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Abstract—This paper presents a hybrid control framework 
for autonomous vehicles, combining semantic lane detection 
with a two-tier control approach: Nonlinear Model 
Predictive Control (NMPC) for lateral trajectory tracking 
and Fuzzy Proportional–Integral–Derivative (Fuzzy PID) 
control for longitudinal velocity management. Real-time 
visual data from the UltraFast segmentation network is 
integrated into the NMPC optimization, improving road 
boundary tracking in dynamic conditions. The fuzzy PID 
controller is optimally tuned and enhanced with a 
feedforward compensation branch to anticipate velocity 
changes, speeding up convergence while ensuring stability. 
Simulations across various velocity targets demonstrate 
rapid convergence, lateral stability, and reduced control 
effort. Compared to classical methods like Linear Quadratic 
Regulator (LQR) and Pure Pursuit (PP), the proposed system 
achieves superior tracking accuracy, robustness, and 
smoother control. Key contributions include incorporating 
UltraFast-based Lane segmentation into NMPC and using 
feedforward-enhanced Fuzzy PID for better speed 
regulation, offering a scalable and adaptive solution for 
intelligent vehicle control in structured settings. 

Keywords—vehicle control, Nonlinear Model Predictive 
Control (NMPC), Fuzzy Proportional Integral Derivative 
(Fuzzy PID), vision-based navigate 

I. INTRODUCTION

Safe and efficient navigation is a key goal in 
autonomous driving, and lane determination is essential 
for maintaining lateral stability and staying within road 
boundaries. In real-world scenarios, traditional 
lane-following algorithms, which rely on edge detection or 
handcrafted features, often falter due to occlusions, faded 
markings, or varying lighting conditions. These challenges 
highlight the need for robust perception-control integration 
in dynamic environments to ensure reliability. 
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To address these issues, this study proposes a hybrid 
control-perception framework that integrates a semantic.  

Segmentation-based vision module with a Nonlinear 
Model Predictive Control (NMPC) system. This approach 
enables the system to adapt to varying road conditions by 
embedding real-time visual data into the control loop, 
ensuring more precise trajectory tracking and improved 
speed regulation. This study introduces an integrated 
framework for autonomous lane tracking, combining 
efficient semantic segmentation with a NMPC.  

Key contributions of the study: 
 Seamless integration of perception and control:

Embeds semantic lane detection (UltraFast) within
the NMPC optimization, enabling real-time
adaptation to road geometry in dynamic
conditions.

 Hybrid control strategy: Combines NMPC for
lateral trajectory tracking with a fuzzy logic-based
Proportional Integral Derivative (PID) controller
for longitudinal speed regulation, improving
path-following accuracy and ride comfort.

 Improved responsiveness: Optimizes the fuzzy
PID controller with tuned gain parameters and a
feedforward term, achieving faster speed
convergence without sacrificing stability.

 Real-time viability: Demonstrates lightweight and
efficient simulation performance, suitable for
deployment on embedded hardware in real-time
autonomous systems.

 Superior performance: Outperforms standard
methods like Linear Quadratic Regulator (LQR)
and Pure Pursuit in lateral tracking accuracy
(lower Root Mean Square Error (RMSE)),
robustness (reduced overshoot), and
computational efficiency. The system is validated
through Python-based simulations under
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low-to-moderate speed scenarios (5.0 m/s and  
10.0 m/s), showing consistent lane-keeping, fast 
convergence to reference speeds, and improved 
tracking accuracy.  

The paper is structured as follows: Section Ⅱ reviews 
related work on perception-integrated and hybrid control 
strategies for autonomous vehicles. Section Ⅲ presents the 
vehicle’s kinematic and dynamic models as the basis for 
control design. Section Ⅳ describes the NMPC for lateral 
trajectory tracking. Section Ⅴ explains the semantic lane 
detection framework using the UltraFast segmentation 
network. Section Ⅵ covers the simulation setup, 
performance evaluation, and benchmarking against 
traditional controllers. Section Ⅶ concludes with a 
summary and directions for future research. 

II. RELATED WORK

Over the past decade, numerous control strategies have 
been investigated for autonomous vehicle navigation. 
Classical control methods such as PID controllers are 
widely used for their simplicity and real-time 
implementation capability [1]. However, PID controllers 
lack prediction capability and fail to manage constraints 
effectively, particularly in nonlinear dynamic 
environments [2]. 

To overcome these limitations, advanced model-based 
control methods like LQR [3] and Model Predictive 
Control (MPC) [4, 5] have gained popularity. While LQR 
optimizes control for linear systems, its performance 
deteriorates under nonlinear or time-varying dynamics. 
MPC, in contrast, anticipates future states over a prediction 
horizon and incorporates constraints, making it suitable for 
complex trajectory tracking, especially under real-world 
uncertainties [6, 7]. 

In parallel, lane detection has evolved from classical 
image processing techniques (e.g., Canny edge detection, 
Hough transforms) [8, 9] to deep learning-based semantic 
segmentation methods, such as ENet [10], SCNN [11] and 
Lane Net [12]. These models improve robustness to 
environmental variations but are often only used as 
perception front ends without integration into control 
loops. 

Recent studies have attempted to bridge perception and 
control. End-to-end deep learning approaches [13] directly 
map camera input to control commands, but they lack 
transparency and struggle with constraint handling. Hybrid 
approaches integrate semantic segmentation with MPC or 
rule-based control [14–19], though sensitivity to visual 
noise remains a challenge. This work enhances robustness 
and interpretability by combining a deep learning-based 
lane detection algorithm with a constrained NMPC 
controller, enabling real-time trajectory optimization 
based on reliable semantic inputs. The proposed 
framework leverages a state-of-the-art lane detection 
network to extract semantically rich lane boundaries, 
which are input for a NMPC module. This combination 
ensures precise trajectory tracking and preserves the 
ability to handle system constraints effectively, even in 
dynamically varying and uncertain environments. By 
incorporating learnable perception components and 

physics-based control in a tightly coupled manner, the 
framework addresses the limitations of standalone 
approaches in complex real-world scenarios. 

The lane detection algorithm is first trained on diverse 
datasets to generalize across varying lighting and weather 
conditions, ensuring robustness to visual noise such as 
shadows, road glare, and occlusions. The output of this 
perception module is then processed to produce lane 
boundary parameters mapped into the vehicle’s coordinate 
system. These parameters are fed into the NMPC 
formulation, where constraints—such as collision 
avoidance, curvature limitations, and actuator 
saturation—are embedded directly into the optimisation 
problem. 

