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Abstract—This investigation introduces a novel dual-expert
gain scheduling framework for robotic manipulators that is
intended to accommodate both abrupt step inputs and steady
trajectories in simulation conditions. There are two adaptive
controllers that are proposed: the Fuzzy Logic-based Dual
Expert Controller (FBDEC) and the Proportional Integral
Derivative-based Dual Expert Controller (PBDEC). Each
utilizes a classification mechanism that is expert-based in
order to dynamically alternate between step and smooth
specific gain criteria. PBDEC reduces overshoot to below 9%
and obtains up to 47% lower Integral Absolute Error (IAE)
and Root Mean Square Error (RMSE) compared to classical
Proportional-Integral-Derivative (PID), as evidenced by
simulation results on a three-jointed robotic platform.
Similarly, FBDEC surpasses conventional fuzzy control by
enhancing tracking precision and restricting overshoot to less
than 3%. The dual-expert approach, in contrast to
traditional single-mode systems, provides a high level of
accuracy and a rapid response, seamlessly adapting to a
variety of reference profiles. This study delivers the first
systematic performance benchmark of PID and fuzzy logic
controllers integrated with dual-expert systems across step
and smooth inputs, thereby confirming their superiority in
terms of generalizability, tracking, and resilience.

Keywords—adaptive  control,
expert-based gain adjustment, fuzzy logic controller,
Proportional-Integral-Derivative (PID) controller, gain
scheduling, trajectory classification, robotic manipulator,
step input rejection, online rule switching

dual expert control,

I. INTRODUCTION

Industrial robotic manipulators are instrumental in the
advancement of modern manufacturing, medical
intervention, and service automation, as they offer high
throughput and micrometer-level accuracy. Despite these
capabilities, adaptability is constrained by two persistent
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control issues. The reference profile has a substantial
impact on the controller’s efficacy at the outset. The
reverse is also true; loops that are optimized for abrupt step
commands frequently exhibit poor tracking of smooth
trajectories [1-4]. Secondly, the accumulation of minor
modelling errors and cycle-to-cycle disturbances over
protracted periods results in fluctuations in position or
force.

As a result, the Proportional-Integral-Derivative (PID)
control has experienced a swift transformation. Fuzzy-PID
hybrids [1] are used to smooth brushless-Direct Current
(DC) responses, including variable-structure designs for
electric-vehicle motors [5]. Practical DC-motor platforms,
such as classical PID implementations and fuzzy
self-tuning variants, have demonstrated overshoot and
settling-time benefits in hardware-in-the-loop studies and
simulations [6, 7]. The robustness of fractional-order PID
is improved by bee colony optimization [3], and
evolutionary search generates gains that are nearly optimal
for micro-robots [1]. Parallel work in Fuzzy-Logic Control
(FLC) has reported successful gain scheduling for
mobile-robot tracking and lower steady-state errors than
classical PI in permanent-magnet synchronous
motors [8, 9]. Beyond robotics, fuzzy PID has been used
to improve power-system stability and constrained-orbit
transfer under uncertainty [10, 11].

A recurring limitation is that the overwhelming majority
of PID, FLC, and hybrid approaches are single-mode.
Gains are predetermined offline for a single reference type,
and any modification to the profile requires retuning.
Existing profile-aware methods, including type-2 fuzzy
loops or Particle Swarm Optimization—Proportional
Derivative (PSO-PD) schemes, continue to assume
constant inputs after deployment [12—-16]. Adaptive fuzzy
logic has also been examined in practice-oriented robotics
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for electro-hydraulic actuators and multi-rotor vehicles;
however, these controllers typically remain tied to a single
operating profile once tuned [17, 18]. The present work
addresses this limitation by introducing an expert-rule
gain-scheduling approach that instantly loads the
corresponding gains. In this approach, each reference
sample is classified as either “step” or “smooth”. Two
controllers are under investigation: Proportional Integral
Derivative-based Dual Expert Controller (PBDEC)
(PID-based) and Fuzzy Logic-based Dual Expert
Controller (FBDEC) (fuzzy-PD-based). Both are
evaluated against classical PID, standard FLC, and four
single-expert baselines in a simulated environment of the
three-axis Seiko D-Tran RT3200 robot. The results
suggest that PBDEC can reduce Integral Absolute Error
(IAE) and Root-Mean-Square Error (RMSE) by up
to 46.9% while limiting overshoot to 9%, and FBDEC can
reduce overshoot to below 3% during ramp tracking.
Consequently, dual-expert scheduling offers a flexible and
consistent solution that is suitable for a diverse array of
applications, such as precision assembly and medical
robotics.

II. LITERATURE REVIEW

A. PID and Optimisation-Enhanced PID

The primary emphasis of early PID research was
conventional tuning; however, more recent research has

prioritized  intelligent  optimization. Fuzzy-PID
combinations improve the smoothness of Brushless Direct
Current (BLDC) motor responses [1], while

bee-colony [3], genetic-algorithm [19-21], and particle
swarm optimization methods [22, 23] automate gain
selection. The robustness of fractional-order PIDs is
enhanced by bee-colony search [3], and the stability of
hybrid power systems is improved by hybrid GWO-fuzzy
or Grey-Wolf designs [24]. The practical DC-motor case
studies [6, 7] document baseline PID design and
implementation, as well as fuzzy self-tuning
enhancements. Several surveys summarize the capabilities
and limitations of these modern techniques [3, 4].

