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Abstract—This investigation introduces a novel dual-expert 
gain scheduling framework for robotic manipulators that is 
intended to accommodate both abrupt step inputs and steady 
trajectories in simulation conditions. There are two adaptive 
controllers that are proposed: the Fuzzy Logic-based Dual 
Expert Controller (FBDEC) and the Proportional Integral 
Derivative-based Dual Expert Controller (PBDEC). Each 
utilizes a classification mechanism that is expert-based in 
order to dynamically alternate between step and smooth 
specific gain criteria. PBDEC reduces overshoot to below 9% 
and obtains up to 47% lower Integral Absolute Error (IAE) 
and Root Mean Square Error (RMSE) compared to classical 
Proportional-Integral-Derivative (PID), as evidenced by 
simulation results on a three-jointed robotic platform. 
Similarly, FBDEC surpasses conventional fuzzy control by 
enhancing tracking precision and restricting overshoot to less 
than 3%. The dual-expert approach, in contrast to 
traditional single-mode systems, provides a high level of 
accuracy and a rapid response, seamlessly adapting to a 
variety of reference profiles. This study delivers the first 
systematic performance benchmark of PID and fuzzy logic 
controllers integrated with dual-expert systems across step 
and smooth inputs, thereby confirming their superiority in 
terms of generalizability, tracking, and resilience. 
 
Keywords—adaptive control, dual expert control,  
expert-based gain adjustment, fuzzy logic controller, 
Proportional-Integral-Derivative (PID) controller, gain 
scheduling, trajectory classification, robotic manipulator, 
step input rejection, online rule switching  

I. INTRODUCTION 

Industrial robotic manipulators are instrumental in the 
advancement of modern manufacturing, medical 
intervention, and service automation, as they offer high 
throughput and micrometer-level accuracy. Despite these 
capabilities, adaptability is constrained by two persistent 
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control issues. The reference profile has a substantial 
impact on the controller’s efficacy at the outset. The 
reverse is also true; loops that are optimized for abrupt step 
commands frequently exhibit poor tracking of smooth 
trajectories [1–4]. Secondly, the accumulation of minor 
modelling errors and cycle-to-cycle disturbances over 
protracted periods results in fluctuations in position or 
force. 

As a result, the Proportional-Integral-Derivative (PID) 
control has experienced a swift transformation. Fuzzy-PID 
hybrids [1] are used to smooth brushless-Direct Current 
(DC) responses, including variable-structure designs for 
electric-vehicle motors [5]. Practical DC-motor platforms, 
such as classical PID implementations and fuzzy  
self-tuning variants, have demonstrated overshoot and 
settling-time benefits in hardware-in-the-loop studies and  
simulations [6, 7]. The robustness of fractional-order PID 
is improved by bee colony optimization [3], and 
evolutionary search generates gains that are nearly optimal 
for micro-robots [1]. Parallel work in Fuzzy-Logic Control 
(FLC) has reported successful gain scheduling for  
mobile-robot tracking and lower steady-state errors than 
classical PI in permanent-magnet synchronous  
motors [8, 9]. Beyond robotics, fuzzy PID has been used 
to improve power-system stability and constrained-orbit 
transfer under uncertainty [10, 11]. 

A recurring limitation is that the overwhelming majority 
of PID, FLC, and hybrid approaches are single-mode. 
Gains are predetermined offline for a single reference type, 
and any modification to the profile requires retuning. 
Existing profile-aware methods, including type-2 fuzzy 
loops or Particle Swarm Optimization–Proportional 
Derivative (PSO-PD) schemes, continue to assume 
constant inputs after deployment [12–16]. Adaptive fuzzy 
logic has also been examined in practice-oriented robotics 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 6, 2025

594doi: 10.18178/ijmerr.14.6.594-607

https://orcid.org/0000-0002-6617-6805
https://orcid.org/0009-0000-7754-1401
https://orcid.org/0009-0002-0059-9474
https://orcid.org/0009-0006-5896-2204
https://orcid.org/0009-0004-8551-0022
https://orcid.org/0009-0003-0836-4175
https://orcid.org/0009-0003-4173-6487


for electro-hydraulic actuators and multi-rotor vehicles; 
however, these controllers typically remain tied to a single 
operating profile once tuned [17, 18]. The present work 
addresses this limitation by introducing an expert-rule 
gain-scheduling approach that instantly loads the 
corresponding gains. In this approach, each reference 
sample is classified as either “step” or “smooth”. Two 
controllers are under investigation: Proportional Integral 
Derivative-based Dual Expert Controller (PBDEC)  
(PID-based) and Fuzzy Logic-based Dual Expert 
Controller (FBDEC) (fuzzy-PD-based). Both are 
evaluated against classical PID, standard FLC, and four 
single-expert baselines in a simulated environment of the 
three-axis Seiko D-Tran RT3200 robot. The results 
suggest that PBDEC can reduce Integral Absolute Error 
(IAE) and Root‑Mean‑Square Error (RMSE) by up  
to 46.9% while limiting overshoot to 9%, and FBDEC can 
reduce overshoot to below 3% during ramp tracking. 
Consequently, dual-expert scheduling offers a flexible and 
consistent solution that is suitable for a diverse array of 
applications, such as precision assembly and medical 
robotics. 

II. LITERATURE REVIEW 

A. PID and Optimisation-Enhanced PID 

The primary emphasis of early PID research was 
conventional tuning; however, more recent research has 
prioritized intelligent optimization. Fuzzy-PID 
combinations improve the smoothness of Brushless Direct 
Current (BLDC) motor responses [1], while  
bee-colony [3], genetic-algorithm [19–21], and particle 
swarm optimization methods [22, 23] automate gain 
selection. The robustness of fractional-order PIDs is 
enhanced by bee-colony search [3], and the stability of 
hybrid power systems is improved by hybrid GWO-fuzzy 
or Grey-Wolf designs [24]. The practical DC-motor case 
studies [6, 7] document baseline PID design and 
implementation, as well as fuzzy self-tuning 
enhancements. Several surveys summarize the capabilities 
and limitations of these modern techniques [3, 4]. 