The NMPC controller solves a constrained optimisation 
problem at every time step, leveraging the predicted 
vehicle dynamics and observation-driven guidance to 
determine control inputs, such as steering angle and 
throttle. The prediction horizon allows the controller to 
anticipate and compensate for nonlinearity-induced 
deviations, ensuring smooth and safe navigation. 
Combining interpretable perception with constraint-driven 
control, this layered approach provides a reliable 
alternative to fully opaque end-to-end pipelines, offering 
enhanced accountability and adaptability in safety-critical 
applications. 

III. LATERAL DYNAMIC MODEL OF AUTONOMOUS 

VEHICLE 

A. Linear Bicycle Model

The linear dynamic model of the vehicle is derived
based on a small-angle approximation and constant 
longitudinal velocity. Fig. 1 depicts the lateral dynamics 
model of the autonomous vehicle. It depicts the dynamic 
model of a car’s motion with an axle, illustrating the 
primary forces affecting the vehicle. It considers the 
vehicle coordinate system, which represents the vertical 
and horizontal directions within the vehicle frame. In 
contrast, the OXY coordinate system denotes the vertical 
and horizontal directions in the absolute reference system. 
Here, ψ signifies the rotation angle of the vehicle body in 
the OXY reference system. 

Fig 1. The lateral dynamics model of the autonomous vehicle. 
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By applying Newton’s Law principle, the differential 
equations governing the car’s motion in Fig. 1 can be 
derived as Eq. (1):  

 ቊ
𝑚ሺ𝑦ሷ ൅ 𝑉௫𝜓ሶ௬ሻ ൌ 𝐹௬௙ ൅ 𝐹௬௥

𝐼௥𝜓ሷ ൌ 𝐼௙𝐹௫௙ െ 𝐼௙𝐹௬௥
 (1) 

where m and 𝐼௥ are the vehicle mass and moment of inertia, 
respectively, 𝐼௥represent the vehicle’s mass and moment 
of inertia, respectively, 𝐹௬௙ ൅ 𝐹௬௥are the forces acting on 
the wheels in the x and y directions. 

Empirical research shows that a tire’s lateral force is 
directly proportional to its slide angle at moderate slip 
angles, a relationship known as “cornering stiffness”. This 
property is crucial for vehicle handling and stability during 
cornering. Manufacturers carefully design tires to optimize 
cornering stiffness, balancing traction, durability, and 
rolling resistance to achieve desired performance. 
Understanding and fine-tuning this characteristic allows 
engineers to enhance a vehicle’s handling dynamics for 
optimal performance. 

The slip angle of the tire is written as Eq. (2): 

 𝑎௙ ൌ 𝛿 െ 𝜃௩௙ (2) 

where 𝛿 is the front tire steering angle? 
The forces acting on the wheels in y directions for the 

rear and front tyre are calculated in Eq. (3). 

 ൜
𝐹௬௙ ൌ 2𝐶௔௙ሺ𝛿 െ 𝜃௩௙ሻ

𝐹௬௥ ൌ 2𝐶௔௥ሺെ𝜃௩௙ሻ  (3) 

where 𝐶௔௙, 𝐶௔௥ are cornering stiffness. 
And satisfy Eq. (4) 

 ൞
tan 𝜃௩௙ ൌ

௏೤ା௟೑టሶ

௏ೣ

tan 𝜃௩௥ ൌ
௏೤ି௟ೝటሶ

௏ೣ

 (4) 

If 𝜃௩௙ & 𝜃௩௥  are small, the equations in the figure 
describe the slip angles of the front and rear wheels in an 
autonomous vehicle’s kinematic or dynamic model. Slip 
angles represent the deviation between the direction of 
wheel motion and the wheel heading, essential for 
analyzing lateral vehicle dynamics and designing 
advanced control systems. These are calculated by Eq. (5): 

 ൞
𝜃௩௙ ൌ

௬ାሶ ௟೑టሶ

௏ೣ

𝜃௩௥ ൌ
௬ሶ ି௟ೝటሶ

௏ೣ

 (5) 

The forces exerted on the rear and front tyres in the 
vertical direction are computed by Eq. (6). 

 ൞
𝐹௬௙ ൌ 2𝐶௔௙ሺ𝛿 െ

௬ାሶ ௟೑టሶ

௏ೣ
ሻ

𝐹௬௥ ൌ 2𝐶௔௥ሺെ
௬ሶ ି௟ೝటሶ

௏ೣ
ሻ

 (6) 

The dynamic model of the autonomous vehicle is 
rewritten as Eqs. (7) and (8): 

 𝑦ሷ ൅ 𝑉௫𝜓 ൌሶ
ଶ஼ೌ೑ఋ

௠
െ

ଶ஼ೌ೑ሺ௬ାሶ ௟೑టሶ ሻ

௠௏ೣ
െ

ଶ஼ೌೝሺ
೤ሶ ష೗ೝഗሶ

ೇೣ
ሻ

௠௏ೣ
 (7) 

 𝑦ሷ ൌ
௟೑

ூೝ
ሺ2𝐶௔௙𝛿 െ ൬

ଶ஼ೌ೑൫௬ାሶ ௟೑టሶ ൯

௏ೣ
൰ ൅

௟೑

ூೝ

ଶ஼ೌೝఋ൫௬ାሶ ௟ೝటሶ ൯

௏ೣ
 (8) 

Eqs. (7) and (8) are rewritten as Eqs. (9) and (10): 

 𝑦ሷ ൌ
ଶ஼ೌ೑ఋ

௠
െ

ଶ൫஼ೌ೑ା஼ೌೝ൯

௠௏ೣ
𝑦ሶ െ ሺ𝑉௫ ൅

ଶሺ஼ೌ೑௟೑ି஼ೌೝ௟ೝሻ

௠௏ೣ
ሻ𝜓ሶ   (9) 

 𝑦ሷ ൌ
௟೑ଶ஼ೌ೑ఋ

ூೝ
െ

ଶ൫஼ೌ೑ ௟೑ି ஼ೌೝ௟ೝ൯

ூ೥௏ೣ
𝑦ሶ െ

ଶቀ஼ೌ೑ ௟೑
మି ஼ೌೝ௟ೝ

మቁ

ூ೥௏ೣ
𝜓ሶ  (10) 

The dynamic state-space model of the autonomous 
vehicle is rewritten as Eq. (11)  