B.  Fuzzy-Logic Control (FLC) and Hybrids

Takagi-Sugeno loops outperform PI on PMSM
drives [8]. Fuzzy logic controller-based Battery Energy
Storage System (BESS) regulators stabilize pico-hydro
plants [25], whereas Programmable Logic Controller
(PLC)-integrated fuzzy logic controllers regulate conveyor
positioning [26]. Hybrid fuzzy-PID loops are utilized to
direct quadcopters [27]. The trajectories  of
electro-hydraulic actuators and quadrotors were tracked
using hybrid robust fuzzy-PID with disturbance
accommodation [17, 18]. Fuzzy control has also been
employed in water-jet devices [28]. The hardware
feasibility of Arduino-based sliding-mode control is
confirmed [29], and the settling times of servo drives are
reduced by fuzzy self-tuning [30]. Grey-Wolf-optimized
fuzzy-PID reduces hybrid-grid frequency deviations [24],
while pure FLC maintains BLDC speed in the presence of
load fluctuations [31]. Object-sorting tasks using 4-DOF
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manipulators have also been controlled through fuzzy

logic [32], and membership-function tuning for
manipulator  control  has  been  systematically
optimized [33].

C. Advanced FLC Applications in Robotics

Multi-level fuzzy inference improves the accuracy of
unmanned-vehicle hand-off decisions [34]. Pure FLC is
capable of navigating dense storage containers [35]. The
adaptive fuzzy dynamic-surface control reduces the
complexity of Mecanum wheels [36]. Fuzzy planners
decrease warehouse travel time [37, 38]. Vibrations in
confined passages are mitigated by fuzzy sliding-mode
loops [39]. Fuzzy Linear Quadratic Regulator
Proportional Integral Derivative (Fuzzy—LQR-PID) and
fractional-order fuzzy-PID improve noise
immunity [40, 41]. The avoidance of obstacles is
facilitated by fuzzy control [42], quadcopter gain
self-tuning [43], and Robot Operating System
(ROS)-based feedback linearization [44]. Adaptive fuzzy
manipulation, repetitive control, and dual-design iterative
learning are all effective methods for enhancing
precision-arm performance [45-52].

D. Broader Rule-Based Control Domains

Proportional-Integral-Derivative (PID) and fuzzy
variants are employed in a diverse array of applications,
such as the regulation of renewable energy [53-56], the
pasteurization of milk [57], the detection of wireless sensor
anomalies [58-60], the diagnostics of rotating
machines [61], the enhancement of underwater video [62],
the enhancement of underwater video [63], the
coordination of Mivar-based robots [64], and the
development of extensive fuzzy expert system
surveys [59, 65]. Offshore-platform safety scoring [66]
and medical diagnosis algorithms [67] extend rule-based
control beyond robotics.

E.  Profile-Specific Research and Existing Gaps

The fuzzy-membership morphologies of manipulators
that executed both step and smooth profiles were
contrasted in a recent study. The investigation determined
that triangular sets were more effective for step inputs,
while bell sets provided higher precision for smooth
trajectories [68]. In addition, the control of PD in Delta and
Par4 mechanisms has been examined through
profile-specific tailoring for Cartesian adaptation in R4
limbs [12] and PSO-augmented mechanisms [13].
Adaptive gain scheduling was found to be rarely
implemented according to a survey of parallel-robot
control conducted from 2008 to 2024 [14]. Type-2 fuzzy
controllers [16] are single-mode and lack the capacity to
modify profiles in real time, despite their advantages. Fault
detection schemes [15], while intelligent, are not designed
to accommodate profile variation. Recent
manipulator-focused research on membership-function
tuning has introduced data-driven procedures; however, a
fixed operating profile is still presumed after the tuning
process is complete [33]. Consequently, the current PID,
FLC, and hybrid controllers rely on offline gains to
produce a unique reference profile. PSO-PD schemes are
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unable to transition online [13], and type-2 fuzzy loops

typically assume static inputs [16].

III. ROBOTIC MANIPULATORS AND SYSTEM MODELING
FOR APPLICATIONS

This section provides a comprehensive description of
the Seiko D-Tran RT3200 robotic manipulator, which is
classified as a cylindrical-type robot. This robot is
particularly well-suited for machine tending and material
handling tasks in constrained environments because of its
capacity to perform vertical and radial movements within
a compact footprint. It also addresses the development of
mathematical models for the system, the design of control
methods such as PID and fuzzy logic controllers, and the
construction of a smart control system capable of
autonomously adjusting gain values. The selection of
appropriate controller gains will also be discussed in the
subsequent sections, taking into account the characteristics
of the input signals.

A. Design and Implementation of the Seiko D-Tran
RT3200 Robotic Structure

The Seiko D-Tran RT3200 is an autonomous
manipulator of the cylindrical type. It is equipped with four
joints: T and A for rotation in the X-Y plane, R for
translation along the X-axis, and Z for vertical motion. It
is designed for industrial and research environments that
necessitate precise operations. In order to guarantee
synchronized and stable actuator coordination, a National
Instruments cRIO-9075 controller is utilized to connect a
LabVIEW interface to four motor drivers, as illustrated in
Fig. 1. Subsequently, real-time control and monitoring are
implemented.

Fig. 1. Seiko D-Tran RT3200.

The system operates in a discrete-time model with a
fixed sampling interval of 0.055 s. Closed-loop
experiments were implemented to identify joint dynamics,
with MATLAB serving as the system identification tool.
These methodologies were comparable to those described
in Refs. [48-52]. Initially, closed-loop transfer functions
were derived, and plant dynamics were obtained by
algebraically rearranging the equations into open-loop
form.