B. Fuzzy-Logic Control (FLC) and Hybrids 

Takagi-Sugeno loops outperform PI on PMSM  
drives [8]. Fuzzy logic controller-based Battery Energy 
Storage System (BESS) regulators stabilize pico-hydro 
plants [25], whereas Programmable Logic Controller 
(PLC)-integrated fuzzy logic controllers regulate conveyor 
positioning [26]. Hybrid fuzzy-PID loops are utilized to 
direct quadcopters [27]. The trajectories of  
electro-hydraulic actuators and quadrotors were tracked 
using hybrid robust fuzzy-PID with disturbance 
accommodation [17, 18]. Fuzzy control has also been 
employed in water-jet devices [28]. The hardware 
feasibility of Arduino-based sliding-mode control is 
confirmed [29], and the settling times of servo drives are 
reduced by fuzzy self-tuning [30]. Grey-Wolf-optimized 
fuzzy-PID reduces hybrid-grid frequency deviations [24], 
while pure FLC maintains BLDC speed in the presence of 
load fluctuations [31]. Object-sorting tasks using 4-DOF 

manipulators have also been controlled through fuzzy 
logic [32], and membership-function tuning for 
manipulator control has been systematically  
optimized [33]. 

C. Advanced FLC Applications in Robotics 

Multi-level fuzzy inference improves the accuracy of 
unmanned-vehicle hand-off decisions [34]. Pure FLC is 
capable of navigating dense storage containers [35]. The 
adaptive fuzzy dynamic-surface control reduces the 
complexity of Mecanum wheels [36]. Fuzzy planners 
decrease warehouse travel time [37, 38]. Vibrations in 
confined passages are mitigated by fuzzy sliding-mode 
loops [39]. Fuzzy Linear Quadratic Regulator  
Proportional Integral Derivative (Fuzzy–LQR–PID) and  
fractional-order fuzzy-PID improve noise  
immunity [40, 41]. The avoidance of obstacles is 
facilitated by fuzzy control [42], quadcopter gain  
self-tuning [43], and Robot Operating System  
(ROS)-based feedback linearization [44]. Adaptive fuzzy 
manipulation, repetitive control, and dual-design iterative 
learning are all effective methods for enhancing  
precision-arm performance [45–52]. 

D. Broader Rule-Based Control Domains 

Proportional-Integral-Derivative (PID) and fuzzy 
variants are employed in a diverse array of applications, 
such as the regulation of renewable energy [53–56], the 
pasteurization of milk [57], the detection of wireless sensor 
anomalies [58–60], the diagnostics of rotating  
machines [61], the enhancement of underwater video [62], 
the enhancement of underwater video [63], the 
coordination of Mivar-based robots [64], and the 
development of extensive fuzzy expert system 
 surveys [59, 65]. Offshore-platform safety scoring [66] 
and medical diagnosis algorithms [67] extend rule-based 
control beyond robotics. 

E. Profile-Specific Research and Existing Gaps 

The fuzzy-membership morphologies of manipulators 
that executed both step and smooth profiles were 
contrasted in a recent study. The investigation determined 
that triangular sets were more effective for step inputs, 
while bell sets provided higher precision for smooth 
trajectories [68]. In addition, the control of PD in Delta and 
Par4 mechanisms has been examined through  
profile-specific tailoring for Cartesian adaptation in R4 
limbs [12] and PSO-augmented mechanisms [13]. 
Adaptive gain scheduling was found to be rarely 
implemented according to a survey of parallel-robot 
control conducted from 2008 to 2024 [14]. Type-2 fuzzy 
controllers [16] are single-mode and lack the capacity to 
modify profiles in real time, despite their advantages. Fault 
detection schemes [15], while intelligent, are not designed 
to accommodate profile variation. Recent  
manipulator-focused research on membership-function 
tuning has introduced data-driven procedures; however, a 
fixed operating profile is still presumed after the tuning 
process is complete [33]. Consequently, the current PID, 
FLC, and hybrid controllers rely on offline gains to 
produce a unique reference profile. PSO-PD schemes are 
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unable to transition online [13], and type-2 fuzzy loops 
typically assume static inputs [16]. 

III. ROBOTIC MANIPULATORS AND SYSTEM MODELING 

FOR APPLICATIONS 

This section provides a comprehensive description of 
the Seiko D-Tran RT3200 robotic manipulator, which is 
classified as a cylindrical-type robot. This robot is 
particularly well-suited for machine tending and material 
handling tasks in constrained environments because of its 
capacity to perform vertical and radial movements within 
a compact footprint. It also addresses the development of 
mathematical models for the system, the design of control 
methods such as PID and fuzzy logic controllers, and the 
construction of a smart control system capable of 
autonomously adjusting gain values. The selection of 
appropriate controller gains will also be discussed in the 
subsequent sections, taking into account the characteristics 
of the input signals. 

A. Design and Implementation of the Seiko D-Tran
RT3200 Robotic Structure

The Seiko D-Tran RT3200 is an autonomous 
manipulator of the cylindrical type. It is equipped with four 
joints: T and A for rotation in the X-Y plane, R for 
translation along the X-axis, and Z for vertical motion. It 
is designed for industrial and research environments that 
necessitate precise operations. In order to guarantee 
synchronized and stable actuator coordination, a National 
Instruments cRIO-9075 controller is utilized to connect a 
LabVIEW interface to four motor drivers, as illustrated in 
Fig. 1. Subsequently, real-time control and monitoring are 
implemented. 