ௗ

ௗ௧
൞

𝑦
𝑦ሶ
𝜓
𝜓ሶ

ൢ ൌ

⎣
⎢
⎢
⎢
⎢
⎡0
0
0
0

1
 ି ଶ൫஼ഀ೑ା஼ഀೝ൯ 

௠.௏೘

0
 ି ଶ൫஼ഀ೑௟೑ା஼ഀೝ௟ೝ൯ 

ூ೥.௏ೣ

0
0
0
0

 0
 ି ଶ൫஼ഀ೑௟೑ା஼ഀೝ௟ೝ൯ 

ூ೥.௏ೣ

1
 ି ଶቀ஼ഀ೑௟೑

మା஼ഀೝ௟ೝ
మቁ 

ூ೥.௏ೣ ⎦
⎥
⎥
⎥
⎥
⎤

൞

𝑦
𝑦ሶ
𝜓
𝜓ሶ

ൢ

൅

⎣
⎢
⎢
⎢
⎡

0
ଶ஼ഀ೑

௠
0

ଶ஼ഀೝ௟ೝ

ூ೥ ⎦
⎥
⎥
⎥
⎤

𝛿

     (11) 

where: 𝑦 : lateral displacement; 𝜓 : heading angle; m: 
vehicle mass; 𝐼௭ is a moment of inertial; 𝑙௙, 𝑙௥ are distances 
from to center front and rear axles; 𝐶ఈ௥, 𝐶ఈ௙ : cornering 
stiffness coefficients; 𝛿:steering angle input. 

This model is widely used in control algorithms, such as 
linear MPC. However, this control method is simple and 
effective in low-speed scenarios.  

B. Nonlinear Kinematic Model 

The nonlinear model of the lateral dynamics of an 
autonomous vehicle is commonly based on the bicycle 
model, which approximates the car with a single front and 
rear wheel. This model captures the key dynamics, 
including longitudinal, lateral 𝑣௬ , and yaw rate lateral 
position error 𝑒ଵ (cross-track error) and heading error 𝑒ଶ. 
The nonlinear equations of motion are given as Eq. (12): 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑣௫ሶ ൌ

ଵ

௠
൫𝐹௫௙𝑐𝑜𝑠𝛿 െ 𝐹௬௙𝑠𝑖𝑛𝛿 ൅ 𝐹௫௥൯ ൅ 𝑣௬𝜔

𝑣௬ሶ ൌ
ଵ

௠
൫𝐹௬௙𝑐𝑜𝑠𝛿 ൅ 𝐹௫௙𝑠𝑖𝑛𝛿 ൅ 𝐹௬௥൯ െ 𝑣௫𝜔

𝜔ሶ ൌ
ଵ

ூ೥
ሺ𝑙௙𝐹௬௙𝑐𝑜𝑠𝛿 ൅ 𝑙௙𝐹௫௙𝑠𝑖𝑛𝛿 െ 𝑙௥𝐹௬௙ሻ

𝑒ଵሶ ൌ 𝑣௬ ൅ 𝑣௫ sinሺ𝑒ଶሻ

𝑒ଶሶ ൌ 𝜔 െ
௩ೣ ୡ୭ୱሺ௘మሻି௩೤ୱ୧୬ ሺ௘భሻ

ோ

 (12) 

where 𝐹௫௙, 𝐹௫௥ : Longitudinal forces are on the front and 
rear tire, and lateral forces are on the front and rear tyre. 
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This nonlinear model accurately describes vehicle 
behaviour at high speeds or during aggressive manoeuvres, 
where tyre slips occur, and nonlinearities become 
significant. 

C.  Vehicle Steering Angle and Vehicle Speed 

Based on the research in Ref. [10], the relationship 
between steering angle and vehicle speed in a steering 
control system is analyzed in Fig. 2. The Y-axis represents 
the steering angle in degrees. At the same time, the X-axis 
corresponds to vehicle speed or time. The black dashed 
and dash-dot lines indicate the steering angle limits at each 
speed, and the blue dashed line shows the actual steering 
angle, which remains within these limits. At low speeds, 
the system allows larger steering angles of up to ±45 
degrees for better manoeuvre ability, while at higher 
speeds, the limits narrow to about ±23 degrees to enhance 
stability and prevent rollover. The actual steering angle 
also demonstrates reduced amplitude and oscillations at 
higher speeds, reflecting smoother and more stable 
steering. 

 

 
Fig. 2. Vehicle steering angle and vehicle speed. 

The relationship between steering angle and vehicle 
speed is crucial in designing control systems for 
autonomous vehicles. Higher speeds require reduced 
steering angles to maintain stability and prevent rollover. 
Model Predictive Control (MPC) integrates this 
relationship as a dynamic constraint to ensure safe and 
feasible steering actions. MPC calculates optimal steering 
commands within speed-dependent limits, while a  
low-level PID controller accurately and quickly executes 
these commands. Lane boundaries are detected, and 
desired trajectories are generated via image processing 
modules, which feed into the MPC. Incorporating the 
speed-steering constraint across both MPC and PID layers 
ensures smooth, safe, and adaptive steering under varying 
conditions. 

D. Model Selection Basis for NMPC controller 

Selecting an appropriate vehicle model is crucial for the 
accuracy and performance of a NMPC. The two main 
approaches are the linearised vehicle model and the 
nonlinear bicycle model. Linear models, often used in 
embedded applications, provide computational efficiency 
near a fixed operating point. However, at high speeds and 

large steering angles, their assumptions fail, causing 
significant prediction errors and reduced reliability. This 
study compares the two models in typical  
scenarios—gentle and sharp curves, as well as S-shaped 
roads—using the RMSE as the performance metric. To 
evaluate the accuracy of vehicle dynamic models for 
NMPC controller design, three simulation scenarios were 
developed to represent typical driving conditions with 
varying curvature, speed, and steering nonlinearity: 

 Scenario 1: Gentle Curve—assesses performance 
under near-linear conditions.   

 Scenario 2: Sharp Turn—evaluates robustness in 
highly nonlinear dynamics.  

 Scenario 3: Continuous S-Curve—examines 
adaptability and stability in complex, rapidly 
changing manoeuvres.  

Three simulation scenarios were designed to compare 
trajectory tracking in linear and nonlinear models, as 
shown below. The figures depict an autonomous vehicle 
following a reference trajectory under increasing curvature 
and steering frequency. The dashed blue line represents the 
linear model, while the solid red line represents the 
nonlinear model. 

 

 
Fig. 3. Tracking results for the continuous Gentle curve scenario. 

The first scenario in Fig. 3 features a gentle curve with 
a large 100-metre turning radius. The vehicle travels at a 
constant speed of 10 m/s with a steering angle below 5, 
simulating low-curvature highway conditions where 
dynamics remain linear. This case evaluates the prediction 
accuracy of linear and nonlinear models under near-linear 
conditions. 

