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Abstract—Fault Detection and Diagnosis (FDD) of vehicle
air conditioning (A/C) system is always a vital technique
for achieving energy-saving goals and maintaining system
reliability. The performance of k-Nearest Neighbors (kNN)
and Random Forest (RF) models are invested for
diagnosing faults in vehicle A/C systems. Two frequent
faults, condenser fouling and refrigerant leakage, are
selected in this study. A total of 745 validation samples and
568 test samples, covering normal operation and seven
fault conditions with varying levels of these two faults, were
analyzed. Model performance was evaluated using
accuracy, precision, recall, F1-Score, and Receiver
Operating Characteristics (ROC) curve metrics.
Additionally, the confusion matrix was employed to
provide a detailed breakdown of a model’s classification
performance. Results showed that both models achieved
high validation accuracy (~91.68%), with RF slightly
outperforming kNN in testing (RF: 90.26%). The kNN
model exhibited higher recall, enhancing the detection of
true positive faults, whereas RF demonstrated better
balance between precision and F1-Scores. ROC curve
analysis further confirmed that RF provided better
discrimination of overlapping fault classes. Confusion
matrix results indicated that both models struggled with
intermediate levels of condenser fouling, revealing a need
for improved fault differentiation. Overall, the RF model
demonstrated greater robustness and consistency, making
it more suitable for reliable diagnosis of vehicle A/C faults.

Keywords—fault, diagnosis, machine learning model, k-
nearest neighbor, random forest

I. INTRODUCTION

The energy conversation has been a topic of concern
for decades. End-use sectors, including the
transportation, industrial, residential, and commercial
sectors, consume large amounts of energy. Among
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these, according to Agbulut [1], transportation accounts
for 28% of the total energy consumption. Meanwhile,
vehicles are still an indisputable element of the human
experience. Currently, the demand for vehicles is
increasing, yet global fuel supplies remain limited. As a
result, past studies have consistently shown an interest
in the energy conservation of vehicles. However, several
factors can affect a car’s fuel consumption, such as
mechanical failure, driving competence, and the Air
Conditioning (A/C) system. Among these factors, the
A/C system, which is crucial for modern vehicles owing
to its ability to provide thermal comfort, consumes the
most energy: it requires up to 30% of the total fuel use
or more than 27 billion liters of gasoline annually in the
United States [2].

Consequently, reducing energy usage has become a
pressing requirement of vehicle A/C systems.
Researchers have conducted various studies to reduce
the energy consumption of automotive A/C systems.
Generally, researchers found a close relationship
between energy waste and A/C unit failure performance.
According to several studies [3, 4], when the A/C system
is in a fault state, it wastes about 30%—40% of the total
energy consumed [5]. If the operating state of the A/C
system can be regulated to ensure that it always
functions under normal conditions, energy savings can
account for 40% of the total energy usage. Therefore, a
robust method for detecting and diagnosing faults in
vehicle A/C systems is required to achieve this purpose.

Machine learning has been widely researched and
applied to cars to assist humans, such as in identifying
traffic signals, pedestrians, road marking, and ensuring
distances [6—8]. Thanks to machine learning, such
vehicles can increase accessibility, improve road safety,
and reduce accidents. According to a study published [9],
employing machine learning techniques in vehicles has
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benefits over not using machine learning. In addition,
machine learning has been developed in the fields of
fault detection and diagnosis in A/C systems.
Tran et al. [10] employed the RBF method to detect and
diagnose faults in chiller systems. The results showed
that the RBF method was accurate for the detection and
diagnosis of six chiller faults. Refrigerant leak detection
based on machine learning, was reported by
Lei et al. [11]. The results of refrigerant leak detection
in vehicles showed that the accuracy of the proposed
method can reach 95.69%. Similarly, the development
of machine learning for A/C fault detection and
diagnosis has also been discussed in various published
works such as support vector regression [12, 13], the
Kriging method [14], and artificial neural
networks [15, 16]. In general, machine learning method
methods are widely applied in fault detection and
diagnosis in commercial and industrial A/C systems.
Conversely, limited publications have addressed its
application to A/C systems in vehicles. This study
investigates two classification models, the k-Nearest
Neighbor (kNN) algorithm and the Random Forest (RF),
as the A/C fault detection and diagnosis model. Next, the
A/C fault detection and diagnosis Fault Detection and
Diagnosis (FDD) proposed a useful technique to
improve the energy-saving goals for two frequent faults.

