for
PAM-driven systems, few offer theoretical stability
guarantees in multi-arm, object-interactive contexts.

Dual-arm robots offer clear advantages over
single-arm systems, yet they still fall short of replicating
the dexterity of human fingers. Multi-fingered robotic
hands offer a distinct advantage by enabling fine-grained
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control and in-hand manipulation, which are essential for
handling delicate objects and performing tasks that require
nuanced motor skills [22]. However, a persistent challenge
across all PAM-actuated systems is the control of
interaction forces. While prior studies have extensively
explored the use of PAMs in soft robotic systems, most of
these works focus on performing free-space motions
without interaction with  external objects or
environments [23, 24]. As a result, the control of
interaction forces remains an open challenge. For example,
a neural feedforward PID controller was developed to
enhance force output performance in a 2-DOF PAM
manipulator, but this force control algorithm requires force
sensing, which increases system complexity and cost [25].
This reliance on sensing presents a practical barrier to
widespread adoption.

The literature reveals a clear trajectory from rigid,
single-arm systems towards compliant, multi-limb
systems. Existing research has successfully established the
mechanical feasibility and basic control of PAM-actuated
robots. However, a critical gap remains between
demonstrated hardware capabilities and the availability of
robust,  theoretically-sound  control  frameworks.
Specifically, there is a lack of control strategies that:

(1) Explicitly model the dynamics of the robot-object
system during cooperative tasks like grasping
circular objects;

(2) Provide rigorous theoretical guarantees of stability
using tools like Lyapunov theory;

(3) Achieve reliable force control without depending
on force sensors.

The present study is situated within this gap. It builds
upon the foundational work in PAM modeling and the
advancements in multi-limb system design but addresses
their key limitations by developing a dynamic model for a
dual-fingered hand and proposing a sensorless control law
with Lyapunov-based stability proofs, directly addressing
the need for mathematically grounded and practical control
frameworks.

III. DYNAMICS OF PAM-DRIVEN MULTI-FINGERED
RoBOT

A. Proposed PAM-Driven Multi-Fingered Robot in
Manipulating a Circular Object

The objective robot consists of two single-fingers, each

finger consists of three links L; and three joints J; (for
i=1-3,j=1-3) as shown in Fig. 1.

Fig. 1. Dual-fingered robot actuated by antagonistic pairs of mono- and
bi-articular muscles.

For each arm i = 1, 2, two pairs of antagonistic
mono-articular muscles (fi1, e; and f, e) are mounted on
joints Jii and Jp, respectively. Additionally, one pair of
antagonistic bi-articular muscles (fi3, e;3) spans both joints
Jin and Jp. At joint J;p, another pair of mono-articular
muscles (fi, i) is installed. A pair of bi-articular muscles
(fis, eis) connects joints J;» and J;3, while the final pair
(fis, eis) is mounted on joint J33.

The coordinate frame {oxy} is mounted at the rotation
axis of the first joint on the left arm, serving as the base
reference of the system. The object frame {OXY} is
located at the center of mass of the object, denoted as O¢ m.
The angle between the two coordinate frames is
represented by 6.

Let q; = (qi1,i2,9i3)" be the joint vector of the ith arm.
Let define the end point of last link of ith arm X, and their
position (xo; yo;) in the base frame. At each contact point
between the end-effector i and the object, we set
coordinate frames {O;X;Yi} where the X; directs to the
origin O of the object frame. The rotational angle between
the contact frame {O;X;Y;} and the object frame are
defined as & (for i = 1-2). Based on these definitions, the
geometric constraints can be expressed as Egs. (1) and (2):

Q;,=(x—xp)cos(0+86)+ y—y,)sin(8+06)

+(R+1r)=0 (1

Y’i = —(x —x0p) sin(0 + 6;) + (y —y,,) cos(6 + 6;) ?)
=0

where e; = (1,1,1)T and co; (for i = 1-2) are constants
depending on the initial state of the dual arm-object
system. These constrains are associated with two elements
of the interactional forces. The constraints Q; with normal
forces f; directing from the contact point .X; to the origin O
of the object are for keeping contact with the object. The
constraints R; with the tangential forces /; are for
preventing slipping from the object surfaces. We assume
that the contacts between the object and two end-effectors
are rolling. The rolling contact condition should satisfy the
relation given in Eq. (3):

R1=Y,1—C01—T(9+91—qzel—ﬂ')+R0=0

R2=Y12—C02—T(9+92+q’562)—R9=0 (3)
There are two components in the dynamics of the
dual-arm robot:
(1) The dynamics of the mechanical system consisting
of the left arm, the right arm, the object;
(2) The dynamics of actuators driven for the dual-arm.