Fig. 1. Seiko D-Tran RT3200. 

The system operates in a discrete-time model with a 
fixed sampling interval of 0.055 s. Closed-loop 
experiments were implemented to identify joint dynamics, 
with MATLAB serving as the system identification tool. 
These methodologies were comparable to those described 
in Refs. [48–52]. Initially, closed-loop transfer functions 
were derived, and plant dynamics were obtained by 
algebraically rearranging the equations into open-loop 
form. 

The dynamic behavior of each joint is determined by the 
resulting open-loop transfer functions, which are 
summarized in Eq. (1) and Table I. These parameters serve 

as the foundation for robust control design under changing 
operating conditions. The discrete-time modeling 
approach enables the precise simulation and controller 
implementation of the RT3200 robotic platform. 

𝑃ሺ𝑧ሻ ൌ
ఊభ௭

௭మାఉభ௭ାఉబ
(1)

TABLE I. PARAMETERS USED IN THE OPEN-LOOP SYSTEM DYNAMICS 

Joint 𝜸𝟏 𝜷𝟏 𝜷𝟎 
Joint R 0.0333 −1.6871 0.6884 
Joint T 0.0162 −1.7077 0.7111 
Joint Z 0.0140 −1.7519 0. 526 

B. PID Control System

The Proportional-Integral-Derivative (PID) controller is
composed of a proportional term (𝐾௣), an integral term 
(𝐾௜), and a derivative term (𝐾ௗ). The continuous-time form 
is discretized when the algorithm is implemented on a 
microcontroller. The discrete-time transfer function used 
in Simulink, as illustrated in Fig. 2, can be expressed as 
Eqs. (2)–(4). 

𝐶ሺ𝑧ሻ ൌ 𝐾௣ ൅
௄೔ ೞ்

௭ିଵ
൅

௄೏ே

ଵାே ೞ்
భ

೥షభ

 (2) 

𝑈ሺ𝑧ሻ ൌ 𝐶ሺ𝑧ሻ ∙ 𝐸ሺ𝑧ሻ (3)

𝐸ሺ𝑧ሻ ൌ 𝑅ሺ𝑧ሻ െ 𝑌ሺ𝑧ሻ (4)

where 𝐶ሺ𝑧ሻ  is the controller transfer function in the  
z-domain, 𝑇௦  is the sampling interval, 𝑁  is the
derivative-filter coefficient, and 𝑧 is the complex variable
that represents discrete time, 𝑅ሺ𝑧ሻ denotes the reference
input, 𝑌ሺ𝑧ሻ  represents the system output, 𝐸ሺ𝑧ሻ  is the
difference between the desired and actual output, and the
control signal 𝑈ሺ𝑧ሻ, computed as 𝐶ሺ𝑧ሻ ∙ 𝐸ሺ𝑧ሻ, is applied
to the plant to minimize the tracking error.

Fig. 2. Simulink model of the PID system. 

The Ziegler-Nichols ultimate-gain method was 
employed to achieve the initial gains, which were 
subsequently refined through manual fine-tuning to align 
with the rise-time and overshoot objectives of each joint. 
The final gain values are presented in Table II. 

However, the steady-state error is eliminated by the 
minor integral terms, while the proportional action 
dominates the response. A first-order filter with coefficient 
𝑁  is retained to attenuate measurement noise, and 
derivative action was set to zero. 
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TABLE II: PARAMETERS USED IN PID CONTROL 

Joint 𝑲𝒑 𝑲𝒊 𝑲𝒅 
Joint R 1.000 0.015 0.000
Joint T 1.500 0.500 0.000 
Joint Z 1.350 0.100 0.000 

C. Expert-Rule-Based Gain Adjustment for PID Control

The control parameters are dynamically adjusted by the
expert system to guarantee an effective response to step 
input signals. The system’s logical conditions, as 
illustrated in Figs. 3 and 4, determine the appropriate 
adjustment values (output_for_adjust) based on the 
absolute value of the input (abs(input)). This is 
implemented in Simulink, as demonstrated in Fig. 5.  

This method guarantees precise control during step 
disturbances by selecting appropriate gain values that are 
derived from the expert system in Fig. 3. The expert 
system logic is integrated into the corresponding Simulink 
model of the PID expert system for step input control, 
allowing for the real time computation of control 
parameters. This guarantees that the system reacts 
precisely to abrupt input modifications. 

Fig. 3. Expert system for Kp adjustment under step input conditions. 

The expert system for seamless function control is 
dedicated to the management of progressive input 
variations to guarantee a consistent and stable response. 
The structure of the system is analogous to that of the step 
input expert system, as illustrated in Fig. 4. However, it 
has been refined to accommodate continuous input signals. 
In response to the input’s progressive fluctuation, the 
adjustment values (output_for_adjust) are dynamically 
computed. 

Fig. 4. Expert system for Kp adjustment under smooth function 
conditions. 

The Simulink implementation of the PID expert system 
for both step and continuous function control is depicted 
in Fig. 5. This model demonstrates the system’s capacity 
to maintain stability and minimize oscillations by utilizing 
PID control logic to process a variety of inputs. 

Fig. 5. PID expert system in Simulink for step or smooth inputs. 

As shown in Fig. 5, the operation of the expert system 
for adjusting 𝐾௣  is described by Eq. (5), where the 
proportional gain is modulated based on the expert output 
(output_for_adjust) according to input characteristics. 