II. RESEARCH METHODOLOGY

A.  The kNN Algorithm for Classification Model

The kNN method is a commonly used in machine
learning method. Scholars commonly use it for

classification because of its simplicity and high accuracy.

The kNN technique is based on a given data matrix with
M rows and N columns. The prediction of a query point
is based on the similarity of the data points in a given
dataset. Generally, the kNN algorithm finds the K-
nearest neighbors to a given data point using a distance
metric between the query and other points in the data
matrix. Here, K represents the number of nearest
neighbors to be considered when making predictions.
The distance metric can employ one of the following
distance functions: Euclidean distance (Eq. (1)),
Manhattan distance (Eq. (2)), or Minkowski distance
(Eq. (3)). The weighted or majority vote of the K
neighbors then determines the class or value of the query
data point. Therefore, the system can easily identify the
K-nearest points to the query by sorting the distances in
ascending order and retrieving the K points that have the
shortest distance between the dataset and the query.
Typically, the best way to select the best value for K is
to first inspect the data. Although reducing the total
noise makes the higher K values more precise, this is not
a guarantee. Cross validation is another common method
to find an acceptable K value between 3 and 10.

YK — yi)? (D
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where x; and y; are the query point itk and a case from
the training data sample, respectively.
Two well-known voting method in the kNN
classification are presented in the following equations.
Majority voting:

y' =argmax, Y(x, y,)epg 0¥ )
Distance-Weighted Voting:

y, = aT.g maxy Z(xi,yi)EDK Wi6(y'yi) (5)

where:

-y’ is the predicted label for the test point data.

- Dy is the data set of the kNN of the test sample; x; and
y; denotes the data and the class label in Dy ,
respectively. Cross validation was used to select the K
value.

-8(y,y;) = 1if y; = y and 0 otherwise.

- w; is the weighted distance of x; which is determined
by the Euclidean distance metric as follows:

e xi]|2
w; = exp( ”xale”Z) (6)
where a is an optional positive number.

B.  The Random Forest Machine Learning For
Classification Model

RFs are effective machine learning models for
prediction. Injecting appropriate randomness makes
them accurate classifiers and regressors. Furthermore,
the framework, which considers the strength of
individual predictors and their correlations, provides
insight into the predictive capabilities of RF. RFs consist
of an ensemble of tree predictors, where each tree relies
on the values of a randomly selected vector, which is
independently drawn and identically distributed over all
trees in the forest. The generalization error in forests
approaches a limit when the number of trees in the forest
increases significantly. Consider an ensemble of
classifiers, u; (x), uy(x), ... u,, (x) with the training set
randomly sampled from the distribution of the random
vectors Y and X. We define the margin function as
follows:

mg(X: Y) = aﬁnl(un(X) = Y) -
maxj#:Yaﬁnl(un X) =) (7

where X represents the input measure, a?,, denotes the
average number of votes at X and Y for the respective
classes, and I(.) signifies the indicator function. The
margin quantifies the degree to which the average vote
count for classes X and Y exceeds the average vote for
any alternative class. A larger margin indicates greater
classification confidence. The generalization error is
expressed as follows:

PE* = PX'y(mg(X, Y)) < 0 (8)
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where the subscripts X and Y indicate that the probability
lies within the X and Y space.

