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Abstract—This paper presents a hybrid control framework
for autonomous vehicles, combining semantic lane detection
with a two-tier control approach: Nonlinear Model
Predictive Control (NMPC) for lateral trajectory tracking
and Fuzzy Proportional-Integral-Derivative (Fuzzy PID)
control for longitudinal velocity management. Real-time
visual data from the UltraFast segmentation network is
integrated into the NMPC optimization, improving road
boundary tracking in dynamic conditions. The fuzzy PID
controller is optimally tuned and enhanced with a
feedforward compensation branch to anticipate velocity
changes, speeding up convergence while ensuring stability.
Simulations across various velocity targets demonstrate
rapid convergence, lateral stability, and reduced control
effort. Compared to classical methods like Linear Quadratic
Regulator (LQR) and Pure Pursuit (PP), the proposed system
achieves superior tracking accuracy, robustness, and
smoother control. Key contributions include incorporating
UltraFast-based Lane segmentation into NMPC and using
feedforward-enhanced Fuzzy PID for better speed
regulation, offering a scalable and adaptive solution for
intelligent vehicle control in structured settings.

Keywords—vehicle control, Nonlinear Model Predictive
Control (NMPC), Fuzzy Proportional Integral Derivative
(Fuzzy PID), vision-based navigate

I. INTRODUCTION

Safe and efficient navigation is a key goal in
autonomous driving, and lane determination is essential
for maintaining lateral stability and staying within road
boundaries. In real-world scenarios, traditional
lane-following algorithms, which rely on edge detection or
handcrafted features, often falter due to occlusions, faded
markings, or varying lighting conditions. These challenges
highlight the need for robust perception-control integration
in dynamic environments to ensure reliability.
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To address these issues, this study proposes a hybrid

control-perception framework that integrates a semantic.

Segmentation-based vision module with a Nonlinear

Model Predictive Control (NMPC) system. This approach
enables the system to adapt to varying road conditions by
embedding real-time visual data into the control loop,
ensuring more precise trajectory tracking and improved
speed regulation. This study introduces an integrated
framework for autonomous lane tracking, combining
efficient semantic segmentation with a NMPC.
Key contributions of the study:

e Seamless integration of perception and control:
Embeds semantic lane detection (UltraFast) within
the NMPC optimization, enabling real-time
adaptation to road geometry in dynamic
conditions.

e Hybrid control strategy: Combines NMPC for
lateral trajectory tracking with a fuzzy logic-based
Proportional Integral Derivative (PID) controller
for longitudinal speed regulation, improving
path-following accuracy and ride comfort.

e Improved responsiveness: Optimizes the fuzzy
PID controller with tuned gain parameters and a
feedforward term, achieving faster speed
convergence without sacrificing stability.

e Real-time viability: Demonstrates lightweight and
efficient simulation performance, suitable for
deployment on embedded hardware in real-time
autonomous systems.

e Superior performance: Outperforms standard
methods like Linear Quadratic Regulator (LQR)
and Pure Pursuit in lateral tracking accuracy
(lower Root Mean Square Error (RMSE)),
robustness (reduced overshoot), and
computational efficiency. The system is validated
through  Python-based  simulations  under
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low-to-moderate speed scenarios (5.0 m/s and
10.0 m/s), showing consistent lane-keeping, fast
convergence to reference speeds, and improved
tracking accuracy.

The paper is structured as follows: Section II reviews
related work on perception-integrated and hybrid control
strategies for autonomous vehicles. Section III presents the
vehicle’s kinematic and dynamic models as the basis for
control design. Section IV describes the NMPC for lateral
trajectory tracking. Section V explains the semantic lane
detection framework using the UltraFast segmentation
network. Section VI covers the simulation setup,
performance evaluation, and benchmarking against
traditional controllers. Section VII concludes with a
summary and directions for future research.

II. RELATED WORK

Over the past decade, numerous control strategies have
been investigated for autonomous vehicle navigation.
Classical control methods such as PID controllers are
widely used for their simplicity and real-time
implementation capability [1]. However, PID controllers
lack prediction capability and fail to manage constraints
effectively, particularly in  nonlinear  dynamic
environments [2].

To overcome these limitations, advanced model-based
control methods like LQR [3] and Model Predictive
Control (MPC) [4, 5] have gained popularity. While LQR
optimizes control for linear systems, its performance
deteriorates under nonlinear or time-varying dynamics.
MPC, in contrast, anticipates future states over a prediction
horizon and incorporates constraints, making it suitable for
complex trajectory tracking, especially under real-world
uncertainties [6, 7].

In parallel, lane detection has evolved from classical
image processing techniques (e.g., Canny edge detection,
Hough transforms) [8, 9] to deep learning-based semantic
segmentation methods, such as ENet [10], SCNN [11] and
Lane Net [12]. These models improve robustness to
environmental variations but are often only used as
perception front ends without integration into control
loops.

Recent studies have attempted to bridge perception and
control. End-to-end deep learning approaches [13] directly
map camera input to control commands, but they lack
transparency and struggle with constraint handling. Hybrid
approaches integrate semantic segmentation with MPC or
rule-based control [14-19], though sensitivity to visual
noise remains a challenge. This work enhances robustness
and interpretability by combining a deep learning-based
lane detection algorithm with a constrained NMPC
controller, enabling real-time trajectory optimization
based on reliable semantic inputs. The proposed
framework leverages a state-of-the-art lane detection
network to extract semantically rich lane boundaries,
which are input for a NMPC module. This combination
ensures precise trajectory tracking and preserves the
ability to handle system constraints effectively, even in
dynamically varying and uncertain environments. By
incorporating learnable perception components and
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physics-based control in a tightly coupled manner, the
framework addresses the limitations of standalone
approaches in complex real-world scenarios.