B.  The Dynamics of the Robot-Object System without
Considering PAMs

The mechanical system, excluding all PAMs, is
illustrated in Fig. 2. The dynamic equations of the system
are developed using the Lagrange method combined with
Hamilton’s principle. The Lagrangian function is defined
as Eq. (4).
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L=K-P+Q+R )

where K denotes the kinetic energy, defined in Eq. (5):

K=2%%,4! H(q)q,

5
+(Mi* + My? +16°) ®
The potential energy P is considered zero based on the
assumption that the system operates entirely within a
horizontal plane. The scalar functions QO and R, derived
from the constraint conditions Q; and R;, are formulated
using Lagrange multipliers 4; and f;, as given in Eqgs. (6)
and (7):

Q = Z?:lfiQi (qi'x'yﬂe) (6)

R = Z?=1 /‘liRi (ql',x;y: 9) (7)

The partial derivatives of Q and R with respect to ¢; are
given in Egs. (8) and (9):

20i _ 1 cos(6 + 6;)

oaq; Joi [sin(@ +0)) ®)
OR; _ 1 sin(6 + 6;) .

2q; 00 [— cos(6+6)] ©)

Next, by applying Hamilton’s principle to the
Lagrangian function L, the dynamic equations of the
dual-arm system and the manipulated object are obtained.
These are presented as Eq. (10) for the dual arms and
Eq. (11) for the object.

T; = Hi(q)g; + GH(%‘) +S(qi ‘?i)) q
cos(8 +6,) sin(8 + 6;)

(10)
o [sin(e + ei)]fi * (re" ~Joi [— cos(6 +6,) )Ai ;

Mx — f, cos(0 +61) — f,cos(6 + 63)
+A1sin(6+61) +A,sin(8+6,) =0
My — fsin(0 +61) — f,sin(8 +03) (11)
—Aycos(0+6,) —Acos(8+6,)=0

10+ (A, —2)R=0

where Jo; (for i = 1, 2) are Jacobian matrices defined as:

o [axoi aJ’oi]T
o dq; 0g;

where H;(q) € R™" are inertia matrices, S;(q, ¢) € R™"
are skew-symmetric matrices.

Tzs
9z ‘\
?\ Ooz
oy < *\, =
W,
P @ \ ‘\ 0
CAA J N
® Tz
21
Xo1 Xo2 x
/‘Tt 1 2

Fig. 2. Multi-fingered robot grasp a rigid circular object.

C. Formulating of the Dynamics of the Actuators

The viscous-elastic-contractile model of PAM in Fig. 3
was demonstrated by Reynolds [7]:

B(u)
C F
LL —
K(u)
u
Z. Z X

Fig. 3. Schematic of the viscoelastic contractile muscle model.

The generated output force F, governed by the

contractile force u, is presented in Eq. (12).
F =u — kux — bux (12)

where x denotes the contraction length of the muscle, and
X represents the shortening velocity. The parameters &k and
b correspond to the elastic and viscous coefficients,
respectively. Among these elements, the contractile force
u is the only actively controlled component, while the
others function passively. Therefore, u is regarded as the
active activation level of the muscle. To generate
bidirectional force, muscles must be arranged in an
antagonistic configuration, typically in pairs denoted as e;
and fj;.

Refer to the Fig. 1, the phenomenological model of the
ith arm can be illustrated in Fig. 4.