The dynamic behavior of each joint is determined by the
resulting open-loop transfer functions, which are
summarized in Eq. (1) and Table I. These parameters serve
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as the foundation for robust control design under changing
operating conditions. The discrete-time modeling
approach enables the precise simulation and controller
implementation of the RT3200 robotic platform.

P(z) = ()

zz+ﬁlz+ﬁ0

TABLE I. PARAMETERS USED IN THE OPEN-LOOP SYSTEM DYNAMICS

Joint Y1 B1 Bo
Joint R 0.0333 —1.6871 0.6884
Joint T 0.0162 -1.7077 0.7111
Joint Z 0.0140 —1.7519 0.526

B.  PID Control System

The Proportional-Integral-Derivative (PID) controller is
composed of a proportional term (K,), an integral term
(K;), and a derivative term (Kj). The continuous-time form
is discretized when the algorithm is implemented on a
microcontroller. The discrete-time transfer function used
in Simulink, as illustrated in Fig. 2, can be expressed as

Egs. (2)—(4).

(=i
U(z) = C(2) E(2) 3)
E(z) =R(2) - Y(2) “4)

where C(z) is the controller transfer function in the
z-domain, T, is the sampling interval, N is the
derivative-filter coefficient, and z is the complex variable
that represents discrete time, R(z) denotes the reference
input, Y(z) represents the system output, E(z) is the
difference between the desired and actual output, and the
control signal U(z), computed as C(z) - E(z), is applied
to the plant to minimize the tracking error.

PID Control System Control

= '- :@
sm,@ | — —
Fig. 2. Simulink model of the PID system.
The Ziegler-Nichols ultimate-gain method was

employed to achieve the initial gains, which were
subsequently refined through manual fine-tuning to align
with the rise-time and overshoot objectives of each joint.
The final gain values are presented in Table II.

However, the steady-state error is eliminated by the
minor integral terms, while the proportional action
dominates the response. A first-order filter with coefficient
N is retained to attenuate measurement noise, and
derivative action was set to zero.
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TABLE II: PARAMETERS USED IN PID CONTROL

Joint K, K; Ky

Joint R 1.000 0.015 0.000
Joint T 1.500 0.500 0.000
Joint Z 1.350 0.100 0.000

C. Expert-Rule-Based Gain Adjustment for PID Control

The control parameters are dynamically adjusted by the
expert system to guarantee an effective response to step
input signals. The system’s logical conditions, as
illustrated in Figs. 3 and 4, determine the appropriate
adjustment values (output for adjust) based on the
absolute value of the input (abs(input)). This is
implemented in Simulink, as demonstrated in Fig. 5.

This method guarantees precise control during step
disturbances by selecting appropriate gain values that are
derived from the expert system in Fig. 3. The expert
system logic is integrated into the corresponding Simulink
model of the PID expert system for step input control,
allowing for the real time computation of control
parameters. This guarantees that the system reacts
precisely to abrupt input modifications.

Read input signal
Compute absolute_input

absolute value of input

If absolute_input >=
output_for_adjust

and absolute_input < 1 then

S5 WU U WN

Else if absolute_input >= and absolute_input < then
output_for_ adjust = S

Else if absolute_input >= 2 and absolute_input < then
output_for_adjust =

Else if absolute_input >= and absolute_input < then

o
= O

output_for adjust
Else if absolute_input >=
output_for_adjust

=)
N

then

(=
w

Fig. 3. Expert system for K|, adjustment under step input conditions.

The expert system for seamless function control is
dedicated to the management of progressive input
variations to guarantee a consistent and stable response.
The structure of the system is analogous to that of the step
input expert system, as illustrated in Fig. 4. However, it
has been refined to accommodate continuous input signals.
In response to the input’s progressive fluctuation, the
adjustment values (output for adjust) are dynamically
computed.

Read input signal
. Compute absolute_input

absolute value of input

. If absolute_input >= then
output_for_adjust .

Else if absolute_input >=

and absolute_ input <

<0G WDk

and absolute_input < then
output_for adjust =
8 Else if absolute_input >= 2 and absolute_input < > then
9 output_for_ adjust =
10 Else if absolute_input >= 3 and absolute_input < 4 then

output_for_adjust
2 Else if absolute input >=

output_for_adjust

then

Fig. 4. Expert system for K|, adjustment under smooth function
conditions.

The Simulink implementation of the PID expert system
for both step and continuous function control is depicted
in Fig. 5. This model demonstrates the system’s capacity
to maintain stability and minimize oscillations by utilizing
PID control logic to process a variety of inputs.
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PID Control Using Expert
En

Fig. 5. PID expert system in Simulink for step or smooth inputs.

As shown in Fig. 5, the operation of the expert system
for adjusting K, is described by Eq. (5), where the
proportional gain is modulated based on the expert output
(output_for adjust) according to input characteristics.

KiTs KN

C(z) = K, - (output_for_adjust) +—=+ (5

z-1 1+Nn;é;

The dual expert control system dynamically transitions
between step and smooth input expert systems in response
to input characteristics, thereby integrating the benefits of
both. The error setpoint (Error_setpoint(k)) is determined
by the difference between the current and previous
setpoints, as illustrated in Fig. 6. The system subsequently
determines the appropriate control strategy based on the
type of input variation. The final control output
(Control_Output) is determined by summing the outputs
of both expert systems.