The lane detection algorithm is first trained on diverse
datasets to generalize across varying lighting and weather
conditions, ensuring robustness to visual noise such as
shadows, road glare, and occlusions. The output of this
perception module is then processed to produce lane
boundary parameters mapped into the vehicle’s coordinate
system. These parameters are fed into the NMPC

formulation, where constraints—such as collision
avoidance, curvature limitations, and actuator
saturation—are embedded directly into the optimisation
problem.

The NMPC controller solves a constrained optimisation
problem at every time step, leveraging the predicted
vehicle dynamics and observation-driven guidance to
determine control inputs, such as steering angle and
throttle. The prediction horizon allows the controller to
anticipate and compensate for nonlinearity-induced
deviations, ensuring smooth and safe navigation.
Combining interpretable perception with constraint-driven
control, this layered approach provides a reliable
alternative to fully opaque end-to-end pipelines, offering
enhanced accountability and adaptability in safety-critical
applications.

III. LATERAL DYNAMIC MODEL OF AUTONOMOUS

VEHICLE

A. Linear Bicycle Model

The linear dynamic model of the vehicle is derived
based on a small-angle approximation and constant
longitudinal velocity. Fig. 1 depicts the lateral dynamics
model of the autonomous vehicle. It depicts the dynamic
model of a car’s motion with an axle, illustrating the
primary forces affecting the vehicle. It considers the
vehicle coordinate system, which represents the vertical
and horizontal directions within the vehicle frame. In
contrast, the OXY coordinate system denotes the vertical
and horizontal directions in the absolute reference system.
Here, y signifies the rotation angle of the vehicle body in
the OXY reference system.
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Fig 1. The lateral dynamics model of the autonomous vehicle.
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By applying Newton’s Law principle, the differential
equations governing the car’s motion in Fig. 1 can be
derived as Eq. (1):

{m(y + Vxlpy) = Fyf + Fyr

L (1)
LY = I Fyp — Iy

where m and [, are the vehicle mass and moment of inertia,
respectively, I.represent the vehicle’s mass and moment
of inertia, respectively, F, s + F.are the forces acting on
the wheels in the x and y directions.

Empirical research shows that a tire’s lateral force is
directly proportional to its slide angle at moderate slip
angles, a relationship known as “cornering stiffness”. This
property is crucial for vehicle handling and stability during
cornering. Manufacturers carefully design tires to optimize
cornering stiffness, balancing traction, durability, and
rolling resistance to achieve desired performance.
Understanding and fine-tuning this characteristic allows
engineers to enhance a vehicle’s handling dynamics for
optimal performance.

The slip angle of the tire is written as Eq. (2):

where § is the front tire steering angle?

The forces acting on the wheels in y directions for the
rear and front tyre are calculated in Eq. (3).

Fyr = 24 (=0yp)
where Cyf, Cor are cornering stiffness.
And satisfy Eq. (4)
tan 6, = Vy;lfw
Vot 4
tan 0, = X*—
Vx

If 0, &0, are small, the equations in the figure
describe the slip angles of the front and rear wheels in an
autonomous vehicle’s kinematic or dynamic model. Slip
angles represent the deviation between the direction of
wheel motion and the wheel heading, essential for
analyzing lateral vehicle dynamics and designing
advanced control systems. These are calculated by Eq. (5):

_ y'+lf1,b
Qvf - Ve (5)
. — Y=k
vr Vy

The forces exerted on the rear and front tyres in the
vertical direction are computed by Eq. (6).

Y+
)
x

Il
yr - ZCar (_ ¢')

Fyp=2Cq(6 —

The dynamic model of the autonomous vehicle is
rewritten as Egs. (7) and (8):

; y—lry
2Cqp8  2Cap(yHipd) 2Car(* V;w)

m mVy mVy

J+ W= (7

_ i—f(ZCaffS _ (zcaf(:ﬂfw)) + Lf 2Car8(y+lrh) ()
T X

Ir Vx

Egs. (7) and (8) are rewritten as Egs. (9) and (10):

__2Cqfb _ 2(Caf+Car) . _ 2(Cafly—Carly)
T Y~ (e =) 9)
_ 12Cas8  2(Cay = Carly) . (caf lf Carzr)
ok 1,V P (10)

The dynamic state-space model of the autonomous
vehicle is rewritten as Eq. (11)

1 0
Y |0 -2(cartCar) 0=2CarlytCarts) | (¥
i y _ 0 m.Vm 0 I2.Vx y
ac)¥( " |o 0 0 1 14
" O—Z(Caflf+cmlr)0—Z(Caflf+cm«lr) ¥
12V 2V (11)
ZCaf
anrlr
where: y: lateral displacement; 1 : heading angle; m:

vehicle mass; I, is a moment of inertial; I, [, are distances
from to center front and rear axles; Cqy, Cof: cornering
stiffness coefficients; §:steering angle input.

This model is widely used in control algorithms, such as
linear MPC. However, this control method is simple and
effective in low-speed scenarios.