For the ith arm:

Ty = Fpn— Fe)r+ (Fpiz — Fez)r
Ty = (Ffiz = Fera)r + (Fpiz — Fei3)T
+(Ffia = Foua)r + (Ffis — Feis)T
Tiz = (Ffis — Fois)r + (Fgis — Feis)

(13)

In Eq. (13), r represents the joint radius. The forces Fj;
and F; correspond to the outputs of the flexor and extensor
muscles, respectively, and can be calculated as given in
Eq. (14):
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Fpij = upyj — keupyx — buy;x

. 14
Feij = uei]- + kueijx + bueijx ( )

where ug;, u; are contractile forces or activation levels
generated by flexor and extensor muscles, for i = 1-3. Note
that joint angle ¢ may create two different contacting
lengths x due to the different direction in two
muscles: x = —rq for the flexor muscle and x = rq for
the extensor muscle. By substituting Eq. (14) into Eq. (13),
the joint torques are obtained as shown in Eq. (15):

Ty = (Upig — Uein)T — (Upsy + Uein ) kT2 gy
_(ufil + uei1)b72¢?i1 + (ufi3 - ueiB)r

_(ufi3 + ueis)krz(Qil + q11)

_(ufis + uei3)b7”2 (i1 + diz)

T, = (ufiz - ueiz)r - (ufiz + ueiz)krqu'z
_(ufiz + ueiz)brthz + (ufi3 - uei3)7"

_(ufi3 + uei3)k7”2 (g + qi2)

—(upiz + uei3)br(q,, + a,,) (15)
+(Upis — Ueia)T — (Upia + Ueia)kT2q,,
—(upia + Ueia) b2, + (Upis — Ueis)T

—(usis + ueis)kr*(a;, + q;3)

—(upis + ueis)br*(q;, + 43)

Tis = (Ufis — Ueis)T — (Upis + Ueis )kr?(q,, + q,3)
—(ugpis + weis)br?(q,, + 4;3) + (Upis — Ueis)T
—(Usie + Ueic)kTq ;5 — (Usie + Ueig)DT2q 4

The antagonistic mono-articular muscles maintained
near-maximal activation throughout changes in the
direction of the output force. In contrast, the bi-articular
muscle pair exhibited a criss-cross activation pattern. The
muscle activation levels required to generate the maximum
output force at the end-effector E are defined as given in
Eq. (16) [23]:

ufU+ueU=100%for1:1_2‘]=1_6 (16)
Since the contractile force of the flexor muscle u; can

be actively controlled by an actuator, the resulting muscle
torques are expressed in Egs. (17) and (18) [12]:

Ty Ti1
T, =|Tp|= [Tiz]
T 3 T3
—r? k3 kz + k3 + k4 + ks k5 q (17)
| 0 ks ky + ks
by + bs by 0 ]
—T'Z b3 bz + b3 + b4 + b5 b5 qi
0 bs bs + bg]
where:

Ti3
2(upp — D+ 2(up3 — 1)

2 — D+ 2(upz — 1) + 2(upin — D + 2(ups — 1
2(ups — D + 2(up6 — 1)

=T

l(lg)

Then, Eq. (17) can be expressed in the form of Eq. (19).

r=[l=fl-r[s klo-r[6

where K; and B; are defined in Egs. (20) and (21),
respectively.

5 |d (19

ky + ks ks 0
Ki=| ki ky+ks+ko+ks ke | (20
0 ks ky + ks
by + by by 0
Bi=| by  by+bs+by+bs bs | (1)
0 bs b, + bs

It is evident that both K; and B; are positive definite
matrices. By substituting Eq. (19) into Eq. (10), the
dynamic equation of the dual-arm system can be expressed
as Eq. (22):

T = Hl(ql)ql + (%H(ql) + S(qi' ql)) ql
cos(6+6,)
o <sin(6 + ai))f i (22)

sin(0 + 6,) 2 20
<rel ]01< cos(6 + Gi))>/1i +r°K;q, + r°Bq,

Fig. 4. Phenomenological model of ith arm.
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This allows the formulation of the control problem,
which consists of two main objectives:
(1) Maintaining a stable grasp on the object;
(2) Rotating it to the desired orientation and
positioning it at the target location.