1 Compute error_setpoint current_setpoint - previous_setpoint
. Initialize:
Output_sSmooth =
Output_Step =
If SmoothFunction(error_ setpoint) is not equal to zero then
Output_Smooth = Process_Expert_System_Smooth(Filter (error))
Else
Output_Step = Process_Expert_System Step(Filter(error))

Compute final control output:
Control_Output = Output_Smooth + Output_sStep

Fig. 6. Expert system logic for dual PID expert control.

The Simulink model for dual expert control based on
PID is depicted in Fig. 7. This configuration facilitates the
seamless transition between step and smooth input control
strategies by integrating both expert systems into a unified
framework. By assessing the input characteristics in real
time, the system identifies the most appropriate control
approach to ensure optimal performance.

PID Conirol Based Dual Expert Control

=

- st e K3 )
ol

Fig. 7. Simulink model of PID-based dual expert control.

D. Fuzzy Logic Control System

The foundational framework of the fuzzy PD controller
is established by Refs. [33, 68], which also demonstrate the
adaptability of fuzzy logic in autonomous system control.
The system proposed in this section is supported by these
studies, which emphasize the integration of Mamdani
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inference and Simulink implementation, resulting in
precise and consistent motor control.

The fuzzy PD controller system functions by using
nonlinear modifications derived from the error and its
derivative to attain accurate control. The system’s
response is based on fuzzy logic principles, with the output
estimate utilizing the centroid defuzzification approach as
indicated in Eq. (6):

Din(xi)x;

Tin(xy) ©)

ymam(xi) =

This approach computes the center of gravity of the
fuzzy set along the x-axis, where u(x;) denotes the
membership value of each point x; inside the universe of
discourse, as shown in Eq. (7):

e(k) = setpoint(k) — output(k) (7

The control system employs the error signal e(k),
which is defined as the discrepancy between the planned
setpoint and the actual system output at step k, as shown
in Eq. (8):

ek)=ek)—e(k—1) ®)

The derivative of the error é(k) is calculated as the
difference between the current error and the preceding
error, offering dynamic feedback for modifications, as
shown in Eq. (9):

U(k) = f(KFIxe(k),KFIxé(k))xKFO (9)

The control signal U(k), produced at time step %, is a
nonlinear function of the scaled error KFI x e(k) and the
scaled derivative KFI x é(k). The gain factor KFO also
modifies the signal, indicating the output scaling.

These equations form the foundation of the fuzzy PD
controller, as illustrated in Fig. 8, allowing adaptive and

accurate regulation by dynamically reacting to variations
in error and error rate. This framework facilitates robust

performance under diverse operating conditions,
guaranteeing  stability and precision in  system
functionality.
e
- oy
f u u
— >
de/dt
_ .

Fig. 8. Fuzzy logic controller design diagram.

The Fuzzy Logic Control (FLC) system utilizes
approximate reasoning to regulate processes and generate
appropriate solutions for diverse applications. It has been
extensively studied and applied due to its versatility and
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resilience. The Mamdani method is a commonly used
technique for estimating fuzzy control outputs in robotic

arm motor control, as shown in Fig. 9.

input1
; ; ; ; outputt
input2

FIS Name:

Data_trapmf_mam_cen FIS Type:

mamdani ‘

And method Current Variable

Or method bame

o Type
Implication

Range
Aggregation

Defuzzification il Help Close

Ly

System "Data_trapmf_mam_cen": 2 inputs, 1 output, and 25 rules

Fig. 9. Fuzzy logic designer (rule editor).

As shown in Fig. 10, fuzzy logic is incorporated into
Simulink to effectively model and simulate control
operations. The system uses two input signals: input
signal 1 represents the error, and input signal 2 indicates
the change in error. Each input includes five membership
functions ranging from —1 to 1, allowing precise control
and flexibility.

setpont

Fuzzy Logic System Control

A

Setpont

Fig. 10. Simulink model implementing fuzzy logic control.

The system output is defined by nine membership
functions, also ranging from —1 to 1, enabling fine
modulation of control responses. Table III provides a
detailed explanation, and Fig. 11 illustrates the
membership functions.

Fig. 12 illustrates the operation of the fuzzy logic
control system using the FLC surface viewer, highlighting
the relationship between input and output variables
through a three-dimensional graphical depiction.

The fuzzy PD controller uses nonlinear adjustments
based on the error and its derivative, with clearly defined
saturation limits and scaling factors to ensure precision.
The input values for joints R, T, and Z are constrained by
saturation bounds. As shown in Fig. 5, Joint R is limited
to —40 to 40, Joint T to —15 to 15, and Joint Z to —20 to 20.
KFI defines the error range, setting the fuzzy input scaling
factors to 1/40 for Joint R, 1/15 for Joint T, and 1/20 for
Joint Z. The control input saturation limit for all three
joints is set between —100 and 100, with a scaling factor
of 100 defined by KFO. These parameters guarantee that
the system operates within physical constraints, thereby
maintaining precision and stability under varying
conditions. All parameter values were determined by the
optimization procedure outlined in the study optimizing
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membership function tuning for fuzzy control of robotic
manipulators using PID-driven data techniques [33, 68].