FAULTS SELECTION AND SIMULATED EXPERIMENTAL
FAULTS

A.  Faults Selection

A fault is defined as an unpermitted deviation of at
least one characteristic property of a variable from the
acceptable behavior. A fault can result in inefficiency,
malfunction, or even system damage. Therefore, an
accurate fault detection tool for the A/C system in
modern vehicles is crucial for maintaining the system’s
functionality and saving energy. The AC system is
known to have numerous faults. Generally, these faults
can be roughly distinguished into two major categories:
abrupt and gradual faults. The obvious symptoms of
abrupt faults such as locked compressors, burned
magnetic compressor coils, and broken pipes, make
them easy to address. Therefore, these faults are rarely
the subject of scholars. Otherwise, common faults in the
A/C system, such as refrigerant overcharge, refrigerant
leakage, non-condensable gas, evaporator air blockage,
and condenser air blockage, tend to occur gradually.
These faults are typically difficult to detect because of
their unclear symptoms. They only react when a feature
undergoes a significant change, such as a large, sudden,
or long-lasting, gradually increasing fault. Typically,
they emerge when the system encounters significant
operational problems; this implies that the indications of
an A/C system failure are readily apparent. We selected
refrigerant leakage and condenser fouling as these faults
because their frequent occurrence in Vietnam.

The time dependency of the faults can be
distinguished, as shown in Fig. 1, as an abrupt fault
(stepwise), an incipient fault (drift-like), and an
intermittent fault.

System operating >

Feature of System operating changing
f=AF

>
>

| t

Fig. 1. Time-dependency of faults: (a) abrupt; (b) incipient.

B.  Experimental Data And Method

In this study, refrigerant R134a was used in a
conventional A/C system consisting of a belt-driven
compressor, an air-cooled condenser, a laminar
microchannel evaporator, and a thermostatic expansion
valve. These components supported the development
and evaluation of the proposed FDD methods, with the
simulated faults detailed in Table I. Eight fault-related
feature parameters were selected to reliably capture the
system’s health state. Four PT-100 temperature sensors,
each with typical accuracy of +0.15 °C, were positioned
to monitor the refrigerant temperatures at the
condenser’s inlet (Tci) and outlet (Tco), and at the
evaporator’s inlet (TEI) and outlet (TEO). Additional
sensors recorded air temperatures at the condenser’s
entry (Tai) and exit (Tao), enabling the calculation of the
condensing (Tcd) and evaporating (Tev) saturation
temperatures. The temperature sensors are arranged as
shown in Fig. 2.
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Fig. 2. Structure diagram of the test for vehicular A/C system.

Two types of experiments were conducted: fault-free
and fault experiments. As mentioned above, two
common faults, namely, refrigerant leakage and
condenser fouling were chosen in the simulated
experiment. Each fault was simulated at three distinct
severity levels. For refrigerant leakage, the R134a
refrigerant charge was incrementally reduced by 10%
(525 g for normal). The amount of R134a refrigerant
added was weighed on a commercial digital scale with a
measurement error of +5 g. For condenser fouling, the
airflow through the condenser was adjusted by varying
the step damper position. Data for fault-free and fault
conditions were collected wusing a PNTECH
CONTROLS DDC-C46 and transmitted to a PC via a
Modbus RTU 485 at 5-s intervals.

TABLE I. METHODS OF IMPLEMENTING THE FAULTS AND LEVELS SIMULATED

Severity levels of faults

Fault Methods of simulated fault:
s Fault free Level 1 Level2  Level 3 cthods of simufated Tautis
Refrigerant leakage 0% -10% —20% -30% % reduction in the total charge
Condenser fouling 0% —10% 20% ~30% The surface of the condenser coil was

blocked with a volume control damper

To enhance model accuracy, data quality was
prioritized. Data preprocessing involved applying a
moving window filter based on three standard deviations
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from the mean and 10 test points to remove ambiguous
data. The cleaned data were then divided into training,
validation, and testing sets for analysis.
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C. Data Preprocessing and Fault Diagnosis
Performance Evaluation Indices

Data quality is crucial for improving model accuracy
in machine learning; however, clean, well-organized
data are rarely available from the outset, because they
often include transient and steady-state conditions.
Therefore, data preprocessing is essential to convert raw
data into usable format. Common preprocessing
methods include data standardization and normalization.
This study employs z-score normalization, a
standardization technique that scales data to have a mean
of 0 and a standard deviation of 1, ensuring that features
share a common scale without altering the range of
values. The z-score normalization is as follows:

_ x-w
z=%H ©
where:

Z is the normalized value. X is the input data point. y is
the mean of the dataset. o is the standard deviation of the
dataset.