D. Control Law for Stable Grasping

Stable grasping can be achieved when sum of forces and
moments apply on the object equal to zero and the normal
contact forces for securely keeping the object attained the
desired contact force. The first control inputs us; (for
i = 1, 2) for maintaining the desired contact force f; are
given in Eq. (23):

cos @ . .
up; = Jo; [_ sin 9] fa +rfasinb;e; — Kyiq; + Kiq; (23)
Then control u,,; (i =1, 2) is for balancing the moments
applying on the object and is proposed as given in Eq. (24).

cos 0;

i = ( 1)‘mde(sm 91 —sin 92)63(24)

Applying principle of superposition, a control input for
stable grasping u; = us; +Uu,,; is proposed and
substituted into the dynamic Eq. (10) of the dual-arm
system, the closed-loop dynamics of the system can be
expressed as Eq. (25):

(Hl(ql)%-l_%Hl(ql)+Sl(ql'ql)+(KVL+B1))ql
_ cos(6+6)
= o —sin(9+9i)]Afi

. (25)
T sm(9+9i)]_ )
+ (] o [cos( 0 +6,] ~ €)M
- chjscie f R(sinB; —sin6)e;
where contact force errors Af; are defined as:
Af = f,—f,cos(6;+0) 26)

A =f,—f,sin(8;+0)
Substituting Eq. (26) into Eq. (11) yields Eq. (27):
Mi + Y%, Aficos(8+6,) + X2, Ad;sin(6; +6) =0
My + Y2 Af;cos(8 +6;) — Y2, 42, sin(6; +8) =0 (27)
160 — (A4, — AA)DR — f1(Y, = Y,) =0
where 7; is determined by Eq. (28):
Y; = Rsin(60 + 6;) (28)
Differentiating Eq. (3) to leads to Eq. (29):
é‘ - H—_qu 3 R:r 0 (29)

Differentiating Eq. (28) and substituting Eq. (29) into
the resulting equation yields Eq. (30):

YI_YZ _ kl T kz T A
o . 4163 — 4263 — 0 (30)
ki=ky  ki-k; ki—k>

where £; is determined by Eq. (31):

Rr cos(6+6;)
r+R

ki = (31)

Since the left arm workspace is confined in the left side
of the circular object and the right arm is confined in the
right side, this leads to Eq. (32):

n/2<60+60;<3m/2

—n/2<0+0,<m/2 (32)

and the term (k1—k») is always positive.
By implementing in the following way:

Z qT x Eq.(25) + [%,7,0] x Eq.(27)

i=1
and referring to Eq. (22), Eq. (33) can be obtained:
@y X (=Tm) + G5 X (~T2)

e d o2 (33)
_Z(kl—kz)dt(yl Y2)

Differentiating constraints Q; (Eq. (6)) and R; (Eq. (7))
yields Egs. (34) and (35):

2. £ (4 fagl+ #Z04y2U L% =0 (34)

2 TR L ORi | 5 ORi | 5 ORi) _
i=1’1i(ql'aqi+xax+3’ay+9ae)_0 (35)

By taking the inner products ¢; with Eq. (25) and
4,z = (x,9,0)" with Eq. (27), respectively, and
summing the resulting expressions, while referencing
Egs. (8), (9), (33), (34), and (35), the following
relationship can be derived as Eq. (36):

d
B =—Z1d" Ky + B) gy (36)

where E, is determined by Eq. (37):

i= 1ql. H (ql)ql + Mx >
(37)

E; = < fa(¥i-Yz)
My? + 0% 4141720
+ y + + (k1—k2)

It is clear that E; is non-negative function in
4,z= (%07 and (¥;-VY,) Since z,g; are
norm-bounded in L2(0, ), position vectors q and z must
be bounded and then Z, §; uniform bounded. By choosing
control damping matrix K,; such that matrix (K,;+B;) is
positive definite function, Eq. (36) guarantees that £; will
be non-increasing function and implies that ¢; — 0 as
t = o, then the right-hand side of Eq. (25) comes to
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Zero. Then the vector  Jh:[cos(6 +6)),
sin(9 + 67, )L [sin(8 + 6;),cos(6 + )T and
cos(0 +6,)/ Y%, cos(0 + 6;) are independent. Then
Eq. (25) equals zero only when:

Af;=fi—facos(6+6;,) -0
A/li zli —dein(g +9L) -0
fa(Y1 —=Y2) >0

This result confirms that both force and moment balance
are achieved, which guarantees stable grasping of the
object and prevents further sliding or rotation under the
proposed control input. Based on this, a control algorithm
is formulated to regulate the position of the grasped object,
ensuring that its center of mass reaches the desired
coordinates x; and y,; along the x-axis and y-axis of the
{oxy} coordinate frame.