𝐶ሺ𝑧ሻ ൌ 𝐾௣ ∙ ሺ𝑜𝑢𝑡𝑝𝑢𝑡_𝑓𝑜𝑟_𝑎𝑑𝑗𝑢𝑠𝑡ሻ  ൅ ௄೔ ೞ்

௭ିଵ
൅ ௄೏ே

ଵାே ೞ்
భ

೥షభ

 (5) 

The dual expert control system dynamically transitions 
between step and smooth input expert systems in response 
to input characteristics, thereby integrating the benefits of 
both. The error setpoint (Error_setpoint(k)) is determined 
by the difference between the current and previous 
setpoints, as illustrated in Fig. 6. The system subsequently 
determines the appropriate control strategy based on the 
type of input variation. The final control output 
(Control_Output) is determined by summing the outputs 
of both expert systems. 

Fig. 6. Expert system logic for dual PID expert control. 

The Simulink model for dual expert control based on 
PID is depicted in Fig. 7. This configuration facilitates the 
seamless transition between step and smooth input control 
strategies by integrating both expert systems into a unified 
framework. By assessing the input characteristics in real 
time, the system identifies the most appropriate control 
approach to ensure optimal performance. 

Fig. 7. Simulink model of PID-based dual expert control. 

D. Fuzzy Logic Control System

The foundational framework of the fuzzy PD controller
is established by Refs. [33, 68], which also demonstrate the 
adaptability of fuzzy logic in autonomous system control. 
The system proposed in this section is supported by these 
studies, which emphasize the integration of Mamdani 
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inference and Simulink implementation, resulting in 
precise and consistent motor control. 

The fuzzy PD controller system functions by using 
nonlinear modifications derived from the error and its 
derivative to attain accurate control. The system’s 
response is based on fuzzy logic principles, with the output 
estimate utilizing the centroid defuzzification approach as 
indicated in Eq. (6): 

𝑦୫ୟ୫ሺ𝑥௜ሻ ൌ
∑ ఓሺ௫೔ሻ௫೔೔

∑ ఓሺ௫೔ሻ೔
(6)

This approach computes the center of gravity of the 
fuzzy set along the x-axis, where 𝜇ሺ𝑥௜ሻ  denotes the 
membership value of each point 𝑥௜ inside the universe of 
discourse, as shown in Eq. (7): 

𝑒ሺ𝑘ሻ ൌ setpointሺ𝑘ሻ െ outputሺ𝑘ሻ (7) 

The control system employs the error signal 𝑒ሺ𝑘ሻ , 
which is defined as the discrepancy between the planned 
setpoint and the actual system output at step 𝑘, as shown 
in Eq. (8): 

𝑒ሶሺ𝑘ሻ ൌ 𝑒ሺ𝑘ሻ െ 𝑒ሺ𝑘 െ 1ሻ (8)

The derivative of the error 𝑒ሶሺ𝑘ሻ  is calculated as the 
difference between the current error and the preceding 
error, offering dynamic feedback for modifications, as 
shown in Eq. (9): 

𝑈ሺ𝑘ሻ ൌ 𝑓ሺ𝐾𝐹𝐼𝑒ሺ𝑘ሻ, 𝐾𝐹𝐼𝑒ሶሺ𝑘ሻሻ𝐾𝐹𝑂 (9) 

The control signal 𝑈ሺ𝑘ሻ, produced at time step k, is a 
nonlinear function of the scaled error 𝐾𝐹𝐼  𝑒ሺ𝑘ሻ and the 
scaled derivative 𝐾𝐹𝐼  𝑒ሶሺ𝑘ሻ. The gain factor KFO also 
modifies the signal, indicating the output scaling. 

These equations form the foundation of the fuzzy PD 
controller, as illustrated in Fig. 8, allowing adaptive and 
accurate regulation by dynamically reacting to variations 
in error and error rate. This framework facilitates robust 
performance under diverse operating conditions, 
guaranteeing stability and precision in system 
functionality. 

Fig. 8. Fuzzy logic controller design diagram. 

The Fuzzy Logic Control (FLC) system utilizes 
approximate reasoning to regulate processes and generate 
appropriate solutions for diverse applications. It has been 
extensively studied and applied due to its versatility and 

resilience. The Mamdani method is a commonly used 
technique for estimating fuzzy control outputs in robotic 
arm motor control, as shown in Fig. 9. 

�
Fig. 9. Fuzzy logic designer (rule editor). 

As shown in Fig. 10, fuzzy logic is incorporated into 
Simulink to effectively model and simulate control 
operations. The system uses two input signals: input 
signal 1 represents the error, and input signal 2 indicates 
the change in error. Each input includes five membership 
functions ranging from −1 to 1, allowing precise control 
and flexibility.  

Fig. 10. Simulink model implementing fuzzy logic control. 

The system output is defined by nine membership 
functions, also ranging from −1 to 1, enabling fine 
modulation of control responses. Table III provides a 
detailed explanation, and Fig. 11 illustrates the 
membership functions. 

Fig. 12 illustrates the operation of the fuzzy logic 
control system using the FLC surface viewer, highlighting 
the relationship between input and output variables 
through a three-dimensional graphical depiction. 

The fuzzy PD controller uses nonlinear adjustments 
based on the error and its derivative, with clearly defined 
saturation limits and scaling factors to ensure precision. 
The input values for joints R, T, and Z are constrained by 
saturation bounds. As shown in Fig. 5, Joint R is limited 
to −40 to 40, Joint T to −15 to 15, and Joint Z to −20 to 20. 
KFI defines the error range, setting the fuzzy input scaling 
factors to 1/40 for Joint R, 1/15 for Joint T, and 1/20 for 
Joint Z. The control input saturation limit for all three 
joints is set between −100 and 100, with a scaling factor  
of 100 defined by KFO. These parameters guarantee that 
the system operates within physical constraints, thereby 
maintaining precision and stability under varying 
conditions. All parameter values were determined by the 
optimization procedure outlined in the study optimizing 
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membership function tuning for fuzzy control of robotic 
manipulators using PID-driven data techniques [33, 68].  