D. Evaluation Metrics for Classification Models

Evaluation metrics are essential for assessing the
performance and effectiveness of machine learning
models, particularly in the prediction phase of this study.
The key metrics widely used for -classification
evaluation included accuracy, confusion matrix,
precision, recall, and the F1-Score, which collectively
measure the model’s predictive capability [17-19].
Particularly, accuracy reflects the overall proportion of
correctly classified samples. Precision indicates how
many of the predicted positive cases are actually positive,
emphasizing the model’s reliability when predicting
faults. Recall (sensitivity) measures the ability of the
model to detect actual fault cases, focusing on
minimizing missed detections. The F1-score combines
precision and recall into a single metric, offering a
balanced evaluation when both false positives and false
negatives are important. The detailed formulas of these
evaluation metrics are presented in Table II.

According to Vujovi¢’s report [17], this study utilized
the confusion matrix to evaluate model performance in
fault detection and diagnosis (Table III) for the binary
classification setup. Here, faults represent the positive
class, and fault-free conditions represent the negative
class. Each metric was calculated by comparing the

model’s predictions with the actual values in the training
and testing datasets.

TABLE II. METRICS FORMULA

Metric Formula
Accuracy (TP+TN)(TP+FP+TN+FN)
Precision TP/(TP + FP)
Recall (sensitivity) TP/(TP + FN)

2 X Precision X Recall

F1_Score
- Precision + Recall

TABLE III. CONFUSION MATRIX

Predicted label
Actual label
Fault Fault free
Fault True positive (TP) False negative (FN)
Fault free False positive (FP) True negative (TN)

In Table III, TP represents the count of correctly
predicted positive samples, FN represents the count of
positive samples incorrectly predicted as negative, TN
represents the count of correctly predicted negative
samples, and FP represents the count of negative
samples incorrectly predicted as positive. In a multi-
class classification problem such as fault diagnosis, the
positive category refers to the class currently under
consideration, and the negative category includes all
other combined classes.

IV. RESULTS AND DISCUSSION

We trained two machine learning models using 745
data samples for validation and 568 data samples for
testing. The test set included normal operating
conditions and two fault types: condenser fouling and
refrigerant leakage. The data covered seven distinct
classes, labeled as “0” for fault-free, <17, “2”, and “3”
for increasing levels of condenser fouling severity, and
“—17,“=2”, and “—3” for increasing levels of refrigerant
leakage severity. The performance results of both
models are presented in Table IV. To evaluate the
robustness and generalization ability of the classification
models, a 10-fold cross-validation strategy was
employed during model training. In this approach, the
training dataset was randomly partitioned into ten equal
subsets. For each iteration, one subset was retained for
validation while the remaining nine were used for
training.

TABLE IV. METRICS RESULTS OF THE TWO MODELS

Metrics Accuracy Precision Recall F1-Score

Model Validation Test Validation Test Validation Test Validation Test
kNN 91.68% 89.26% 92.09% 92.15% 97.98% 92.62% 93.46% 89.61%
RF 91.68% 89.26% 92.09% 92.15% 90.92% 93.59% 88.03% 90.46%

The results presented in Table IV provide a
comparative performance analysis between the kNN and
RF models across the validation and test sets, using
accuracy, precision, recall, and the F1-Score. Both
models exhibited identical validation accuracy of
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91.68%, indicating similar learning performance during
the training phase. However, on the test set, both models
showed a slight drop in accuracy to 89.26%, suggesting
a comparable ability to generalize unseen data. Precision
remained consistent across both models, with identical
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values of 92.09% during validation and 92.15% during
testing, highlighting similar behavior in identifying TPs.
Differences emerge between recall and F1-Scores. The
kNN model maintained a higher recall (97.98% in
validation and 92.62% in testing), suggesting that it
performed better in capturing all relevant instances
(TPs), compared to the RF model, which showed a lower
recall (90.92% in validation and 93.59% in testing). The
kNN’s F1-Score (93.46% in validation and 89.61% in
testing) slightly declined on the test set but remained
close to the RF model’s F1-Score (88.03% in validation
and 90.46% in testing). The key takeaway from this table
is that both models perform comparably; however, the
kNN model has a slight advantage in recall, whereas the
RF model demonstrates more stability in its performance
across different metrics, particularly in precision.