 

 
Fig. 4. Tracking results for the continuous Sharp-curve scenario. 
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The second scenario in Fig. 4 involves a sharp 25-metre 
radius turn, with the vehicle moving at 8 m/s and a steering 
angle exceeding 15. It tests model performance in highly 
nonlinear conditions where stability is more challenging 
and linear assumptions no longer hold. 

 

 
Fig. 5. Tracking results for the continuous S-curve scenario. 

The third scenario in Fig. 5 presents an S-curve with 
alternating left and right turns. The vehicle’s speed varies 
between 8 m/s and 12 m/s, mimicking real-world throttle 
changes. This scenario challenges models with rapid 
steering transitions and varying curvature, assessing their 
adaptability and stability under high-frequency nonlinear 
dynamics. 

Simulation results across three representative driving 
scenarios demonstrate that the nonlinear model 
consistently outperforms the linear counterpart in both 
tracking accuracy and robustness. While the linear model 
performs adequately in near-linear conditions, it suffers 
from significant overshoot and tracking errors under 
strong curvature or rapid steering changes. In contrast, the 
nonlinear model maintains stability and closely follows the 
reference trajectory across all conditions. To quantify this 
performance gap, Fig. 6 compares the RMSE values of 
both models in each scenario. 

 

 
Fig. 6. MSE comparison between linear and nonlinear models across 

three driving scenarios. 

The RMSE results in Fig. 6 demonstrate the superior 
prediction accuracy of the nonlinear model across all 
scenarios. In the gentle curve case, it reduces RMSE  
by 26% compared to the linear model, while in the sharp 
turn and S-curve scenarios, it achieves reductions of 73% 

and 74%, respectively. These improvements demonstrate 
the robustness and suitability of the nonlinear model for 
trajectory prediction in advanced control strategies, such 
as NMPC, particularly in high-curvature or dynamic 
scenarios. 

IV. NMPC CONTROL ARCHITECTURE  

The proposed control framework combines deep 
learning-based perception with robust tube-based NMPC 
to ensure precise and adaptive lane following in dynamic, 
uncertain road conditions. As shown in Fig. 1, a  
front-facing camera captures real-time video, processed by 
a semantic segmentation network (ENet or UltraFast) to 
identify lane markings. A perspective transform and 
polynomial fitting module refines these detections into a 
top-down road view. Spatial corridor constraints are 
generated using the lane boundaries to ensure safe lane 
motion. The reference trajectory, including the road 
centerline and heading angle, is calculated and fed to the 
NMPC controller. Simultaneously, tube constraints, 
representing time-varying bounds around the reference 
trajectory, are introduced to handle disturbances and 
uncertainties. The NMPC optimizes control actions 
(steering angle and velocity) to keep the vehicle within the 
defined safe corridor. A vehicle motion model (e.g., 
bicycle model) closes the feedback loop, enabling  
real-time adaptation and accurate, safe trajectory tracking 
across varied conditions.  

A. Perception and Lane Detection 

A front-facing monocular camera uses a lightweight 
ENet semantic segmentation network to process real-time 
road images and detect lane markings by Eq. (13): 

 𝐼௦ ൌ ΓE𝑁𝑒𝑡ሺ𝐼௥ ሻ (13) 

where: 
𝐼௥ : the input RGB image; 
𝐼௦ : Representing the segmented lane road. 

Inverse Perspective Mapping (IPM) converts the output 
into a bird’s-eye view to eliminate projective distortion. 

B. Lane Geometry Extraction 

Two third-order polynomial equations define the Left 
(L) and Right (R) lane boundaries in vehicle coordinates, 
which are crucial for lane tracking. Their coefficients, 
derived from curve fitting sensor-detected points, adjust to 
changing road conditionns in real-time. The polynomial 
coefficients are derived via regression from the processed 
image (ENet + Bird’s Eye View) according to the 
algorithm shown in Fig. 7. This adaptation ensures 
accurate lane modelling, improving lane-following, path 
planning, and collision avoidance in complex driving 
scenarios as Eqs. (14) and (15): 

 𝐿ሺ𝑥ሻ ൌ 𝑎௅𝑥ଷ ൅ 𝑏௅𝑥ଶ ൅ 𝑐௅𝑥 ൅ 𝑑௅ (14) 

 𝑅ሺ𝑥ሻ ൌ 𝑎ோ𝑥ଷ ൅ 𝑏ோ𝑥ଶ ൅ 𝑐ோ𝑥 ൅ 𝑑ோ (15) 
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Fig. 7. The tube-based NMPC with ENet-based lane constraints. 

C. Reference Path Generation 

The centerline is the set of points equidistant from the 
boundaries, typically obtained through a medial axis 
transformation or similar geometric method, ensuring 
symmetry and serving as a reference for analysis, design, 
or optimization of the structure or pathway. The centerline 
is computed as Eq. (16): 

 𝑦௥௘௙ ൌ
௅ሺ௫ሻାோሺ௫ሻ

ଶ
 (16) 

The centerline reflects a shape’s intrinsic geometry, 
supporting tasks like flow simulation, stress analysis, and 
navigation planning. Its accuracy ensures consistency, 
bridging theoretical models with practical applications, as 
referenced in Eq. (17): 

 𝜓௥௘௙ ൌ 𝑡𝑎𝑛ିଵ ௗ௬ೝ೐೑

ௗ௫
 (17) 

The reference path 𝑥௥௘௙ ൌ ቂ𝑥, 𝑦௥௘௙,టೝ೐೑
ቃ  defines the 

system’s desired position and orientation over time. It is 
typically designed to meet objectives such as minimizing 
travel time, optimizing energy use, or ensuring safety. The 
control system continuously adapts to minimize deviations 
and maintain alignment with this path.  

D. Tube and Corridor Constraints for Robust Path 
Tracking 

To achieve robust and safe trajectory tracking, the 
controller employs two types of constraints: tube 
constraints and corridor constraints. 

Tube constraints define a time-varying allowable 
deviation radius ∈௞ around the reference trajectory. This 
enables the vehicle to tolerate bounded tracking errors 
resulting from model mismatch, external disturbances, or 
sensor noise. Mathematically, these soft constraints are 
applied at each prediction step k as Eq. (18): 

 ฮ𝑥ሺ𝑘ሻ െ 𝑥௥௘௙ሺ𝑘ሻฮ ൑∈௞ (18) 

The tube functions as a “confidence band” around the 
planned trajectory, enabling the NMPC to recover from 
disturbances while maintaining feasibility and 
performance.  