B. Nonlinear Kinematic Model

The nonlinear model of the lateral dynamics of an
autonomous vehicle is commonly based on the bicycle
model, which approximates the car with a single front and
rear wheel. This model captures the key dynamics,
including longitudinal, lateralv, , and yaw rate lateral
position error e; (cross-track error) and heading error e,.
The nonlinear equations of motion are given as Eq. (12):

Uy = i(Fxfcosé‘ — Fyrsind + Fxr) +vyw
vy = %(Fyfcom? + Fysiné + Fyr) — VW
L-Fyr)

W= i(lnyfcoszﬁ + [ Fypsind — (12)

€, = vy + vy sine,)

. vx cos(ez)—vysin (e1)
€G=w—————
R
where Fyf, Fy,-: Longitudinal forces are on the front and
rear tire, and lateral forces are on the front and rear tyre.
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This nonlinear model accurately describes vehicle
behaviour at high speeds or during aggressive manoeuvres,
where tyre slips occur, and nonlinearities become
significant.

C. Vehicle Steering Angle and Vehicle Speed

Based on the research in Ref. [10], the relationship
between steering angle and vehicle speed in a steering
control system is analyzed in Fig. 2. The Y-axis represents
the steering angle in degrees. At the same time, the X-axis
corresponds to vehicle speed or time. The black dashed
and dash-dot lines indicate the steering angle limits at each
speed, and the blue dashed line shows the actual steering
angle, which remains within these limits. At low speeds,
the system allows larger steering angles of up to +45
degrees for better manoeuvre ability, while at higher
speeds, the limits narrow to about 23 degrees to enhance
stability and prevent rollover. The actual steering angle
also demonstrates reduced amplitude and oscillations at
higher speeds, reflecting smoother and more stable
steering.

___________ - == = Upper Limit Angle
40+ 1 = = Lower Limit Angle
: = = Steering in Range
1
1
— 20} / ‘\ F, VSV ‘SIS DSV S,
o 1/
¢ [
g [ AR
= ] \\ VARt
w -
E‘ 0 ! \ I/ \\ //’ e e e ik
<< ~ -
£ N\
@ \Ns
2
wn =20} o ————————————————
I
1
I
I
—-40 1
___________ F
0 10 20 30 40 50 60 70 80

Vehicle Speed [km/h]

Fig. 2. Vehicle steering angle and vehicle speed.

The relationship between steering angle and vehicle
speed is crucial in designing control systems for
autonomous vehicles. Higher speeds require reduced
steering angles to maintain stability and prevent rollover.
Model Predictive Control (MPC) integrates this
relationship as a dynamic constraint to ensure safe and
feasible steering actions. MPC calculates optimal steering
commands within speed-dependent limits, while a
low-level PID controller accurately and quickly executes
these commands. Lane boundaries are detected, and
desired trajectories are generated via image processing
modules, which feed into the MPC. Incorporating the
speed-steering constraint across both MPC and PID layers
ensures smooth, safe, and adaptive steering under varying
conditions.

D. Model Selection Basis for NMPC controller

Selecting an appropriate vehicle model is crucial for the
accuracy and performance of a NMPC. The two main
approaches are the linearised vehicle model and the
nonlinear bicycle model. Linear models, often used in
embedded applications, provide computational efficiency
near a fixed operating point. However, at high speeds and
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large steering angles, their assumptions fail, causing
significant prediction errors and reduced reliability. This
study compares the two models in typical
scenarios—gentle and sharp curves, as well as S-shaped
roads—using the RMSE as the performance metric. To
evaluate the accuracy of vehicle dynamic models for
NMPC controller design, three simulation scenarios were
developed to represent typical driving conditions with
varying curvature, speed, and steering nonlinearity:

o Scenario I: Gentle Curve—assesses performance
under near-linear conditions.

e Scenario 2: Sharp Turn—evaluates robustness in
highly nonlinear dynamics.

e Scenario 3: Continuous S-Curve—examines
adaptability and stability in complex, rapidly
changing manoeuvres.

Three simulation scenarios were designed to compare
trajectory tracking in linear and nonlinear models, as
shown below. The figures depict an autonomous vehicle
following a reference trajectory under increasing curvature
and steering frequency. The dashed blue line represents the
linear model, while the solid red line represents the
nonlinear model.
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Fig. 3. Tracking results for the continuous Gentle curve scenario.

The first scenario in Fig. 3 features a gentle curve with
a large 100-metre turning radius. The vehicle travels at a
constant speed of 10 m/s with a steering angle below 5°,
simulating low-curvature highway conditions where
dynamics remain linear. This case evaluates the prediction
accuracy of linear and nonlinear models under near-linear
conditions.
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Fig. 4. Tracking results for the continuous Sharp-curve scenario.
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The second scenario in Fig. 4 involves a sharp 25-metre
radius turn, with the vehicle moving at 8§ m/s and a steering
angle exceeding 15°. It tests model performance in highly
nonlinear conditions where stability is more challenging
and linear assumptions no longer hold.
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Fig. 5. Tracking results for the continuous S-curve scenario.

The third scenario in Fig. 5 presents an S-curve with
alternating left and right turns. The vehicle’s speed varies
between 8 m/s and 12 m/s, mimicking real-world throttle
changes. This scenario challenges models with rapid
steering transitions and varying curvature, assessing their
adaptability and stability under high-frequency nonlinear
dynamics.

Simulation results across three representative driving
scenarios demonstrate that the nonlinear model
consistently outperforms the linear counterpart in both
tracking accuracy and robustness. While the linear model
performs adequately in near-linear conditions, it suffers
from significant overshoot and tracking errors under
strong curvature or rapid steering changes. In contrast, the
nonlinear model maintains stability and closely follows the
reference trajectory across all conditions. To quantify this
performance gap, Fig. 6 compares the RMSE values of
both models in each scenario.
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Fig. 6. MSE comparison between linear and nonlinear models across
three driving scenarios.