TABLE III. MEMBERSHIP FUNCTIONS OF FUZZY LOGIC CONTROLLER

Data Input Input L, f(e)
- NB NS 720 PS PB
NB NM NS NM PS PM
NS NB NM NS PM PB
Inputil.fde) ;5 wvNB NB  ZO PB  VPB
PS NB NM PS PM PB
PB NM NS PM PS PM
Membership function plots for Input1
g (ME NS 70 —PS_PB
>
o)
a
o
c 05¢r
[&
@
Ke)
5 o
> L L L
-1 -0.5 0 0.5 1
Input1 Value
Membership function plots for Input2
o L N — 70 ~ PS_PB
>
o)
a
o
c 05¢r
[&
@
Ke)
5 o
E L L L
-1 -0.5 0 0.5 1
Input2 Value
Membership function plots for Output1
3 4 “NM NS y40) ~PS " PM__ BB
> ) /
(3] /
a
o /
< 05 )
&
p
2
g 0
> L L L
-1 -0.5 0 0.5 1
Output Value #
Fig. 11. Trapezoidal membership functions of Input 1, Input 2, and
Output.

FIS Output Surface

output1

0

0

input1 input2

Fig. 12. FLC surface viewer showing the relationship between inputs
and output.
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E.  Expert-Rule-Based Gain Adjustment for Fuzzy
Control

A dual expert system, similar in structure to that used in
PID control as described in Section C, is implemented to
enhance the adaptability of fuzzy logic controllers in
handling both abrupt and gradual input variations. The key
difference lies in the target of adjustment: while the logic
remains structurally consistent, the expert system in the
fuzzy control framework modifies the output scaling factor
(output_for_adjust) instead of adjusting PID gains.

To produce a stronger control response, the expert
system increases the fuzzy scaling factor when it detects
step-like inputs, as illustrated in Figs. 13 and 14. In
contrast, the system reduces the scaling factor during
steady input conditions to prevent unnecessary
oscillations, which can be observed in Figs. 15 and 16. The
switching logic and decision-making process are
embedded within the fuzzy control framework and follow
the approach outlined in Section III.C and illustrated
in Fig. 6.

1 . Read input signal

2 2. Compute absolute_input = absolute value of input

3

4| 3. If absolute input >= 0 and absolute input < 1 then

5 output_for_adjust =

6 Else if absolute_input >= | and absolute_input < 2 then
7 output_for_adjust =

8 Else if absolute_input >= 2 and absolute_input < 2 then
9 output_for_adjust =
10 Else if absolute_input >= 3 and absolute_input < 4 then
1l output_for_adjust =
12 Else if absolute_input >= 4 then
13 output_for_adjust =

Fig. 13. Expert system logic for fuzzy control under step input
conditions.

Fuzzy Expert System for Step Input Control

Eror _@ " 1

[-]

Stepmputt

Fig. 14. Simulink model of fuzzy expert system for step input control.

1 . Read input signal

2 . Compute absolute_input = absolute value of input

3

4 ‘ 5. If absolute_input >= 0 and absolute_input < | then

5 output_for_adjust =

6 Else if absolute_input >= | and absolute_input < 2 then
7 output_for_adjust = 2.

8 Else if absolute_input >= 2 and absolute_input < 2 then
9 output_for_adjust = >

10 Else if absolute_input >= 3 and absolute_input < 4 then
11 output_for_adjust = 3

12 Else if absolute_input >= 4 then

13 output_for_adjust =

Fig. 15. Expert system logic for fuzzy control under smooth function
conditions.

Fuzzy Expert System for Smooth Funcion Control

Eror .E>
Exportforsep nput

O} B

Step gt

]

|
.
e & 3

Fig. 16. Simulink model of fuzzy expert system for smooth function
control.

Fig. 17 illustrates the comprehensive dual expert control

system based on fuzzy logic. It continuously monitors the
nature of the input signal and adjusts the fuzzy output in
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real time using the expert-derived scaling factors. This
integration enables the fuzzy controller to preserve its
flexibility, stability, and robustness across a variety of
dynamic environments.

Fuzzy Based Dual Expert Control

Fig. 17. Simulink model of fuzzy-based dual expert control.

As shown in Fig. 17, the operation of the expert system
for adjusting f(KFIxe(k), KFIxé(k)) is described by
Eq. (10), where the proportional gain is modulated based
on the expert output (output_for adjust) according to input
characteristics.

Uk) = f(KFIxe(k), KFIxé (k))x (outputyor, ., ) x KFO (10)

IV. RESULTS AND DISCUSSION

The results of the system simulations, which encompass
the PID controller simulation, fuzzy logic controller
simulation, and the overall comparative analysis, are
presented in this section. The performance differences and
overall effectiveness of each set of results are highlighted
in an integrated discussion that follows the analysis of each
set separately.

A.  Results of Simulation PID Controller

The dynamic performance of the four PID-based
schemes, namely conventional PID, step-input expert PID
(PESC-Step), smooth-input expert PID (PESC-Smooth),
and the proposed dual-expert PID (PBDEC), is
summarized in Figs. 18-21 and quantified in
Tables IV-XII. The classical PID eliminates overshoot at
the expense of sluggish convergence, while PESC Step
yields the shortest settling times ranging from 0.60
to 1.21 s by momentarily amplifying the proportional gain
for modest step commands of 10 mm, 3.75°, and 5 mm for
Joints R, T, and Z, respectively, as shown in Fig. 19 and
Tables IV-VI. In this discrete-step regime, PESC Smooth
over-reacts, producing an overshoot of up to 77% in
JointR because its gains are calibrated for gradual
trajectories. In contrast, PBDEC combines the two expert
rules in real time, ensuring that overshoot is limited to less
than 24% and achieving the lowest IAE and RMSE in
Joints R and Z, demonstrating the advantages of adaptive
switching even for minor set-point jumps.