Corridor constraints, by contrast, are spatial boundaries 
that define the allowable driving region, such as lane limits 
or road boundaries detected from vision. These constraints 
are formulated as hard conditions in the NMPC problem to 
ensure the vehicle does not breach safety margins in  
Eq. (19): 

 𝑥ሺ𝑘ሻ ∈ ∁௞ (19) 

∁௞  is the viable corridor derived from real-time 
perception, ensuring that the planned trajectory remains 
within lane boundaries and avoids static obstacles. By 
integrating tube constraints (soft bounds for robustness) 
with corridor constraints (hard spatial limits), the NMPC 
can balance safety, robustness, and flexibility in path 
tracking. 

E. Tube-Based NMPC Optimization 

The controller minimizes a cost function over a 
prediction horizon (N) as Eq. (20): 

𝐽 ൌ ∑ ሾ൫𝑥௞ െ 𝑥௞௥௘௙൯
்

𝑄൫𝑥௞ െ 𝑥௞௥௘௙൯
൅𝑢௞்𝑃 △ 𝑢௞ሿ

ே
௞ୀ଴               (20) 

where: 
𝑥௞: predicted vehicle state at step k. 
𝑥௞௥௘௙ : reference trajectory derived from ENet lane 

detection. 
𝑢௞்𝜖𝑅௠: control input (speed, steering). 
△ 𝑢௞ ൌ 𝑢௞ െ 𝑢௞ିଵ: control rate. 
Q > 0: tracking error weight. 
R > 0: control effort weight. 
P > 0: control rate smoothing weight. 
The NMPC controller minimizes a cost function to:   
 Minimize lane center deviations. 
 Limit control magnitudes (speed, steering angle). 
 Smooth control transitions. 
 Anticipate and adapt to dynamic driving scenarios 

like lane changes or obstacles. 
 Optimize passenger comfort by reducing abrupt 

acceleration or sharp steering actions.  
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 Ensure adherence to road constraints and maintain 
safe distances from other vehicles. 

Vehicle dynamics using the kinematic Ackerman robot 
model as 𝑣௫ሶ , 𝑣௬ሶ ; 𝜔ሶ   

Control constraints as Eq. (21): 

 𝑣௠௜௡ ൑ 𝑣௞ ൑ 𝑣௠௔௫; |𝛿௞| ൑ 𝛿௠ ௔௫ሺ𝑣௞ሻ] (21) 

Corridor constraints as Eq. (22): 

 𝑦௞𝜖ሾ𝐿ሺ𝑥௞ሻ ൅ 𝜀, 𝑅ሺ𝑥௞ሻ െ 𝜀ሿ (22) 

Using a receding-horizon approach, the controller 
solves the constrained optimization over N, generating an 
optimal control sequence. Only the first control action is 
applied while the process repeats as the horizon advances. 

Efficient solvers, e.g., quadratic programming, handle 
constraints and linearised dynamics. Key factors: Horizon 
(N) (tradeoff between anticipation and computation) and 
weights (Q, R, P- balance tracking, energy, and 
smoothness), enabling safe, efficient, real-time vehicle 
navigation. 

The improved NMPC controller applies only the first 
control signal 𝑢଴∗  at each step (receding horizon).  
Real-time positioning and visual feedback update the 
vehicle’s state for the next cycle. This ensures safe, smooth 
lane tracking even in uncertain environments and 
demonstrates the effectiveness of the MPC with a NMPC 
for stability and quick adaptation to real-world changes. 
Using only the first control signal reduces computational 
load and enhances system flexibility in unexpected 
situations. Additionally, integrating real-time sensors like 
cameras and Lidar optimises sensing and positioning, 
enabling precise responses to obstacles or lane changes. 

V. VISION-BASED LANE DETECTION AND HYBRID 

CONTROL STRATEGY 

A. Vision-Based Lane Detection and Trajectory 
Generation 

UltraFast Lane Detection is a real-time, lightweight 
deep learning method for efficient autonomous driving. 
Unlike traditional models like ENet or LaneNet, which use 
pixel-wise lane masks, it treats lane detection as a  
row-wise anchor point regression task, directly predicting 
lane coordinates. This approach simplifies processing, 
increases frame rates, and adapts to various driving 
conditions. Its compact architecture minimizes input 
resolution needs without compromising accuracy, making 
it ideal for resource-limited systems. Efficient  
post-processing ensures reliable performance under 
challenges like occlusions and poor lighting, enabling fast 
and accurate real-time deployment. 

The model divides the input image into horizontal rows, 
predicting x-coordinates where lanes intersect. Lane points 
are classified into discrete columns and trained using 
categorical cross-entropy. The points are refined with 
polynomial fitting to create a continuous trajectory for 
motion planning. Fig. 8 illustrates the autonomous 
vehicle’s integrated lane perception and control system. 

The process starts with a resized front camera image 
analyzed using a lightweight ResNet-18 backbone to 
extract spatial features. UltraFast models lane detection as 
a row-wise classification task, predicting column positions 
for lanes, resulting in discrete points. Guided by 
categorical cross-entropy loss, these points are smoothed 
into a continuous centerline trajectory via polynomial 
curve fitting, which serves as the reference path for the 
NMPC controller. 

 

 
Fig. 8. Integrated lane perception and control block diagram for autonomous car. 

B. Hybrid Lateral-Longitudinal Cooperative Control 
Strategy 

This autonomous driving system combines UltraFast 
Lane Detection, NMPC for steering, and Fuzzy-PID 
control for speed regulation. This autonomous driving 
system integrates UltraFast Lane Detection, Nonlinear 
NMPC for steering, and Fuzzy-PID control for speed 
regulation.  

The process begins with a resized front camera image 
processed through a lightweight ResNet-18 backbone to 
extract spatial features. UltraFast models lane detection as 
a row-wise classification task, predicting column positions 
𝑥௜௝ For each lane at the horizontal row 𝑦௜௝𝑡𝑖𝑚𝑒, resulting 
in discrete lane points as Eq. (23): 

 𝐿𝑎𝑛𝑒௜ ൌ ሼሺ𝑥௜௝,𝑦௜௝ሻሽ௝ୀଵ
ே  (23) 

Categorical cross-entropy loss supervises these outputs 
for each anchor row as Eq. (24): 

ℒ௟௔௡௘ ൌ ∑ 𝑖 ൌ 1஼ ∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ሺ𝑥௜௝
௣௥௘ௗ, 𝑥௜௝

௚௧ ሻே
௃ୀଵ  (24) 

A polynomial curve fits these points to form a smooth 
centerline trajectory, which is used as the reference path 
for the NMPC controller. The NMPC optimizes the 
vehicle’s heading angle δ over a prediction horizon, 
adhering to vehicle kinematics and constraints as Eq. (25): 