The RMSE results in Fig. 6 demonstrate the superior
prediction accuracy of the nonlinear model across all
scenarios. In the gentle curve case, it reduces RMSE
by 26% compared to the linear model, while in the sharp
turn and S-curve scenarios, it achieves reductions of 73%
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and 74%, respectively. These improvements demonstrate
the robustness and suitability of the nonlinear model for
trajectory prediction in advanced control strategies, such
as NMPC, particularly in high-curvature or dynamic
scenarios.

IV. NMPC CONTROL ARCHITECTURE

The proposed control framework combines deep
learning-based perception with robust tube-based NMPC
to ensure precise and adaptive lane following in dynamic,
uncertain road conditions. As shown in Fig. 1, a
front-facing camera captures real-time video, processed by
a semantic segmentation network (ENet or UltraFast) to
identify lane markings. A perspective transform and
polynomial fitting module refines these detections into a
top-down road view. Spatial corridor constraints are
generated using the lane boundaries to ensure safe lane
motion. The reference trajectory, including the road
centerline and heading angle, is calculated and fed to the
NMPC controller. Simultaneously, tube constraints,
representing time-varying bounds around the reference
trajectory, are introduced to handle disturbances and
uncertainties. The NMPC optimizes control actions
(steering angle and velocity) to keep the vehicle within the
defined safe corridor. A vehicle motion model (e.g.,
bicycle model) closes the feedback loop, enabling
real-time adaptation and accurate, safe trajectory tracking
across varied conditions.

A. Perception and Lane Detection

A front-facing monocular camera uses a lightweight
ENet semantic segmentation network to process real-time
road images and detect lane markings by Eq. (13):

I; =TENet(l,) (13)
where:
I, : the input RGB image;
I, : Representing the segmented lane road.

Inverse Perspective Mapping (IPM) converts the output
into a bird’s-eye view to eliminate projective distortion.

B. Lane Geometry Extraction

Two third-order polynomial equations define the Left
(L) and Right (R) lane boundaries in vehicle coordinates,
which are crucial for lane tracking. Their coefficients,
derived from curve fitting sensor-detected points, adjust to
changing road conditionns in real-time. The polynomial
coefficients are derived via regression from the processed
image (ENet + Bird’s Eye View) according to the
algorithm shown in Fig. 7. This adaptation ensures
accurate lane modelling, improving lane-following, path
planning, and collision avoidance in complex driving
scenarios as Eqs. (14) and (15):

L(x) =ax®+bx*+cx+d, (14)

R(x) = agx® + brx? + cyx + dg (15)
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C. Reference Path Generation

The centerline is the set of points equidistant from the
boundaries, typically obtained through a medial axis
transformation or similar geometric method, ensuring
symmetry and serving as a reference for analysis, design,
or optimization of the structure or pathway. The centerline
is computed as Eq. (16):

L(x)+R(x)
Yrer = - 5

(16)

The centerline reflects a shape’s intrinsic geometry,
supporting tasks like flow simulation, stress analysis, and
navigation planning. Its accuracy ensures consistency,
bridging theoretical models with practical applications, as
referenced in Eq. (17):

_1 Yrer

T 17)

Yrep = tan

The reference path x,..r = [x, Yrefaprer| QCTINES the

system’s desired position and orientation over time. It is
typically designed to meet objectives such as minimizing
travel time, optimizing energy use, or ensuring safety. The
control system continuously adapts to minimize deviations
and maintain alignment with this path.
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D. Tube and Corridor Constraints for Robust Path
Tracking

To achieve robust and safe trajectory tracking, the
controller employs two types of constraints: tube
constraints and corridor constraints.

Tube constraints define a time-varying allowable
deviation radius € around the reference trajectory. This
enables the vehicle to tolerate bounded tracking errors
resulting from model mismatch, external disturbances, or
sensor noise. Mathematically, these soft constraints are
applied at each prediction step k as Eq. (18):

() = xrep (]| <€ (18)

The tube functions as a “confidence band” around the
planned trajectory, enabling the NMPC to recover from
disturbances  while maintaining feasibility = and
performance.

Corridor constraints, by contrast, are spatial boundaries
that define the allowable driving region, such as lane limits
or road boundaries detected from vision. These constraints
are formulated as hard conditions in the NMPC problem to
ensure the vehicle does not breach safety margins in
Eq. (19):

x(k) € C (19)

C, is the viable corridor derived from real-time
perception, ensuring that the planned trajectory remains
within lane boundaries and avoids static obstacles. By
integrating tube constraints (soft bounds for robustness)
with corridor constraints (hard spatial limits), the NMPC
can balance safety, robustness, and flexibility in path
tracking.

E.  Tube-Based NMPC Optimization

The controller minimizes a cost function over a
prediction horizon (N) as Eq. (20):

PN [(xk - xkref)TQ(xk - xkref)
B Fupr P A uy ]

J (20)

where:

Xy predicted vehicle state at step k.

Xkref - Teference trajectory derived from ENet lane
detection.

u,r€R™: control input (speed, steering).

A Uy, = Uy, — Uy_q: control rate.

0 > 0: tracking error weight.

R > 0: control effort weight.

P > 0: control rate smoothing weight.

The NMPC controller minimizes a cost function to:
Minimize lane center deviations.
Limit control magnitudes (speed, steering angle).
Smooth control transitions.
Anticipate and adapt to dynamic driving scenarios
like lane changes or obstacles.
Optimize passenger comfort by reducing abrupt
acceleration or sharp steering actions.
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Ensure adherence to road constraints and maintain
safe distances from other vehicles.