E. Control Law for Desired Position of the Grasping
Object

From Fig. 2, the geometrical relations can be derived
and expressed as Egs. (38) and (39):

X =xp; +(R+71)cos(8+6,) 33

{=x02+(R+r)cos(6+92) (38)

{y =y + (R+71)sin(6 + 6;) (39)
=yo2 — (R+1)sin(0 + 6,)

By differentiating Eq. (38) and performing the
necessary transformations, the following result is
obtained:

x=q7 (]g1 [(1)] —rsin(0 + 91)63)
sin(6+63)
sin(6+63)—sin(60+64)
+q7 (]g2 [(1)] +7rsin(8 + 62)63)
sin(6+64)
sin(6+63)—sin(60+64)

(40)

Based on Eq. (40), a control law u,; is proposed to
regulate the object’s center of mass toward the desired
coordinate x4, defined in Eq. (41):

1 , Ky (x—xq) sin(6+63)
_ T _ X d
Uer = (]Ol [0] rsin(0 + 91)63) sin(0+62)—sin(6+6;)

1 , Ky(x—xg) sin(6+61)
_ T _ X d
Uz = (]02 [0] rsin(6 + 92)63) Sin(0+6,)—sin(0+61)

(41)

From Eq. (41), Eq. (42) can be obtained as follows:

. (x—xg)*
— %2l wy = K552 (42)

Similar transformation with Eq. (39) can be resulting:

. 1
y = q{ (]g1 [0] —rcos(6+ 91)e3)
cos(60+67)
cos(0+602)+cos(6+61)

. 0
+q§ (]g2 [1] +rcos(6+ 62)63)
cos(0+601)
cos(6+6;)+cos(0+61)

(43)

Based on Eq. (43), a control law u,; is proposed to
regulate the object’s center of mass toward the desired
coordinate y,, expressed in Eq. (44):

1 Ky (¥ —yq) cos(6+83)
= (1] - reosC0 + 83e,) aozamce

cos(0+6,)+cos(0+67) (44)
1
Uy, = (]gl [0] —rcos(0 + 91)63)

Ky(y —ya) cos(6+6,)
cos(0+6;)+cos(0+64)

where K., K, is a diagonal positive matrix.
It is possible to have:

2

. v —ya)?
_zqzuyi = Kde

i=1

Building upon the premise that complex dexterous
movements can be decomposed into a set of fundamental
motion primitives that can be independently acquired and
executed, the overall control input for a complete motion
is synthesized through the principle of linear
superposition. Specifically, the control input is formulated
as a combination of the components us uy, and u,,;, as
described in Eq. (45):

u; = ufi + Umi + Ui + uyi (45)

By substituting #; from Eq. (44) into the dynamic
equations of the overall system and performing the
necessary transformations, the following relation is
obtained as Eq. (46):

d ) ) .
B2 = — Y7oy 4 Kpidy — ab? (46)

Ky=ya)? | Ky(x—xq)?

where E, = E; + + 2

It is clear that function E» is non-negative function in
Ggnz= 907", (¥, -Y) and (s and (x—xu).
According to Lyapunov stability theorem, the convergence
of the system can be demonstrated as shown in Eq. (47):

41,42, %,y,0 = 0

Afy =fi—far=fr—facos(6 +61) -0
Afy =fo = fa2 = f2 — facos(6 +6,) > 0
DAy = Ay —Agy = Ay — fy5in(0 +65) > 0
Ay = Ay — Agy = Ay — f 5in( 6 + 6,) = 0
Y,-Y,-0

Ax=x—x4-0

Ay =y —y,—-0

(47)

as —oo0.
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That means the objective of propose control for stable
grasping and dexterous manipulating the object has been
achieved.