 𝐽 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ሾฮ𝑥௞ െ 𝑥௞௥௘௙ฮ
ொ

ଶ
𝛿ோ

ଶሿே
௞ୀ଴  (25) 

where: 
𝑥௞: State vector at time k. 
𝑥௞௥௘௙: Reference state at time k. 
𝑥௞௥௘௙k: Control (steering angle) at time k. 
Q, R: Weight matrices (positive semi-definite). 
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Parallelly, a Fuzzy-PID speed controller computes the 
speed control signal u(t) by adjusting the PID gains via 
fuzzy logic based on error and its rate of change as  
Eq. (26): 

 𝑢ሺ𝑡ሻ ൌ 𝐾௣ ൈ 𝑒ሺ𝑡ሻ ൅ 𝐾௜ ׬ 𝑒ሺ𝑡ሻ ൅ 𝐾ௗ ൈ
ௗ௘ሺ௧ሻ

ௗ௧
 (26) 

The dual-control framework efficiently manages road 
curvature and dynamic uncertainties by integrating NMPC 
for precise trajectory tracking and fuzzy-PID for adaptive 
speed control. The Vehicle Control Execution Module 
generates real-time steering and throttle/brake commands 
optimized for embedded platforms like Jetson Xavier, 
ensuring dependable lane following and speed regulation 
in dynamic environments. In addition, the ultraFast 
achieves outstanding performance, surpassing 300 FPS 
with ResNet-18 while maintaining high accuracy,  
with 96.4% on TuSimple and a 76.2% F1-Score on 
CULane. 

VI. SIMULATION RESULTS AND DISCUSSION 

A. Evaluate the Performance of the NMPC Controller 

To ensure transparency and reproducibility, this section 
clarifies the tuning procedure for the controller parameters. 
The NMPC weight matrices Q and R were selected through 
iterative trial-and-error during closed-loop simulations, 
balancing trajectory tracking accuracy with control effort. 
The terminal cost matrix P was set equal to the discrete-
time solution of the Riccati equation for the linearised 
system at the operating point. For the fuzzy PID controller, 
the scaling gains (Kp, Ki, Kd) and the fuzzy rule base were 
also tuned empirically. Although no formal optimisation 
algorithms were employed, the tuning process prioritised 
minimising overshoot, improving settling time, and 
ensuring robust steady-state performance. Future research 
will consider metaheuristic approaches such as Genetic 
Algorithms or Particle Swarm Optimisation to 
systematically automate the tuning process and further 
enhance performance. 

Table Ⅰ outlines the vehicle model parameters, control 
settings, and fuzzy logic design, including vehicle 
characteristics, sampling details, predictive control 
horizon, and controller gains for clarity and 
reproducibility. 

To assess the robustness and real-time performance of 
the proposed NMPC controller, this study introduces three 
metrics: lateral error (RMSE), computation time per 
control step, and maximum overshoot during steering 
transitions. Simulations were conducted under four road 
conditions—straight roads, sharp curves, continuous  
S-curves, and slippery surfaces—capturing challenges 
from steady-state accuracy to abrupt curvature changes 
and low tyre grip. Table Ⅱ demonstrates that the NMPC 
achieves sub-metre accuracy in most cases, with overshoot 
and computation time remaining within 15 ms, thereby 
proving its suitability for embedded deployment. 

 
 

TABLE Ⅰ. SYSTEM PARAMETERS AND CONTROLLER SETTINGS 

Category Parameter Value 

Vehicle Parameters 

Vehicle mass (m) 1450 kg 
Yaw inertia (Iz) 2760 kgꞏm² 
Wheelbase (L) 2.75 m 

Cornering stiffness (Cf, Cr) 65000 N/rad 

Control Settings 

Sampling time (Ts) 0.1 s 
Prediction horizon (N) 20 

Cost weight Q diag([10, 10, 1, 0.5]) 
Input penalty R 0.1 

Terminal weight P same as Q 
Prediction horizon (N) 20 

Fuzzy Proportional 
Integral Derivative 

(PID) 

Kp, Ki, Kd [0.6, 0.08, 0.05] 
Fuzzy input variables Speed error, ΔError 

ΔThrottle adjustment 
Fuzzy output 

variables 

Fuzzy rule base 
7×7 Mamdani-type 

matrix 
Inference method Max–Min 
Defuzzification Centroid 

TABLE Ⅱ. NMPC PERFORMANCE METRICS ACROSS DIFFERENT 

DRIVING SCENARIOS 

Scenario 
Lateral 

RMSE (m) 

Max 
Overshoot 

(m) 

Avg. Computation 
Time (ms) 

Straight 
Road 

0.12 0.05 8.3 

Sharp Curve 0.46 0.18 10.5 
S-Curve 0.61 0.31 11.7 
Slippery 

Road (μ↓) 
0.88 0.47 12.4 

 
To evaluate the proposed control architecture, this study 

conducted simulations comparing the NMPC controller 
with a conventional PID controller across various 
prediction horizons, emphasising tracking accuracy and 
control smoothness under dynamic conditions from Fig. 9 
to Fig. 12.  

 

 
Fig. 9. Heading Angle ψ with different horizons. 

Fig. 9 compares the heading angle ψ tracking across 
three NMPC prediction horizons (N = 5, 10, and 30) with 
the reference trajectory. All configurations adhere to the 
desired path with smooth, continuous responses. For  
N = 10 and N = 30, the results closely align with the 
reference, demonstrating high accuracy, whereas N = 5 
exhibits a slight response delay beyond 25 metres due to 
the shorter horizon. The RMSE is approximately 0.011 rad 
for N = 5, 0.006 rad for N = 10, and 0.004 rad for N = 30. 
These results highlight that longer prediction horizons 
enhance tracking precision and smoothness, particularly in 
curvilinear paths. 
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Fig. 10. Steering Input δ with different horizons. 

Fig. 10 presents the steering control inputs δ(t) 
generated by the NMPC controller under three different 
prediction horizons (N = 5, 10, 30), compared with the 
reference trajectory. Overall, all configurations exhibit 
good conformity with the desired steering profile. The 
response with N = 30 is the smoothest and most stable, 
closely tracking the reference with minimal oscillation.  
N = 10 also performs well, albeit with slightly more ripple. 
In contrast, N = 5 displays visible chattering and  
high-frequency oscillations, particularly in the steady-state 
region. Quantitatively, the maximum overshoot for N = 5 
reaches approximately 0.53 rad, slightly exceeding the 
reference of 0.5 rad, while the steady-state ripple 
amplitudes are ±0.035 rad for N = 5, ±0.015 rad for  
N = 10, and only ±0.005 rad for N = 30. These results 
confirm that a longer prediction horizon enhances control 
smoothness and robustness, making N = 10 or N = 30 more 
suitable for accurate and high-speed applications. 