TABLE III. MEMBERSHIP FUNCTIONS OF FUZZY LOGIC CONTROLLER 

Data Input Input I, f(e) 

Input II, f(de) 

- NB NS ZO PS PB
NB NM NS NM PS PM 
NS NB NM NS PM PB 
ZO VNB NB ZO PB VPB 
PS NB NM PS PM PB 
PB NM NS PM PS PM 

�
Fig. 11. Trapezoidal membership functions of Input 1, Input 2, and 

Output. 

Fig. 12. FLC surface viewer showing the relationship between inputs 
and output. 

E. Expert-Rule-Based Gain Adjustment for Fuzzy
Control

A dual expert system, similar in structure to that used in 
PID control as described in Section C, is implemented to 
enhance the adaptability of fuzzy logic controllers in 
handling both abrupt and gradual input variations. The key 
difference lies in the target of adjustment: while the logic 
remains structurally consistent, the expert system in the 
fuzzy control framework modifies the output scaling factor 
(output_for_adjust) instead of adjusting PID gains. 

To produce a stronger control response, the expert 
system increases the fuzzy scaling factor when it detects 
step-like inputs, as illustrated in Figs. 13 and 14. In 
contrast, the system reduces the scaling factor during 
steady input conditions to prevent unnecessary 
oscillations, which can be observed in Figs. 15 and 16. The 
switching logic and decision-making process are 
embedded within the fuzzy control framework and follow 
the approach outlined in Section III.C and illustrated  
in Fig. 6. 

Fig. 13. Expert system logic for fuzzy control under step input 
conditions. 

Fig. 14. Simulink model of fuzzy expert system for step input control. 

Fig. 15. Expert system logic for fuzzy control under smooth function 
conditions. 

Fig. 16. Simulink model of fuzzy expert system for smooth function 
control. 

Fig. 17 illustrates the comprehensive dual expert control 
system based on fuzzy logic. It continuously monitors the 
nature of the input signal and adjusts the fuzzy output in 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 6, 2025

599



real time using the expert-derived scaling factors. This 
integration enables the fuzzy controller to preserve its 
flexibility, stability, and robustness across a variety of 
dynamic environments. 

Fig. 17. Simulink model of fuzzy-based dual expert control. 

As shown in Fig. 17, the operation of the expert system 
for adjusting 𝑓ሺ𝐾𝐹𝐼𝑒ሺ𝑘ሻ, 𝐾𝐹𝐼𝑒ሶሺ𝑘ሻሻ  is described by 
Eq. (10), where the proportional gain is modulated based 
on the expert output (output_for_adjust) according to input 
characteristics. 

𝑈ሺ𝑘ሻ ൌ 𝑓൫𝐾𝐹𝐼𝑒ሺ𝑘ሻ, 𝐾𝐹𝐼𝑒ሶሺ𝑘ሻ൯ ቀ𝑜𝑢𝑡𝑝𝑢𝑡௙௢௥ೌ೏ೕೠೞ೟
ቁ  𝐾𝐹𝑂   (10) 

IV. RESULTS AND DISCUSSION

The results of the system simulations, which encompass 
the PID controller simulation, fuzzy logic controller 
simulation, and the overall comparative analysis, are 
presented in this section. The performance differences and 
overall effectiveness of each set of results are highlighted 
in an integrated discussion that follows the analysis of each 
set separately. 

A. Results of Simulation PID Controller

The dynamic performance of the four PID‑based
schemes, namely conventional PID, step‑input expert PID 
(PESC‑Step), smooth‑input expert PID (PESC‑Smooth), 
and the proposed dual‑expert PID (PBDEC), is 
summarized in Figs.  18–21 and quantified in  
Tables IV–XII. The classical PID eliminates overshoot at 
the expense of sluggish convergence, while PESC Step 
yields the shortest settling times ranging from 0.60  
to 1.21 s by momentarily amplifying the proportional gain 
for modest step commands of 10 mm, 3.75°, and 5 mm for 
Joints R, T, and Z, respectively, as shown in Fig. 19 and 
Tables IV–VI. In this discrete‑step regime, PESC Smooth 
over‑reacts, producing an overshoot of up to 77% in 
Joint R because its gains are calibrated for gradual 
trajectories. In contrast, PBDEC combines the two expert 
rules in real time, ensuring that overshoot is limited to less 
than 24% and achieving the lowest IAE and RMSE in 
Joints R and Z, demonstrating the advantages of adaptive 
switching even for minor set‑point jumps. 

When the reference amplitudes are tripled to values 
of 30 mm, 11.25°, and 15 mm, as illustrated in Fig.  20 and 
Tables VII–IX, the relative ordering changes. 
PESC Smooth now tracks the larger steps with the smallest 
RMSE in Joints R and Z, but this comes at the expense of 
a 20% overshoot. PBDEC once again provides the most 
balanced response, maintaining an overshoot of under 9% 
in Joint R and achieving the best combined IAE‑RMSE 
pair in Joints T and Z; this suggests that the decision logic 

correctly identifies the excitation as a step and selects the 
appropriate gain schedule. The conventional PID 
continues to demonstrate minimal overshoot yet suffers 
the largest cumulative error, confirming that fixed gains 
cannot simultaneously satisfy both speed and accuracy 
when set‑point magnitudes vary considerably. 

Fig. 18. Simulink block diagram overview for robotic system simulation 
using PID control. 