Vehicle dynamics using the kinematic Ackerman robot
model as v,, v'y; W

Control constraints as Eq. (21):

Vmin < Vk < Vmaxs 0k] € nax(vi)]  (21)
Corridor constraints as Eq. (22):
Yi€[L(x) + & R(x;) — €] (22)

Using a receding-horizon approach, the controller
solves the constrained optimization over N, generating an
optimal control sequence. Only the first control action is
applied while the process repeats as the horizon advances.

Efficient solvers, e.g., quadratic programming, handle
constraints and linearised dynamics. Key factors: Horizon
(N) (tradeoff between anticipation and computation) and
weights (Q, R, P- balance tracking, energy, and
smoothness), enabling safe, efficient, real-time vehicle
navigation.

The improved NMPC controller applies only the first
control signal ugy, at each step (receding horizon).
Real-time positioning and visual feedback update the
vehicle’s state for the next cycle. This ensures safe, smooth
lane tracking even in uncertain environments and
demonstrates the effectiveness of the MPC with a NMPC
for stability and quick adaptation to real-world changes.
Using only the first control signal reduces computational
load and enhances system flexibility in unexpected
situations. Additionally, integrating real-time sensors like
cameras and Lidar optimises sensing and positioning,
enabling precise responses to obstacles or lane changes.

V. VISION-BASED LANE DETECTION AND HYBRID
CONTROL STRATEGY

A. Vision-Based Lane Detection and Trajectory
Generation

UltraFast Lane Detection is a real-time, lightweight
deep learning method for efficient autonomous driving.
Unlike traditional models like ENet or LaneNet, which use
pixel-wise lane masks, it treats lane detection as a
row-wise anchor point regression task, directly predicting
lane coordinates. This approach simplifies processing,
increases frame rates, and adapts to various driving
conditions. Its compact architecture minimizes input
resolution needs without compromising accuracy, making
it ideal for resource-limited systems. Efficient
post-processing ensures reliable performance under
challenges like occlusions and poor lighting, enabling fast
and accurate real-time deployment.

The model divides the input image into horizontal rows,
predicting x-coordinates where lanes intersect. Lane points
are classified into discrete columns and trained using
categorical cross-entropy. The points are refined with
polynomial fitting to create a continuous trajectory for
motion planning. Fig. 8 illustrates the autonomous
vehicle’s integrated lane perception and control system.

The process starts with a resized front camera image
analyzed using a lightweight ResNet-18 backbone to
extract spatial features. UltraFast models lane detection as
arow-wise classification task, predicting column positions
for lanes, resulting in discrete points. Guided by
categorical cross-entropy loss, these points are smoothed
into a continuous centerline trajectory via polynomial
curve fitting, which serves as the reference path for the
NMPC controller.

Row-wise Anchor
Point Prediction

Feature Extraction
(Backbone: ResNet-18)

Input Image

(Resized RGB)

Polynomial Fitting

Output to
(Lane Centerline) NMPC

Lane Coordinates

Fig. 8. Integrated lane perception and control block diagram for autonomous car.

B.  Hybrid Lateral-Longitudinal Cooperative Control
Strategy

This autonomous driving system combines UltraFast
Lane Detection, NMPC for steering, and Fuzzy-PID
control for speed regulation. This autonomous driving
system integrates UltraFast Lane Detection, Nonlinear
NMPC for steering, and Fuzzy-PID control for speed
regulation.

The process begins with a resized front camera image
processed through a lightweight ResNet-18 backbone to
extract spatial features. UltraFast models lane detection as
arow-wise classification task, predicting column positions
x;j For each lane at the horizontal row y;;time, resulting
in discrete lane points as Eq. (23):

Lane; = {(x;;yi)}=s (23)
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Categorical cross-entropy loss supervises these outputs
for each anchor row as Eq. (24):

Ligne = X i = 1°¥)_, CrossEntropy (xfjred,xi’}t) (24)

A polynomial curve fits these points to form a smooth
centerline trajectory, which is used as the reference path
for the NMPC controller. The NMPC optimizes the
vehicle’s heading angle § over a prediction horizon,

adhering to vehicle kinematics and constraints as Eq. (25):
. 2
J = argmin B olllxe = Xiererll 58] (25)

where:

Xy State vector at time £.

Xires: Reference state at time k.

Xirerk: Control (steering angle) at time £.

O, R: Weight matrices (positive semi-definite).
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Parallelly, a Fuzzy-PID speed controller computes the
speed control signal u(t) by adjusting the PID gains via
fuzzy logic based on error and its rate of change as
Eq. (26):

de(t)
dt

u(t) =K, xe(®) +K; [ e(®) + K4 x (26)

The dual-control framework efficiently manages road
curvature and dynamic uncertainties by integrating NMPC
for precise trajectory tracking and fuzzy-PID for adaptive
speed control. The Vehicle Control Execution Module
generates real-time steering and throttle/brake commands
optimized for embedded platforms like Jetson Xavier,
ensuring dependable lane following and speed regulation
in dynamic environments. In addition, the ultraFast
achieves outstanding performance, surpassing 300 FPS
with ResNet-18 while maintaining high accuracy,
with 96.4% on TuSimple and a 76.2% F1-Score on
CULane.