IV. SIMULATION RESULTS

In this simulation, the dual-finger robot is tasked with
manipulating a circular object on a horizontal plane. The
robot must securely grasp the object and transport it to a
designated position within the workspace. Initially, the
joint positions of both the dual-finger robot and the object
are configured to satisfy the grasping constraints and
maintain a stable grasp. The parameters of the dual-finger
robot and the manipulated object are listed in Table I. The
mass and length of the arms are chosen to approximate
those of an average human multi-fingered hand, thereby
enhancing the anthropomorphic fidelity of the simulation.

TABLE I. PHYSICAL PARAMETERS

Notation Sym Value Unit
Mass of 1* link mj; 0.0385 [kg]
Mass of 2™ link mi 0.032 [kg]
Mass of 3" link miz 0.026 kgl

Length of 1* link Iy 0.077 [m]
Length of 2" link I 0.064 [m]
Length of 3™ link I3 0.052 [m]
Mass of the object M 0.05 [ke]
Radius of object R 0.037 [m]
Elastic coefficient k 3000 [N/m]
Viscous coefficient b 400 [Ns/m]
Radius of joint i r 0.02 [m]

The Constraint Stabilization Method (CSM) is
employed to capture the system’s dynamic behavior
accurately. CSM is a numerical technique commonly used
in the simulation of mechanical systems subject to
kinematic or dynamic constraints. In such systems,
constraint equations may be violated due to numerical
inaccuracies or the accumulation of integration errors over
time, leading to constraint drift and potentially unstable or
unreliable simulation outcomes. To address these issues,
CSM introduces auxiliary conditions into the system’s
equations of motion and applies correction terms to reduce
constraint deviations. Among the various stabilization
strategies, the Baumgarte Stabilization Method is widely
adopted [26]. This approach modifies the constraint
equations by incorporating damping and stiffness-like
terms, as shown in Eq. (48):

Rl + lel + 0)1R1 =0

) ) (48)

RZ + lez + (1)1R2 =0
where ¥, @; are tuning parameters selected to achieve the
desired level of stability. The underlying concept is to
reformulate the constraint dynamics as a damped
oscillatory system, thereby enabling the system to
naturally converge toward a constraint-satisfying state
over time. Then Eq. (48) is integrated into the closed-loop
dynamic system to perform simulations and evaluate the
system’s characteristics when the proposed control
algorithm is applied.

The control parameters used in the simulation are
presented in Table II.

TABLE II. CONTROL PARAMETERS

Symbol Notation Value

K,(i=1,2) D-gain 0.075

¥ Constraint Stabilization 160
4 Method (CSM) parameter

@y CSM parameter 80
I P-gain 0.15
L, P-gain 0.15
fa desired force IN
Xd Desired position in x-axis 0.099 m
Va Desired position in y-axis 0.085 m

To validate the effectiveness of the proposed control
laws, numerical simulations were conducted using
MATLAB. The analysis focuses on the behavior of key
physical quantities, including the normal contact forces fi
and f> acting on the object surfaces, the moment applied to
the object fi(Yi-Y2), the rotational velocity, and the
translational velocities of the object.
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Fig. 5. Normal contact force f; (a) and f; (b).

Fig. 5 illustrates the time responses of the normal
contact forces fi and f;, respectively. The results show that
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both forces converge to their desired values fi4, f2¢ within
approximately 10 s, confirming the effectiveness of the
force control scheme. Similarly, the tangential contact
forces A1 and A closely follow their corresponding
reference values 414 and Au4, as depicted in Fig. 6. The
results in Fig. 7 show that both the rotational and
translational velocities converge to zero, indicating that the
object ceases rotation and translation around
the 10 s. This result demonstrates that the object becomes
fully stationary under the influence of the proposed control
law. Correspondingly, the moment applied to the grasped
object, illustrated in Fig. 8, also stabilizes at zero,
confirming the complete cessation of motion. These
findings confirm that stable grasping of the object has been
successfully achieved using the dual-finger PAM-driven
robot.
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Additionally, Fig. 9 illustrates the asymptotic
convergence of the object’s actual position to its desired
reference trajectory across both x- and y-axis coordinates.
This effective positional tracking, alongside the previously
demonstrated regulation of force and velocity, validates
the dual capabilities of the control algorithm. Specifically,
it ensures stable grasp conditions through appropriate force
distribution while also achieving precise positional control
within the task space. These simulation results generally
confirm that the proposed control strategy facilitates robust