 

 
Fig. 11. Lateral position tracking. 

Fig. 11 compares the steering control input δ(t) from the 
NMPC and PID controllers against the reference 
trajectory. The NMPC controller closely follows the 
reference, exhibiting minimal overshoot and smooth 
transitions. In contrast, the PID controller displays an 
overly aggressive response, with the steering angle 
reaching 1.5 rad—three times the reference value of 
0.5 rad. Unlike the NMPC and reference signals, the PID 
response lacks a plateau and takes the form of a sharp 
parabola instead. This difference highlights the NMPC’s 
capacity to generate accurate and smooth control signals, 

making it more suitable for real-time embedded vehicle 
control. 

 

 
Fig. 12. Steering input comparison. 

Fig. 12 compares the lateral position tracking of the 
vehicle using NMPC and PID controllers against the 
reference trajectory. NMPC closely follows the reference 
path, maintaining a gradual lateral deviation within 0.2 m 
throughout. In contrast, the PID controller shows 
increasing deviation beyond 25 m, peaking at 
approximately 0.45 m at the endpoint. This illustrates the 
limitations of PID in correcting cumulative  
path-following errors, while NMPC displays superior 
adaptability to nonlinear curvature, ensuring more precise 
and stable performance tracking. 

B. Assess the Effectiveness of the Integrated Vision-
Based Perception and the NMPC Controllers 

The proposed hybrid control framework, which 
combines a Fuzzy PID controller for longitudinal speed 
regulation and an NMPC controller for lateral path 
tracking, was assessed through simulation experiments. 
These tests evaluated the system’s performance at 
reference speeds of 5.0 m/s and 10.0 m/s, with a focus on 
throttle control, velocity convergence, tracking accuracy, 
and robustness. The Fuzzy PID controller adaptively 
generated throttle commands for smooth speed 
convergence, while the NMPC controller ensured lateral 
stability and precise path tracking. The evaluation 
emphasized four key aspects: throttle convergence, speed 
tracking, lateral trajectory errors, and error metrics (RMSE 
and MAE), providing a comprehensive analysis of the 
system’s performance and limitations. 

 

 
Fig. 13. Throttle command behaviour under Fuzzy-PID. 
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Fig. 13 shows the throttle commands of the Fuzzy PID 
controller over time. Initially, at 1 of the throttle for quick 
acceleration, the throttle drops sharply at vref = 10 m/s, 
risking instability, but decreases gradually at  
vref = 5 m/s for smoother control. Smoothing transitions via 
deadband, filtering, or refined fuzzy rules can improve 
stability and comfort. Adaptive fuzzy logic or 
reinforcement learning can optimise control for changing 
conditions. Monitoring throttle response helps tackle 
issues like overshooting under varying weights or slopes. 
Predictive control could further enhance stability by 
anticipating dynamics. Balancing responsiveness with 
smoothness ensures comfort and reduces strain. 

Li et al. [20] found that while the Fuzzy PID controller 
can stabilise velocity, it responds slowly, particularly at 
higher reference speeds, which impacts performance in 
scenarios such as stop-and-go traffic or urban navigation. 
To address this, the researchers increased the gain 
coefficients ( 𝐾௣, 𝐾௜, 𝐾ௗ ) and introduced a feedforward 
control branch proportional to the reference velocity. This 
combination improved the system’s responsiveness to 
input changes while preserving stability through the Fuzzy 
PID feedback. Fig. 14 shows the enhanced velocity 
response, with the vehicle reaching target speeds of 
5.0 m/s and 10.0 m/s much faster, without oversteer or 
oscillation. These results validate the feedforward-
enhanced tuning strategy in improving the longitudinal 
response of the autonomous vehicle. The adjusted 
coefficients Kp, Ki, and Kd are detailed in  
Table Ⅲ. 

The full control law of this hybrid velocity regulation 
strategy can be expressed as Eq. (27): 

𝑢ሺ𝑡ሻ ൌ 𝐾௣ ൈ 𝑒ሺ𝑡ሻ ൅ 𝐾௜ ׬ 𝑒ሺ𝑡ሻ ൅ 𝐾ௗ ൈ
ௗ௘ሺ௧ሻ

ௗ௧
൅ 𝑘௙௙. 𝑣௥௘௙ሺ𝑡ሻ(27) 

TABLE Ⅲ. THE ADJUSTED COEFFICIENTS 𝐾௣, 𝐾௜, 𝐾ௗ 

Parameter Before tuning After tuning 
𝐾௣ 0.4 0.8 
𝐾௜ 0.05 0.08 
𝐾ௗ 0.02 0.0 

Output scaling gain 1.0 1.4 
Fuzzy inference method Mamdani Mamdani 
Defuzzification method Centroid Centroid 

Rule base 7×7 7×7 

 

 
Fig. 14. Comparison of Fuzzy PID controller parameters before and 

after tuning. 

 

Fig. 14 compares the velocity response before and after 
applying fuzzy PID tuning and feedforward control. 
Before tuning, the vehicle takes about 70 steps to  
reach 5.0 m/s and 62 steps to reach 10.0 m/s, indicating a 
slow and unsuitable convergence rate for responsive 
autonomous driving. After implementing the enhanced 
control strategy, these times dropped significantly to 28 
and 34 steps, respectively. The response becomes smooth, 
with no overshoot or oscillation, closely following the 
reference velocity. This 60% reduction in convergence 
time highlights how higher fuzzy gains combined with a 
feedforward term effectively accelerate longitudinal 
response while maintaining stability, crucial for real-time 
control in dynamic urban settings. 

To evaluates the proposed hybrid control system 
through key simulations in three areas: (1) lateral 
trajectory tracking with NMPC at different reference 
speeds (Fig. 15), (2) longitudinal velocity response under 
fuzzy PID control (Fig. 16), and (3) error metrics like 
RMSE and MAE across scenarios (Fig. 17). The NMPC 
controller’s performance is analysed at target speeds  
of 5.0 m/s and 10.0 m/s using trajectory plots and error 
assessments. Simultaneously, throttle response curves and 
convergence analysis validate the fuzzy PID controller’s 
speed regulation. RMSE and MAE metrics before and after 
tuning are compared to highlight performance 
improvements. 

 

 
Fig. 15. RMSE and MAE comparison across reference speeds. 