VL

A. Evaluate the Performance of the NMPC Controller

To ensure transparency and reproducibility, this section
clarifies the tuning procedure for the controller parameters.
The NMPC weight matrices O and R were selected through
iterative trial-and-error during closed-loop simulations,
balancing trajectory tracking accuracy with control effort.
The terminal cost matrix P was set equal to the discrete-
time solution of the Riccati equation for the linearised
system at the operating point. For the fuzzy PID controller,
the scaling gains (K, K;, K,) and the fuzzy rule base were
also tuned empirically. Although no formal optimisation
algorithms were employed, the tuning process prioritised
minimising overshoot, improving settling time, and
ensuring robust steady-state performance. Future research
will consider metaheuristic approaches such as Genetic
Algorithms or Particle Swarm Optimisation to
systematically automate the tuning process and further
enhance performance.

Table I outlines the vehicle model parameters, control
settings, and fuzzy logic design, including vehicle

SIMULATION RESULTS AND DISCUSSION

characteristics, sampling details, predictive control
horizon, and controller gains for clarity and
reproducibility.

To assess the robustness and real-time performance of
the proposed NMPC controller, this study introduces three
metrics: lateral error (RMSE), computation time per
control step, and maximum overshoot during steering
transitions. Simulations were conducted under four road
conditions—straight roads, sharp curves, continuous
S-curves, and slippery surfaces—capturing challenges
from steady-state accuracy to abrupt curvature changes
and low tyre grip. Table II demonstrates that the NMPC
achieves sub-metre accuracy in most cases, with overshoot
and computation time remaining within 15 ms, thereby
proving its suitability for embedded deployment.
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TABLE I. SYSTEM PARAMETERS AND CONTROLLER SETTINGS

Category Parameter Value
Vehicle mass (m) 1450 kg
. Yaw inertia (/z) 2760 kg-m?
Vehicle Parameters Wheelbase (L) 275m
Cornering stiffness (Cf, Cr) 65000 N/rad
Sampling time (7s) 0.1s
Prediction horizon (V) 20
. Cost weight O diag([10, 10, 1, 0.5])
Control Settings Input penalty R 01
Terminal weight P same as Q
Prediction horizon () 20

[0.6, 0.08, 0.05]
Speed error, AError
Fuzzy output

Ky, Kiy Ka
Fuzzy input variables

Fuzzy Proportional AThrottle adjustment

Integral Derivative variables
(PID) Fuzzy rule base 77 Mamdani-type
matrix
Inference method Max—Min
Defuzzification Centroid

TABLE II. NMPC PERFORMANCE METRICS ACROSS DIFFERENT
DRIVING SCENARIOS

Max
. Lateral Avg. Computation
Scenario RMSE (m) Ove(xl“lsll)noot Time (ms)

Straight

Road 0.12 0.05 8.3

Sharp Curve 0.46 0.18 10.5

S-Curve 0.61 0.31 11.7
Slippery

Road (1]) 0.88 0.47 12.4

To evaluate the proposed control architecture, this study
conducted simulations comparing the NMPC controller
with a conventional PID controller across various
prediction horizons, emphasising tracking accuracy and
control smoothness under dynamic conditions from Fig. 9
to Fig. 12.

—==- Reference 6

0.6 —— NMPC (N =5)
5 —— NMPC (N = 10)
L 04 NMPC (N = 30)
S o2t
-
o
£ 0.0}
g
= —0.2}
[
()
in —-0.4}
_06 -
0 5 10 15 20 25
Time [s]

Fig. 9. Heading Angle y with different horizons.

Fig. 9 compares the heading angle y tracking across
three NMPC prediction horizons (N =5, 10, and 30) with
the reference trajectory. All configurations adhere to the
desired path with smooth, continuous responses. For
N = 10 and N = 30, the results closely align with the
reference, demonstrating high accuracy, whereas N = 5
exhibits a slight response delay beyond 25 metres due to
the shorter horizon. The RMSE is approximately 0.011 rad
for N =15, 0.006 rad for N = 10, and 0.004 rad for N = 30.
These results highlight that longer prediction horizons
enhance tracking precision and smoothness, particularly in
curvilinear paths.
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Fig. 10. Steering Input & with different horizons.

Fig. 10 presents the steering control inputs o(f)
generated by the NMPC controller under three different
prediction horizons (N = 5, 10, 30), compared with the
reference trajectory. Overall, all configurations exhibit
good conformity with the desired steering profile. The
response with N = 30 is the smoothest and most stable,
closely tracking the reference with minimal oscillation.
N =10 also performs well, albeit with slightly more ripple.
In contrast, N = 5 displays visible chattering and
high-frequency oscillations, particularly in the steady-state
region. Quantitatively, the maximum overshoot for N = 5
reaches approximately 0.53 rad, slightly exceeding the
reference of 0.5 rad, while the steady-state ripple
amplitudes are +0.035 rad for N = 5, £0.015 rad for
N = 10, and only +0.005 rad for N = 30. These results
confirm that a longer prediction horizon enhances control
smoothness and robustness, making N = 10 or N =30 more
suitable for accurate and high-speed applications.
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Fig. 11. Lateral position tracking.

Fig. 11 compares the steering control input 6(t) from the
NMPC and PID controllers against the reference
trajectory. The NMPC controller closely follows the
reference, exhibiting minimal overshoot and smooth
transitions. In contrast, the PID controller displays an
overly aggressive response, with the steering angle
reaching 1.5 rad—three times the reference value of
0.5 rad. Unlike the NMPC and reference signals, the PID
response lacks a plateau and takes the form of a sharp
parabola instead. This difference highlights the NMPC’s
capacity to generate accurate and smooth control signals,
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making it more suitable for real-time embedded vehicle
control.
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Fig. 12. Steering input comparison.