When the reference amplitudes are tripled to values
of 30 mm, 11.25°, and 15 mm, as illustrated in Fig. 20 and
Tables VII-IX, the relative ordering changes.
PESC Smooth now tracks the larger steps with the smallest
RMSE in Joints R and Z, but this comes at the expense of
a 20% overshoot. PBDEC once again provides the most
balanced response, maintaining an overshoot of under 9%
in Joint R and achieving the best combined IAE-RMSE
pair in Joints T and Z; this suggests that the decision logic
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correctly identifies the excitation as a step and selects the
appropriate gain schedule. The conventional PID
continues to demonstrate minimal overshoot yet suffers
the largest cumulative error, confirming that fixed gains
cannot simultaneously satisfy both speed and accuracy
when set-point magnitudes vary considerably.

Fig. 18. Simulink block diagram overview for robotic system simulation
using PID control.
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Fig. 19. System response for setpoints of joints R, T, and Z at 10, 3.75,
and 5 using PID control.
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Fig. 20. System response for setpoints of joints R, T, and Z at 30, 11.25,
and 15 using PID control.

The greatest benefit of expert scheduling appears in
continuous, smooth trajectories, depicted in Fig. 21 and
detailed in Tables X—XII. PESC Smooth tracks the ramp
profile nearly perfectly, with RMSE values of
only 0.31 mm, 0.096°, and 0.15 mm for Joints R, T, and Z,
respectively. PBDEC closely follows, incurring a modest
accuracy penalty from occasional switching, but still
surpasses the classical PID by an order of magnitude.
PESC Step, which is designed for discontinuities,
continues to outperform the fixed-gain baseline despite
exhibiting modest oscillations. These trends confirm that
it is essential to reduce the gain during low-slope intervals
in order to mitigate oscillations and limit steady-state
deviation.

In general, the PBDEC configuration offers the most
consistent performance across all test categories. By
integrating the complementary strengths of the step- and
smooth-specific expert rules, it achieves rapid rise times
that are comparable to PESC-Step during abrupt changes,
while also approaching the low-error behavior of
PESC-Smooth on incremental trajectories. Consequently,
the dual-expert strategy offers a resilient and adaptable
solution for robotic manipulators that operate in
environments with unpredictable perturbation
characteristics and reference profiles, as illustrated in
Figs. 18-21.
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Fig. 21. System response to smooth input for joints R, T, and Z using

PID control.

TABLE IV. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 10

USING PID CONTROL
Setting o g Rise  [\p  RMSE
Type Time (%) time (mm)  (mm)
(s) (s)
Data_PID 1.81 0.01 126  6.00 2.90
Data_PESC_Step 0.60 635 055 3.78 2.27
Data PESC_Smooth 1.98 77.14  0.11 5.15 2.45
Data PBDEC 1.21 2441 022  3.19 1.64

601

TABLE V. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 3.75

USING PID CONTROL
Tvoe Setting %08 gl';‘; IAE RMSE
P Time(s) (%) " O O
Data_PID 3.85 1.21 126 2.53 1.17
Data PESC_Step 1.21 0.16 099 1.67 0.99
Data_ PESC_Smooth 0.93 36.26  0.11 0.70 0.56
Data PBDEC 1.15 51.82 0.16 2.31 0.77

TABLE VI. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 5 USING

PID CONTROL
Setting o s Rise  1\p  RMSE
Type Time (%) time (mm)  (mm)
(]
(s) (s)
Data_PID 1.76 0.02 1.59  3.59 1.68
Data_PESC_Step 0.99 1.08 093 220 1.33
Data PESC_Smooth 1.50 62.14  1.60 1.80 1.02
Data PBDEC 1.81 26.31  0.27 1.91 0.90
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TABLE VII. PERFORMANCE METRICS FOR JOINT R AT SETPOINT 30
USING PID CONTROL

Setting o 05 Ris¢  14\p RMSE
Type Time (%) time (mm)  (mm)
(O] ®
Data_PID 1.70 0.01 1.32 18.01 8.70
Data_PESC_Step 1.04 823 055 11.51 6.81
Data PESC_Smooth 0.82 20.50 0.22 7.06 5.71
Data PBDEC 0.99 883 049 630 6.30

TABLE VIII. PERFORMANCE METRICS FOR JOINT T AT SETPOINT 11.25
USING PID CONTROL

Tvoe Setting  %0S E:;: IAE RMSE
P Time) (%) (€ O 0
Data_PID 3.85 1.21 1.26  7.59 3.52
Data PESC_Step 0.71 2900 071 447 278
Data_PESC_Smooth 0.77 19.04 0.16 228 1.98
Data PBDEC 3.68 4.12  0.55 4.00 2.30

TABLE IX. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT 15
USING PID CONTROL

Setting o ng  Rise [\p  RMSE
Type Time (%) time (mm)  (mm)
(O] )
Data_PID 1.70 0.02 1.59 10.78 5.04
Data_PESC_Step 1.59 548  0.71 6.61 3.95
Data PESC_Smooth 1.21 2634 027 428 3.02
Data PBDEC 1.48 6.24  0.66  5.61 3.46

TABLE X. PERFORMANCE METRICS FOR JOINT R UNDER SMOOTH INPUT
USING PID CONTROL

Type IAE (mm) RMSE (mm)
Data_PID 107.49 13.95
Data PESC_Step 62.24 8.82
Data PESC_Smooth 1.73 0.31
Data PBDEC 14.41 1.33