Fig. 19. System response for setpoints of joints R, T, and Z at 10, 3.75, 
and 5 using PID control. 
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Fig. 20. System response for setpoints of joints R, T, and Z at 30, 11.25, 

and 15 using PID control. 

The greatest benefit of expert scheduling appears in 
continuous, smooth trajectories, depicted in Fig.  21 and 
detailed in Tables X–XII. PESC Smooth tracks the ramp 
profile nearly perfectly, with RMSE values of  
only 0.31 mm, 0.096°, and 0.15 mm for Joints R, T, and Z, 
respectively. PBDEC closely follows, incurring a modest 
accuracy penalty from occasional switching, but still 
surpasses the classical PID by an order of magnitude. 
PESC Step, which is designed for discontinuities, 
continues to outperform the fixed‑gain baseline despite 
exhibiting modest oscillations. These trends confirm that 
it is essential to reduce the gain during low-slope intervals 
in order to mitigate oscillations and limit steady-state 
deviation. 

In general, the PBDEC configuration offers the most 
consistent performance across all test categories. By 
integrating the complementary strengths of the step- and 
smooth-specific expert rules, it achieves rapid rise times 
that are comparable to PESC-Step during abrupt changes, 
while also approaching the low-error behavior of  
PESC-Smooth on incremental trajectories. Consequently, 
the dual-expert strategy offers a resilient and adaptable 
solution for robotic manipulators that operate in 
environments with unpredictable perturbation 
characteristics and reference profiles, as illustrated in  
Figs. 18–21. 

 

 
Fig. 21. System response to smooth input for joints R, T, and Z using 

PID control. 

TABLE IV. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 10 
USING PID CONTROL 

Type 
Setting 
Time 

(s) 

%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_PID 1.81 0.01 1.26 6.00 2.90 
Data_PESC_Step 0.60 6.35 0.55 3.78 2.27 

Data_PESC_Smooth 1.98 77.14 0.11 5.15 2.45 
Data_PBDEC 1.21 24.41 0.22 3.19 1.64 

TABLE V. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 3.75 
USING PID CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(°) 

RMSE 
(°) 

Data_PID 3.85 1.21 1.26 2.53 1.17 
Data_PESC_Step 1.21 0.16 0.99 1.67 0.99 

Data_PESC_Smooth 0.93 36.26 0.11 0.70 0.56 
Data_PBDEC 1.15 51.82 0.16 2.31 0.77 

TABLE VI. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 5 USING 

PID CONTROL 

Type 
Setting 
Time 

(s) 

%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_PID 1.76 0.02 1.59 3.59 1.68 
Data_PESC_Step 0.99 1.08 0.93 2.20 1.33 

Data_PESC_Smooth 1.50 62.14 1.60 1.80 1.02 
Data_PBDEC 1.81 26.31 0.27 1.91 0.90 
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TABLE VII. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 30
USING PID CONTROL 

Type 
Setting 
Time 

(s) 

%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_PID 1.70 0.01 1.32 18.01 8.70 
Data_PESC_Step 1.04 8.23 0.55 11.51 6.81 

Data_PESC_Smooth 0.82 20.50 0.22 7.06 5.71 
Data_PBDEC 0.99 8.83 0.49 6.30 6.30 

TABLE VIII. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 11.25 

USING PID CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(°) 

RMSE 
(°) 

Data_PID 3.85 1.21 1.26 7.59 3.52 
Data_PESC_Step 0.71 2.90 0.71 4.47 2.78 

Data_PESC_Smooth 0.77 19.04 0.16 2.28 1.98 
Data_PBDEC 3.68 4.12 0.55 4.00 2.30 

TABLE IX. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 15
USING PID CONTROL 

Type 
Setting 
Time 

(s) 

%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_PID 1.70 0.02 1.59 10.78 5.04 
Data_PESC_Step 1.59 5.48 0.71 6.61 3.95 

Data_PESC_Smooth 1.21 26.34 0.27 4.28 3.02 
Data_PBDEC 1.48 6.24 0.66 5.61 3.46 

TABLE X. PERFORMANCE METRICS FOR JOINT R UNDER SMOOTH INPUT 

USING PID CONTROL 

Type IAE (mm) RMSE (mm) 
Data_PID 107.49 13.95 

Data_PESC_Step 62.24 8.82 
Data_PESC_Smooth 1.73 0.31 

Data_PBDEC 14.41 1.33 

TABLE XI. PERFORMANCE METRICS FOR JOINT T UNDER SMOOTH

INPUT USING PID CONTROL 

Type IAE (°) RMSE (°) 
Data_PID 37.15 4.81 

Data_PESC_Step 21.26 3.24 
Data_PESC_Smooth 0.78 0.096 

Data_PBDEC 12.49 1.11 

TABLE XII. PERFORMANCE METRICS FOR JOINT Z UNDER SMOOTH

INPUT USING PID CONTROL 

Type IAE (mm) RMSE (mm) 
Data_PID 66.41 7.77 

Data_PESC_Step 37.67 5.13 
Data_PESC_Smooth 0.88 0.15 

Data_PBDEC 2.11 0.26 

B. Results of Simulation Fuzzy Logic Controller

The fuzzy-logic experiments were implemented using
the Simulink architecture depicted in Fig. 22, which was 
structured into three tiers: continuous trajectory, enlarged 
step commands of 30 mm, 11.25°, and 15 mm, and modest 
step commands of 10 mm, 3.75°, and 5 mm. The baseline 
FLC, the step-input fuzzy expert (FESC-Step), the 
smooth-input fuzzy expert (FESC-Smooth), and the 
dual-expert fuzzy controller (FBDEC) were all 
benchmarked. Tables XIII–XXI present numerical 
indicators, while Figs. 23–25 illustrate critical responses. 