Fig. 12 compares the lateral position tracking of the
vehicle using NMPC and PID controllers against the
reference trajectory. NMPC closely follows the reference
path, maintaining a gradual lateral deviation within 0.2 m
throughout. In contrast, the PID controller shows
increasing deviation beyond 25 m, peaking at
approximately 0.45 m at the endpoint. This illustrates the
limitations of PID in correcting cumulative
path-following errors, while NMPC displays superior
adaptability to nonlinear curvature, ensuring more precise
and stable performance tracking.

B.  Assess the Effectiveness of the Integrated Vision-
Based Perception and the NMPC Controllers

The proposed hybrid control framework, which
combines a Fuzzy PID controller for longitudinal speed
regulation and an NMPC controller for lateral path
tracking, was assessed through simulation experiments.
These tests evaluated the system’s performance at
reference speeds of 5.0 m/s and 10.0 m/s, with a focus on
throttle control, velocity convergence, tracking accuracy,
and robustness. The Fuzzy PID controller adaptively
generated throttle commands for smooth speed
convergence, while the NMPC controller ensured lateral
stability and precise path tracking. The evaluation
emphasized four key aspects: throttle convergence, speed
tracking, lateral trajectory errors, and error metrics (RMSE
and MAE), providing a comprehensive analysis of the
system’s performance and limitations.

Vrer=5.0 m/s
Vrer=10.0 m/s
= = Reference throttle (5.0 m/s)

= = Reference throttle (10.0 m/s)
0.8

o
o

o
IS

0.2

Throttle

0.0

0 25 50 75 100 125 150 175 200
Time Step

Fig. 13. Throttle command behaviour under Fuzzy-PID.
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Fig. 13 shows the throttle commands of the Fuzzy PID
controller over time. Initially, at 1 of the throttle for quick
acceleration, the throttle drops sharply at veer = 10 m/s,
risking instability, but decreases gradually at
Vier =5 m/s for smoother control. Smoothing transitions via
deadband, filtering, or refined fuzzy rules can improve
stability and comfort. Adaptive fuzzy logic or
reinforcement learning can optimise control for changing
conditions. Monitoring throttle response helps tackle
issues like overshooting under varying weights or slopes.
Predictive control could further enhance stability by
anticipating dynamics. Balancing responsiveness with
smoothness ensures comfort and reduces strain.

Li et al. [20] found that while the Fuzzy PID controller
can stabilise velocity, it responds slowly, particularly at
higher reference speeds, which impacts performance in
scenarios such as stop-and-go traffic or urban navigation.
To address this, the researchers increased the gain
coefficients (K, K;,K;) and introduced a feedforward
control branch proportional to the reference velocity. This
combination improved the system’s responsiveness to
input changes while preserving stability through the Fuzzy
PID feedback. Fig. 14 shows the enhanced velocity
response, with the vehicle reaching target speeds of
5.0m/s and 10.0 m/s much faster, without oversteer or
oscillation. These results validate the feedforward-
enhanced tuning strategy in improving the longitudinal
response of the autonomous vehicle. The adjusted
coefficients K, K;, and K; are detailed in
Table II1.

The full control law of this hybrid velocity regulation
strategy can be expressed as Eq. (27):

de(t)

u(t) =Kp Xe(t)+Kife(t)+Kd XT

TABLE III. THE ADJUSTED COEFFICIENTS Kp, K, K4

Parameter Before tuning  After tuning
K, 0.4 0.8
K; 0.05 0.08
Ky 0.02 0.0
Output scaling gain 1.0 1.4
Fuzzy inference method Mamdani Mamdani
Defuzzification method Centroid Centroid
Rule base Tx7 77
10
sl
a ol
E®
Fol
o
S 41
< -=- Before: Vactuar = 5.0 m/s
-=- Before: vactwar = 10.0 m/s
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Fig. 14. Comparison of Fuzzy PID controller parameters before and
after tuning.
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Fig. 14 compares the velocity response before and after
applying fuzzy PID tuning and feedforward control.
Before tuning, the vehicle takes about 70 steps to
reach 5.0 m/s and 62 steps to reach 10.0 m/s, indicating a
slow and unsuitable convergence rate for responsive
autonomous driving. After implementing the enhanced
control strategy, these times dropped significantly to 28
and 34 steps, respectively. The response becomes smooth,
with no overshoot or oscillation, closely following the
reference velocity. This 60% reduction in convergence
time highlights how higher fuzzy gains combined with a
feedforward term effectively accelerate longitudinal
response while maintaining stability, crucial for real-time
control in dynamic urban settings.

To evaluates the proposed hybrid control system
through key simulations in three areas: (1) lateral
trajectory tracking with NMPC at different reference
speeds (Fig. 15), (2) longitudinal velocity response under
fuzzy PID control (Fig. 16), and (3) error metrics like
RMSE and MAE across scenarios (Fig. 17). The NMPC
controller’s performance is analysed at target speeds
of 5.0 m/s and 10.0 m/s using trajectory plots and error
assessments. Simultaneously, throttle response curves and
convergence analysis validate the fuzzy PID controller’s
speed regulation. RMSE and MAE metrics before and after
tuning are compared to highlight performance
improvements.

0.6
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05 0.46

0.42

o
»

o
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o
N
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0.0
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Fig. 15. RMSE and MAE comparison across reference speeds.

Fig. 15 displays the RMSE and MAE values for lateral
tracking following the tuning of the NMPC controller. At
a reference speed of 5.0 m/s, RMSE decreases to 0.46 m,
and MAE to 0.35m, representing a significant
improvement over previous errors that exceeded 7 m.
At 10.0m/s, RMSE and MAE decline to 0.53m
and 0.42m, remaining within acceptable limits for
autonomous path tracking in structured environments.