TABLE XI. PERFORMANCE METRICS FOR JOINT T UNDER SMOOTH

INPUT USING PID CONTROL
Type IAE (°) RMSE (°)
Data_PID 37.15 4.81
Data_PESC_Step 21.26 3.24
Data PESC_Smooth 0.78 0.096
Data PBDEC 12.49 1.11

TABLE XII. PERFORMANCE METRICS FOR JOINT Z UNDER SMOOTH

INPUT USING PID CONTROL
Type IAE (mm) RMSE (mm)
Data_PID 66.41 7.77
Data PESC_Step 37.67 5.13
Data PESC_Smooth 0.88 0.15
Data PBDEC 2.11 0.26

B.  Results of Simulation Fuzzy Logic Controller

The fuzzy-logic experiments were implemented using
the Simulink architecture depicted in Fig. 22, which was
structured into three tiers: continuous trajectory, enlarged
step commands of 30 mm, 11.25°, and 15 mm, and modest
step commands of 10 mm, 3.75°, and 5 mm. The baseline
FLC, the step-input fuzzy expert (FESC-Step), the
smooth-input fuzzy expert (FESC-Smooth), and the
dual-expert fuzzy controller (FBDEC) were all
benchmarked. Tables XIII-XXI present numerical
indicators, while Figs. 23-25 illustrate critical responses.
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Fuzzy Logic-based Dual Expert Controller (FBDEC)
attained the optimal balance between speed and accuracy
for reference values of 10 mm, 3.75°, and 5 mm. The
overshoot in JointR was maintained at 2.59%, a
significantly lower value than that of FLC at 4.51% and
FESC-Smooth at 9.13%. Additionally, the ascent periods
were comparable to those of the faster FESC-Step. The
overall precision was reduced by the increased excess,
despite the fact that FESC-Step decreased the settling time
to 0.77 s in Joint R. These results verify that the adaptive
switching in FBDEC effectively reduces excessive
excursions during low-amplitude disturbances without
compromising responsiveness.

Fig. 22. Simulink block diagram overview for robotic system simulation
using fuzzy logic control.

The monitoring priorities underwent a transformation as
the command magnitudes were increased threefold.
FESC-Smooth capitalized on its higher steady-state gain
to attain the lowest RMSE in Joints R and Z; however, it
resulted in an overshoot of approximately 20%. FBDEC
once again attained the most balanced outcome, as the
combined IAE-RMSE scores in Joints T and Z were the
best overall, and overshoot remained below 9% in Joint R.
The pure FLC maintained minimal overshoot but accrued
the largest integrated errors, underscoring the limitation of
fixed gains across diverse set-point scales.

In joints R, T, and Z, FESC-Smooth achieved RMSE
values of 0.31 mm, 0.096°, and 0.15 mm, respectively,
with continuous input. FBDEC followed closely, incurring
a modest accuracy penalty from intermittent rule
switching, but still outperformed FLC by approximately an
order of magnitude. Despite minor oscillations,
FESC-Step outperformed the baseline, indicating that
expert scheduling offers advantages that extend beyond its
primary design envelope.

Fuzzy Logic-based Dual Expert Controller (FBDEC)
demonstrated the most consistent performance in all test
categories. It confirmed the efficacy of real-time rule
selection by combining the brief settling times of
FESC-Step during abrupt changes with the low
steady-state error of FESC-Smooth on gradual profiles.
The dual-expert fuzzy architecture offers a resilient and
adaptable solution for manipulators that are required to
manage external disturbances and unpredictable reference
shapes, as demonstrated in Figs. 23-25 and
Tables XIIT-XXI.
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TABLE XVI. PERFORMANCE METRICS FOR JOINT R AT SETPOINT
SETPOINT 30 USING Fuzzy LOGIC CONTROL

T Setting  %OS 5‘“ IAE RMSE

ype Time(s) (%) ‘(';;e (mm)  (mm)
Data FLC 0.82 2.16 061 1373  8.06
Data_FESC_Step 1.10 1.02 077 1646 8.72
Data_FESC_Smooth 0.88 534 039 1049  7.04
Data FBDEC 1.04 1.02 077 1513 8.17

TABLE XVII. PERFORMANCE METRICS FOR JOINT T AT SETPOINT
SETPOINT 11.25 USING Fuzzy LOoGIC CONTROL

Type Setting %08 gl‘]:‘e* IAE RMSE
Time (s) (%) ) ©) ©
Data_FLC 0.60 554 044 486 276
Data_FESC_Step 1.81 360 061 572 297
Data_ FESC_Smooth 0.77 9.79 033 381 2.43
Data FBDEC 1.80 3.68 055 524 275

TABLE XVIII. PERFORMANCE METRICS FOR JOINT Z AT SETPOINT
SETPOINT 15 USING Fuzzy LOGIC CONTROL

Rise

T Setting %08 IAE RMSE
ype Time (s) (%) ‘('s';e (mm)  (mm)
Data_FLC 121 535 055 695 4.1l
Data_FESC_Step 0.98 336 0.66 7.80 434
Data_ FESC_Smooth  0.99 973 039 531 351
Data FBDEC 0.93 342 0.66 687  3.96