Fig. 15 displays the RMSE and MAE values for lateral 
tracking following the tuning of the NMPC controller. At 
a reference speed of 5.0 m/s, RMSE decreases to 0.46 m, 
and MAE to 0.35 m, representing a significant 
improvement over previous errors that exceeded 7 m.  
At 10.0 m/s, RMSE and MAE decline to 0.53 m  
and 0.42 m, remaining within acceptable limits for 
autonomous path tracking in structured environments. 

These enhancements validate the effectiveness of the 
tuning strategy, which involved increasing lateral weights 
in the Q matrix, extending the prediction horizon, and 
adding delay compensation. The small gap between RMSE 
and MAE indicates consistent tracking with minimal 
deviations, affirming the tuned NMPC configuration’s 
capability to provide precise and stable lateral guidance 
across various speeds. 
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Fig. 16. NMPC trajectory tracking at different speeds. 

Fig. 16 compares the vehicle’s paths to the reference 
trajectory at 5.0 m/s and 10.0 m/s. Both trajectories deviate 
significantly in curved sections, but the 10.0 m/s 
performance achieves a slightly lower RMSE of 7.31 m 
compared to 7.60 m at 5.0 m/s, suggesting higher speeds 
may improve tracking through increased responsiveness. 
However, looping deviations indicate potential 
overcorrection, likely due to a short prediction horizon or 
suboptimal NMPC weight tuning. Improving tracking 
accuracy may involve extending the NMPC horizon, 
optimising the weighting matrices to address lateral and 
heading errors better, and enhancing the lane detection 
module. The plot underscores NMPC’s potential but 
highlights the need for further adjustments to achieve 
smoother, more precise path tracking. 

Fig. 17 illustrates the vehicle’s speed response under 
Fuzzy PID control, achieving 5.0 m/s in 29 steps and  
10.0 m/s in 50 steps. The slower rise time at higher speeds 
is due to increased acceleration demands. Despite this, the 
controller ensures stability without overshoot or 
oscillations, indicating firm damping. The delayed 
response at 10.0 m/s suggests room for improvement. 
Implementing speed-dependent fuzzy tuning could 
enhance control during significant errors, while a  
two-stage strategy—aggressive gains initially and 
smoother adjustments near the setpoint—may improve rise 
time and stability. Additionally, feedforward acceleration 
could enable faster responses without compromising 
robustness, enhancing the controller’s adaptability in 
dynamic driving conditions. 

 

 

Fig. 17. The vehicle’s speed response under Fuzzy PID control. 

C. Comparison with Benchmark Controllers 

The proposed NMPC controller was evaluated against 
two standard autonomous vehicle control strategies: the 
LQR and the Pure Pursuit (PP) algorithm. The comparison 
centred on trajectory tracking accuracy, control stability, 
and computational feasibility, highlighting the benefits 
and trade-offs of NMPC. While NMPC integrates 
nonlinear prediction and constraint handling, both LQR 
and PP are simpler and computationally faster. 

 Linear Quadratic Regulator (LQR) [21]: A  
state-feedback controller for linear time-invariant 
systems that minimises a quadratic cost function, 
offering smooth and optimal control. It is 
computationally efficient and easy to implement 
but struggles with nonlinearities and constraints, 
rendering it unsuitable for aggressive driving 
scenarios. 

 Pure Pursuit (PP) [22]: A geometric path tracking 
technique that computes steering angles based on 
a lookahead point on the reference trajectory. It is 
straightforward, quick, and easy to implement but 
lacks dynamic modelling and predictive 
capabilities, leading to overshooting and 
instability in sharp turns or at high speeds. 

All controllers were tested under the same simulation 
conditions, including identical reference paths and vehicle 
dynamics. The comparison was based on three key 
metrics: 

 Lateral RMSE: Root Mean Square Error of path 
tracking is shown in Fig. 18. 

 Maximum overshoot: Peak deviation from 
reference during turning is expressed by Fig. 19. 

 Average computation time: The Time required per 
control cycle is seen in Fig. 20. 
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Fig. 18. Root Mean Square Error (RMSE) of path tracking for NMPC, 

LQR, and Pure Pursuit. 

 
Fig. 19. Maximum overshoot during turning maneuvers for NMPC, 

LQR, and Pure Pursuit. 

 
Fig. 20. Average computation time per control cycle for NMPC, LQR, 

and Pure Pursuit. 

TABLE Ⅳ. THE COMPARATIVE RESULTS 

Controller 
Lateral 

RMSE (m) 
Max Overshoot 

(m) 

Avg. 
Computation 

Time (ms) 
NMPC 0.46 0.18 10.5 
LQR 0.75 0.32 1.6 

Pure Pursuit 0.88 0.41 1.1 

 
The comparative results, summarised in Table Ⅳ and 

illustrated in Figs. 18 to 20, underscore the performance 
trade-offs among NMPC, LQR, and Pure Pursuit 
controllers. Fig. 18 demonstrates that NMPC achieves the 
lowest lateral RMSE (0.46 m), indicating superior 
trajectory tracking compared to LQR (0.75 m) and Pure 
Pursuit (0.88 m). In terms of control stability, Fig. 19 

shows that NMPC also delivers the smallest maximum 
overshoot (0.18 m), outperforming LQR (0.32 m) and Pure 
Pursuit (0.41 m) when handling tight manoeuvres. 
However, as presented in Fig. 20, NMPC incurs the 
highest average computation time (10.5 ms per step), while 
LQR and Pure Pursuit offer significantly lower 
computational costs (1.6 ms and 1.1 ms, respectively). 
These results highlight a clear trade-off between tracking 
performance and computational efficiency: NMPC is  
well-suited for high-precision autonomous driving 
applications, whereas LQR and Pure Pursuit remain 
attractive choices for real-time embedded systems with 
limited processing resources. 

VII. CONCLUSION AND FUTURE WORK  

This study proposes a robust and adaptive control 
framework for autonomous vehicles by integrating NMPC 
with a Fuzzy PID controller and semantic lane inference 
via UltraFast segmentation. The system enhances 
trajectory tracking and velocity regulation across various 
driving conditions. Incorporating UltraFast segmentation 
into NMPC optimization improves road boundary 
awareness and adaptability, while the  
feedforward-enhanced Fuzzy PID controller ensures faster 
convergence to target speeds with greater stability. 
Simulations demonstrate notable improvements in  
lane-keeping accuracy, speed response, and overall 
robustness compared to controllers such as LQR and Pure 
Pursuit. Future work will focus on expanding the system 
with obstacle avoidance, adaptive fuzzy rule learning, and 
real-time Hardware-In-the-Loop (HIL) implementation. 
This approach exhibits strong potential for embedded 
autonomous driving applications requiring safety, 
precision, and real-time performance. 
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