Fuzzy Logic-based Dual Expert Controller (FBDEC) 
attained the optimal balance between speed and accuracy 
for reference values of 10 mm, 3.75°, and 5 mm. The 
overshoot in Joint R was maintained at 2.59%, a 
significantly lower value than that of FLC at 4.51% and 
FESC‑Smooth at 9.13%. Additionally, the ascent periods 
were comparable to those of the faster FESC-Step. The 
overall precision was reduced by the increased excess, 
despite the fact that FESC-Step decreased the settling time 
to 0.77 s in Joint R. These results verify that the adaptive 
switching in FBDEC effectively reduces excessive 
excursions during low-amplitude disturbances without 
compromising responsiveness. 

Fig. 22. Simulink block diagram overview for robotic system simulation 
using fuzzy logic control. 

The monitoring priorities underwent a transformation as 
the command magnitudes were increased threefold. 
FESC‑Smooth capitalized on its higher steady‑state gain 
to attain the lowest RMSE in Joints R and Z; however, it 
resulted in an overshoot of approximately 20%. FBDEC 
once again attained the most balanced outcome, as the 
combined IAE-RMSE scores in Joints T and Z were the 
best overall, and overshoot remained below 9% in Joint R. 
The pure FLC maintained minimal overshoot but accrued 
the largest integrated errors, underscoring the limitation of 
fixed gains across diverse set-point scales. 

In joints R, T, and Z, FESC-Smooth achieved RMSE 
values of 0.31 mm, 0.096°, and 0.15 mm, respectively, 
with continuous input. FBDEC followed closely, incurring 
a modest accuracy penalty from intermittent rule 
switching, but still outperformed FLC by approximately an 
order of magnitude. Despite minor oscillations,  
FESC-Step outperformed the baseline, indicating that 
expert scheduling offers advantages that extend beyond its 
primary design envelope. 

Fuzzy Logic-based Dual Expert Controller (FBDEC) 
demonstrated the most consistent performance in all test 
categories. It confirmed the efficacy of real-time rule 
selection by combining the brief settling times of  
FESC-Step during abrupt changes with the low 
steady-state error of FESC-Smooth on gradual profiles. 
The dual-expert fuzzy architecture offers a resilient and 
adaptable solution for manipulators that are required to 
manage external disturbances and unpredictable reference 
shapes, as demonstrated in Figs. 23–25 and 
Tables XIII–XXI. 
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Fig. 23. System response for setpoints of joints R, T, and Z at 10, 3.75, 

and 5 using fuzzy logic control. 

 
Fig. 24. System response for setpoints of joints R, T, and Z at 30, 11.25, 

and 15 using fuzzy logic control. 

 
Fig. 25. System response to smooth input for joints R, T, and Z using 

Fuzzy logic control. 

TABLE XIII. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 10 
USING FUZZY LOGIC CONTROL 

Type 
Setting 
Time 

(s) 

%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_FLC 0.55 4.51 0.44 3.55 2.31 
Data_FESC_Step 0.77 2.44 0.55 4.12 2.50 

Data_FESC_Smooth 0.80 9.13 0.28 2.83 2.04 
Data_FBDEC 0.71 2.59 0.50 3.63 2.27 

TABLE XIV. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 3.75 

USING FUZZY LOGIC CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(°) 

RMSE 
(°) 

Data_FLC 1.32 9.97 0.28 1.35 0.80 
Data_FESC_Step 1.70 7.18 0.39 1.54 0.86 

Data_FESC_Smooth 0.99 14.99 0.28 1.10 0.71 
Data_FBDEC 1.69 7.87 0.39 1.37 0.77 

TABLE XV. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 
SETPOINT 5 USING FUZZY LOGIC CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_FLC 1.10 9.23 0.44 1.87 1.19 
Data_FESC_Step 1.25 6.36 0.50 2.10 1.27 

Data_FESC_Smooth 1.26 14.95 0.28 1.56 1.06 
Data_FBDEC 1.15 6.68 0.44 1.86 1.16 
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TABLE XVI. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 
SETPOINT 30 USING FUZZY LOGIC CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_FLC 0.82 2.16 0.61 13.73 8.06 
Data_FESC_Step 1.10 1.02 0.77 16.46 8.72 

Data_FESC_Smooth 0.88 5.34 0.39 10.49 7.04 
Data_FBDEC 1.04 1.02 0.77 15.13 8.17 

TABLE XVII. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 
SETPOINT 11.25 USING FUZZY LOGIC CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(°) 

RMSE 
(°) 

Data_FLC 0.60 5.54 0.44 4.86 2.76 
Data_FESC_Step 1.81 3.60 0.61 5.72 2.97 

Data_FESC_Smooth 0.77 9.79 0.33 3.81 2.43 
Data_FBDEC 1.80 3.68 0.55 5.24 2.75 

TABLE XVIII. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 
SETPOINT 15 USING FUZZY LOGIC CONTROL 

Type 
Setting 

Time (s) 
%OS 
(%) 

Rise 
time 
(s) 

IAE 
(mm) 

RMSE 
(mm) 