TABLE XIX. PERFORMANCE METRICS FOR JOINT R UNDER SMOOTH
INPUT USING Fuzzy LOGIC CONTROL

Type IAE (mm) RMSE (mm)
Data FLC 70.14 10.31
Data_FESC_Step 80.48 11.18
Data FESC_Smooth 52.50 8.37
Data FBDEC 57.49 8.42

TABLE XX. PERFORMANCE METRICS FOR JOINT T UNDER SMOOTH
INPUT USING FUuzzy LOGIC CONTROL

Type IAE (°) RMSE (9
Data_FLC 20.75 2.64
Data_FESC_Step 25.75 3.13
Data_FESC_Smooth  13.32 1.80
Data FBDEC 16.56 1.89

TABLE XXI. PERFORMANCE METRICS FOR JOINT Z UNDER SMOOTH
INPUT USING Fuzzy LOGIC CONTROL

Type IAE (mm) RMSE (mm)
Data_FLC 32.70 4.75
Data_ FESC_Step 35.05 4.96
Data FESC_Smooth 23.84 3.64
Data FBDEC 24.23 3.64

C. Over All Results of Simulation

The most balanced and robust performance across all
test scenarios is routinely achieved by dual-expert
architectures, namely PBDEC for PID and FBDEC for
fuzzy logic, as revealed by the comparative analysis of all
control strategies under step and smooth input conditions.
The conventional PID was substantially outperformed by
PBDEC in step commands of 10 mm, 3.75°, and 5 mm, as
it improved both TAE and RMSE values and reduced
overshoot. In the same vein, FBDEC surpassed the
baseline FLC by maintaining overshoot of Joint R below
3%, achieving comparable rise times to the step-tuned
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expert, and maintaining higher tracking accuracy than
FESC-Smooth. When contrasted with earlier fuzzy-PID
studies such as Ref. [7], which continue to exhibit
noticeable overshoot and lengthy settling under similar
abrupt inputs, FBDEC consistently trends toward smaller
peak excursions and faster stabilization, underscoring the
benefit of rule-based adaptation.

Both PBDEC and FBDEC maintained their exceptional
adaptability when confronted with enlarged step inputs
of 30 mm, 11.25°, and 15 mm. The RMSE in Joints T and
Z was minimized by FBDEC, despite a modest increase in
rise time. In Joint R, PBDEC attained the lowest combined
error metrics and contained overshoot within 9%.
Conversely, the fixed-gain PID and FLC controllers
exhibited the most limited adaptability to diverse input
scales and the highest accumulated errors. Likewise,
PSO-PID frameworks described in Ref. [23] focus on
reducing integrated error through a single optimized gain
set; by contrast, PBDEC retains low cumulative error
while simultaneously suppressing overshoot, illustrating
the additional advantage gained from on-the-fly gain-set
switching rather than offline retuning.

Adaptive switching works even better when the input
paths are stable. The smooth-specific experts
(PESC-Smooth and FESC-Smooth) are almost as good as
the dual-expert controllers. On the other hand, the
fixed-gain controllers are much worse. When working on
smooth paths, PESC-Smooth and FESC-Smooth have the
lowest RMSE of all the joints, but they both have
considerable difficulty under step conditions. PBDEC and
FBDEC effectively mitigate this limitation by employing
context-aware rule switching, which enables a generalized
and reliable control response. Collectively, these
trend-level observations in relation to Refs. [7, 23]
underscore the simultaneous enhancements in transient
attenuation and steady-state precision that dynamic gain
scheduling provides, despite the fact that the underlying
plant models differ.

In conclusion, the dual-expert approaches demonstrate
precision, adaptability, and resilience across a wide range
of input profiles, thereby verifying their appropriateness
for robotic manipulators operating in dynamic
environments. The proposed architecture is intended to be
positioned within the broader control-strategy landscape
without implying a direct numerical comparison, and the
cross-study contrasts presented here are qualitative rather
than quantitative.

V. CONCLUSION

In this research, a dual-expert gain-adaptation strategy
was evaluated for robotic manipulators that are required to
track both continuous trajectories and abrupt step
commands. Two controllers were developed: PBDEC,
which improves a PID loop by incorporating distinct gain
tables for step and smooth inputs, and FBDEC, which
applies the same principle to a fuzzy PD loop. The online
switching between the two tables is solely determined by
the reference-profile increment through a simple rule set.
PBDEC  reduced integral-absolute  error  and
root-mean-square error by up to 46.9% in comparison to a
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fixed-gain PID, while maintaining overshoot below 9%, as
demonstrated by simulations conducted on a three-joint
Seiko D-Tran RT3200 model. The tracking accuracy of
FBDEC was comparable to that of a smooth-tuned fuzzy
controller, and the overshoot was kept below 3% during
ramp tracking; it did not exhibit the overshoot observed in
the step-tuned fuzzy variant. Single-mode experts
performed well only under the profile for which they were
tailored, whereas the dual-expert approach maintained
acceptable performance under both profiles. The switching
logic can be implemented in existing programmable logic
controllers or real-time-target hardware without additional
sensors or plant identification, as it uses only reference
information and two predefined gain tables. The method
can accommodate both motion regimes without retuning
on medical manipulators that transition between fast
puncture and slow trajectory following, or on
pick-and-place arms that alternate between rapid indexing
and delicate insertion. The analysis was restricted to
simulations with nominal plant parameters and a 1 kHz
control cycle. Future work should test the algorithm on
physical hardware, examine behaviour under parameter
drift and external disturbances, and investigate automatic
adjustment of the switching threshold to handle reference
profiles that vary continuously between step and smooth
cases.#
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