These enhancements validate the effectiveness of the
tuning strategy, which involved increasing lateral weights
in the Q matrix, extending the prediction horizon, and
adding delay compensation. The small gap between RMSE
and MAE indicates consistent tracking with minimal
deviations, affirming the tuned NMPC configuration’s
capability to provide precise and stable lateral guidance
across various speeds.
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Fig. 16. NMPC trajectory tracking at different speeds.

Fig. 16 compares the vehicle’s paths to the reference
trajectory at 5.0 m/s and 10.0 m/s. Both trajectories deviate
significantly in curved sections, but the 10.0 m/s
performance achieves a slightly lower RMSE of 7.31 m
compared to 7.60 m at 5.0 m/s, suggesting higher speeds
may improve tracking through increased responsiveness.
However, looping deviations indicate potential
overcorrection, likely due to a short prediction horizon or
suboptimal NMPC weight tuning. Improving tracking
accuracy may involve extending the NMPC horizon,
optimising the weighting matrices to address lateral and
heading errors better, and enhancing the lane detection
module. The plot underscores NMPC’s potential but
highlights the need for further adjustments to achieve
smoother, more precise path tracking.

Fig. 17 illustrates the vehicle’s speed response under
Fuzzy PID control, achieving 5.0 m/s in 29 steps and
10.0 m/s in 50 steps. The slower rise time at higher speeds
is due to increased acceleration demands. Despite this, the
controller ensures stability without overshoot or
oscillations, indicating firm damping. The delayed
response at 10.0 m/s suggests room for improvement.
Implementing speed-dependent fuzzy tuning could
enhance control during significant errors, while a
two-stage strategy—aggressive gains initially and
smoother adjustments near the setpoint—may improve rise
time and stability. Additionally, feedforward acceleration
could enable faster responses without compromising
robustness, enhancing the controller’s adaptability in
dynamic driving conditions.
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Fig. 17. The vehicle’s speed response under Fuzzy PID control.

C. Comparison with Benchmark Controllers

The proposed NMPC controller was evaluated against
two standard autonomous vehicle control strategies: the
LQR and the Pure Pursuit (PP) algorithm. The comparison
centred on trajectory tracking accuracy, control stability,
and computational feasibility, highlighting the benefits
and trade-offs of NMPC. While NMPC integrates
nonlinear prediction and constraint handling, both LQR
and PP are simpler and computationally faster.

Linear Quadratic Regulator (LQR) [21]: A
state-feedback controller for linear time-invariant
systems that minimises a quadratic cost function,
offering smooth and optimal control. It is
computationally efficient and easy to implement
but struggles with nonlinearities and constraints,
rendering it unsuitable for aggressive driving
scenarios.

Pure Pursuit (PP) [22]: A geometric path tracking
technique that computes steering angles based on
a lookahead point on the reference trajectory. It is
straightforward, quick, and easy to implement but
lacks dynamic modelling and predictive
capabilities, leading to overshooting and
instability in sharp turns or at high speeds.

All controllers were tested under the same simulation
conditions, including identical reference paths and vehicle
dynamics. The comparison was based on three key
metrics:

Lateral RMSE: Root Mean Square Error of path
tracking is shown in Fig. 18.

Maximum overshoot: Peak deviation from
reference during turning is expressed by Fig. 19.
Average computation time: The Time required per
control cycle is seen in Fig. 20.
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TABLE IV. THE COMPARATIVE RESULTS

Avg.
Lateral Max Overshoot
Controller Computation
RMSE (m) (m) Time (ms)
NMPC 0.46 0.18 10.5
LQR 0.75 0.32 1.6
Pure Pursuit 0.88 0.41 1.1

The comparative results, summarised in Table IV and
illustrated in Figs. 18 to 20, underscore the performance
trade-offs among NMPC, LQR, and Pure Pursuit
controllers. Fig. 18 demonstrates that NMPC achieves the
lowest lateral RMSE (0.46 m), indicating superior
trajectory tracking compared to LQR (0.75 m) and Pure
Pursuit (0.88 m). In terms of control stability, Fig. 19
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shows that NMPC also delivers the smallest maximum
overshoot (0.18 m), outperforming LQR (0.32 m) and Pure
Pursuit (0.41 m) when handling tight manoeuvres.
However, as presented in Fig. 20, NMPC incurs the
highest average computation time (10.5 ms per step), while
LQR and Pure Pursuit offer significantly lower
computational costs (1.6 ms and 1.1 ms, respectively).
These results highlight a clear trade-off between tracking
performance and computational efficiency: NMPC is
well-suited for high-precision autonomous driving
applications, whereas LQR and Pure Pursuit remain
attractive choices for real-time embedded systems with
limited processing resources.

VII. CONCLUSION AND FUTURE WORK

This study proposes a robust and adaptive control
framework for autonomous vehicles by integrating NMPC
with a Fuzzy PID controller and semantic lane inference
via UltraFast segmentation. The system enhances
trajectory tracking and velocity regulation across various
driving conditions. Incorporating UltraFast segmentation
into NMPC optimization improves road boundary
awareness and adaptability, while the
feedforward-enhanced Fuzzy PID controller ensures faster
convergence to target speeds with greater stability.
Simulations demonstrate notable improvements in
lane-keeping accuracy, speed response, and overall
robustness compared to controllers such as LQR and Pure
Pursuit. Future work will focus on expanding the system
with obstacle avoidance, adaptive fuzzy rule learning, and
real-time Hardware-In-the-Loop (HIL) implementation.
This approach exhibits strong potential for embedded

autonomous driving applications requiring safety,
precision, and real-time performance.
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