grasping and accurate manipulation of the target object.
However, the effectiveness of the algorithm remains
limited to theoretical validation, due to several reasons: to
simplify the validation of the proposed control algorithms
on the robot-object dynamic system, this study assumes
ideal conditions by neglecting the effects of disturbances,
uncertainties in kinematic and dynamic parameters, and
actuator delays. Theoretically, the proposed control
algorithms have not yet demonstrated asymptotic stability
of the closed-loop dynamic system under the influence of
external disturbances and system uncertainties.
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Developing a multi-fingered robotic system driven by
PAMs involves several complex challenges. Primary
factors, such as pneumatic delays, nonlinear friction,
sensor noise, and parameter mismatches, must be
considered and evaluated via simulation. Then the system
requires precise hardware integration, stable air pressure
regulation, and real-time data acquisition systems capable
of handling multiple degrees of freedom. Ensuring
mechanical robustness while maintaining modularity for
testing different configurations is also critical. These
challenges must be addressed to validate control strategies
under realistic operating conditions and to bridge the gap
between simulation and practical deployment.

It is confirmed from simulation works that the proposed
control algorithms facilitate stable grasping during
robot—object interaction by ensuring that the contact forces
are consistently maintained at the required states. These
states are derived from the static stability condition of the
grasped object, where the resultant forces and moments
acting on the object’s center of mass are zero. The
controller is designed based on the principle of linear
superposition of input signals and its stability has been
rigorously proven using Lyapunov and LaSalle stability
criteria. Simulation results have further demonstrated that
the robot achieves both stable grasp and dexterous object
manipulation. This capability represents a critical step

toward transitioning from simulation to an experimental
robotic system designed for motor function rehabilitation
in elderly individuals or patients. By automatically
regulating the contact forces between the robotic fingers
and the object, the system can ensure user safety while
enabling appropriate and effective training exercises.

V. CONCLUSIONS

This study develops a control framework for a dual-arm
robot actuated by Pneumatic Artificial Muscles (PAMs) to
grasp and manipulate circular objects stably. Using the
Lagrange method and Hamilton’s principle, the derived
control laws ensure asymptotic stability of object motion
and contact forces, as proven via Lyapunov theory and
LaSalle’s invariance principle.

The effectiveness of the proposed control strategy is
verified through detailed numerical simulations in
MATLAB. Results show that the normal and tangential
contact forces converge rapidly to their desired values,
while both rotational and translational velocities of the
object diminish to zero within six seconds, indicating a
fully stabilized grasp. The applied moment on the object
also converges to zero, and the object’s center of mass
asymptotically tracks the desired trajectory along both
spatial axes. These outcomes collectively demonstrate the
controller’s ability to simultaneously ensure grasp stability
and precise object positioning.

The novelty of this research lies in developing control
algorithms for stable grasping and dexterous manipulation
of grasped objects using a dual-finger PAM-driven robotic
system. Unlike conventional approaches that rely on force
sensors to regulate contact forces, the proposed method
achieves desired contact force control without force
sensing, inspired by human blind grasping behavior. This
sensor-less force regulation is possible through a
model-based control strategy that leverages kinematic
transformations and Lyapunov-based stability analysis.

Furthermore, the system is designed to operate under
idealized conditions—on a horizontal plane and without
gravitational influence—allowing simplification of the
dynamic model and reducing dependency on uncertain
parameters.  Simulation results demonstrate the
algorithm’s robustness to small disturbances, and future
work will extend the framework to incorporate adaptive
and robust control mechanisms for more complex
interaction scenarios.

In future work, the proposed framework could be
extended to accommodate more complex object
geometries, uncertainties in model parameters, and
real-time implementation on physical robot platforms. In
addition, future studies may involve the development of
experimental systems to validate the theoretical findings.
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