Data_FLC 1.21 5.35 0.55 6.95 4.11 
Data_FESC_Step 0.98 3.36 0.66 7.80 4.34 

Data_FESC_Smooth 0.99 9.73 0.39 5.31 3.51 
Data_FBDEC 0.93 3.42 0.66 6.87 3.96 

TABLE XIX. PERFORMANCE METRICS FOR JOINT R UNDER SMOOTH 

INPUT USING FUZZY LOGIC CONTROL 

Type IAE (mm) RMSE (mm) 
Data_FLC 70.14 10.31 

Data_FESC_Step 80.48 11.18 
Data_FESC_Smooth 52.50 8.37 

Data_FBDEC 57.49 8.42 

TABLE XX. PERFORMANCE METRICS FOR JOINT T UNDER SMOOTH 
INPUT USING FUZZY LOGIC CONTROL 

Type IAE (°) RMSE (°) 
Data_FLC 20.75 2.64 

Data_FESC_Step 25.75 3.13 
Data_FESC_Smooth 13.32 1.80 

Data_FBDEC 16.56 1.89 

TABLE XXI. PERFORMANCE METRICS FOR JOINT Z UNDER SMOOTH 
INPUT USING FUZZY LOGIC CONTROL 

Type IAE (mm) RMSE (mm) 
Data_FLC 32.70 4.75 

Data_FESC_Step 35.05 4.96 
Data_FESC_Smooth 23.84 3.64 

Data_FBDEC 24.23 3.64 

C. Over All Results of Simulation 

The most balanced and robust performance across all 
test scenarios is routinely achieved by dual-expert 
architectures, namely PBDEC for PID and FBDEC for 
fuzzy logic, as revealed by the comparative analysis of all 
control strategies under step and smooth input conditions. 
The conventional PID was substantially outperformed by 
PBDEC in step commands of 10 mm, 3.75°, and 5 mm, as 
it improved both IAE and RMSE values and reduced 
overshoot. In the same vein, FBDEC surpassed the 
baseline FLC by maintaining overshoot of Joint R below 
3%, achieving comparable rise times to the step-tuned 

expert, and maintaining higher tracking accuracy than 
FESC-Smooth. When contrasted with earlier fuzzy-PID 
studies such as Ref. [7], which continue to exhibit 
noticeable overshoot and lengthy settling under similar 
abrupt inputs, FBDEC consistently trends toward smaller 
peak excursions and faster stabilization, underscoring the 
benefit of rule-based adaptation. 

Both PBDEC and FBDEC maintained their exceptional 
adaptability when confronted with enlarged step inputs  
of 30 mm, 11.25°, and 15 mm. The RMSE in Joints T and 
Z was minimized by FBDEC, despite a modest increase in 
rise time. In Joint R, PBDEC attained the lowest combined 
error metrics and contained overshoot within 9%. 
Conversely, the fixed-gain PID and FLC controllers 
exhibited the most limited adaptability to diverse input 
scales and the highest accumulated errors. Likewise,  
PSO-PID frameworks described in Ref. [23] focus on 
reducing integrated error through a single optimized gain 
set; by contrast, PBDEC retains low cumulative error 
while simultaneously suppressing overshoot, illustrating 
the additional advantage gained from on-the-fly gain-set 
switching rather than offline retuning. 

Adaptive switching works even better when the input 
paths are stable. The smooth-specific experts  
(PESC-Smooth and FESC-Smooth) are almost as good as 
the dual-expert controllers. On the other hand, the  
fixed-gain controllers are much worse. When working on 
smooth paths, PESC-Smooth and FESC-Smooth have the 
lowest RMSE of all the joints, but they both have 
considerable difficulty under step conditions. PBDEC and 
FBDEC effectively mitigate this limitation by employing 
context-aware rule switching, which enables a generalized 
and reliable control response. Collectively, these  
trend-level observations in relation to Refs. [7, 23] 
underscore the simultaneous enhancements in transient 
attenuation and steady-state precision that dynamic gain 
scheduling provides, despite the fact that the underlying 
plant models differ. 

In conclusion, the dual-expert approaches demonstrate 
precision, adaptability, and resilience across a wide range 
of input profiles, thereby verifying their appropriateness 
for robotic manipulators operating in dynamic 
environments. The proposed architecture is intended to be 
positioned within the broader control-strategy landscape 
without implying a direct numerical comparison, and the 
cross-study contrasts presented here are qualitative rather 
than quantitative. 

V. CONCLUSION 

In this research, a dual-expert gain-adaptation strategy 
was evaluated for robotic manipulators that are required to 
track both continuous trajectories and abrupt step 
commands. Two controllers were developed: PBDEC, 
which improves a PID loop by incorporating distinct gain 
tables for step and smooth inputs, and FBDEC, which 
applies the same principle to a fuzzy PD loop. The online 
switching between the two tables is solely determined by 
the reference-profile increment through a simple rule set. 
PBDEC reduced integral-absolute error and  
root-mean-square error by up to 46.9% in comparison to a 
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fixed-gain PID, while maintaining overshoot below 9%, as 
demonstrated by simulations conducted on a three-joint 
Seiko D-Tran RT3200 model. The tracking accuracy of 
FBDEC was comparable to that of a smooth-tuned fuzzy 
controller, and the overshoot was kept below 3% during 
ramp tracking; it did not exhibit the overshoot observed in 
the step-tuned fuzzy variant. Single-mode experts 
performed well only under the profile for which they were 
tailored, whereas the dual-expert approach maintained 
acceptable performance under both profiles. The switching 
logic can be implemented in existing programmable logic 
controllers or real-time-target hardware without additional 
sensors or plant identification, as it uses only reference 
information and two predefined gain tables. The method 
can accommodate both motion regimes without retuning 
on medical manipulators that transition between fast 
puncture and slow trajectory following, or on  
pick-and-place arms that alternate between rapid indexing 
and delicate insertion. The analysis was restricted to 
simulations with nominal plant parameters and a 1 kHz 
control cycle. Future work should test the algorithm on 
physical hardware, examine behaviour under parameter 
drift and external disturbances, and investigate automatic 
adjustment of the switching threshold to handle reference 
profiles that vary continuously between step and smooth 
cases.�
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