In terms of overall performance, the kNN and RF
models exhibited competitive results across accuracy,
precision, recall, and the F1-Score. However, each
model had its strengths: the kNN model demonstrated
higher recall, indicating better performance in
identifying TPs, particularly during validation. The RF
model demonstrated more stability across different
metrics, with consistent precision and F1-Scores
between the validation and test sets, which may suggest
better generalizability and robustness. While the kNN
model excels slightly in recall, the RF model’s
consistent performance across multiple metrics,
especially its stable precision, suggests that it may be the
better overall performer, especially in scenarios where
precision and stability across different conditions are
crucial. Therefore, RF slightly outperformed kNN in
terms of its balanced and reliable performance.

To validate the robustness of the proposed models, we
conducted a comparative performance analysis with
findings reported in existing literature. Lei et al. [11]
achieved a high F1-Score of 95.73% in refrigerant leak
diagnosis using an Extremely Randomized Trees (EXT)
model, which required advanced feature selection and
tuning across 25 different machine learning algorithms.
In contrast, our models, namely k-Nearest Neighbors
(kNN) and Random Forest (RF), reached commendable
F1-Scores of 89.61% and 90.46%, respectively, on the
test set. Despite slightly lower F1-Scores, our approach
benefits from reduced model complexity, fewer
preprocessing steps, and excellent generalization across
seven distinct fault and normal states. These results
highlight that our models offer a more practical and
efficient alternative for implementation in automotive
air-conditioning fault diagnosis systems, especially
where resource constraints or simplicity are prioritized.
Furthermore, to assess and compare the classification
models’ ability to distinguish between fault conditions
in vehicle A/C systems, the ROC curve was employed.
This curve visually represents the trade-off between the
TP and FP rates across various decision thresholds,
providing a comprehensive view of each model’s
performance in classifying different fault conditions. By
comparing the ROC curves for each model, this analysis
highlights the strengths and weaknesses of each
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classifier, particularly their ability to handle multiple
classes and generalize to unseen fault data. Fig. 3
illustrates the ROC curves of the two classification
models.
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Fig. 3. Evaluation of classifier performance using ROC curves (a)
kNN model; (b) RF model.

Fig. 3(a) and (b) display the ROC curves for the k-NN
and RF classifiers, which provide insights into the
performance of these models across multiple classes. In
Fig. 3(a), the k-NN classifier exhibited varying
performance across different classes. For classes —3 and
—2, the ROC curves indicate poor performance with high
FP rates and low TP rates, suggesting that the proposed
k-NN struggled to distinguish between these classes,
possibly due to class overlap or imbalanced data. In
contrast, classes 0, 1, and 3 demonstrate better
separation, with higher TP rates and lower FP rates,
indicates that k-NN performs well when the classes are
more distinct. In contrast, Fig. 3(b), which shows the
ROC curves for the RF classifier, demonstrates the
generally superior performance. RF handles class
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separation better across all classes, with stronger curves
that show higher TP rates and lower FP rates than k-NN.
This was particularly evident for classes —2, —1, and 0,
where the RF classifier consistently outperformed the k-
NN. Class 3, which also performed well in the k-NN
model, showed a similar high performance in the RF
model, but with even sharper separation, which indicates
that the RF is more robust and better at handling class
overlap or noise in the data. When comparing the two
classifiers, RF consistently provided more reliable and
accurate results across most classes, as reflected by its
stronger ROC curves. The higher area under the curve
for RF further supports its superior classification ability.
In contrast, the proposed k-NN, while effective in some
cases, struggles with more complex class distributions
and overlapping classes. Therefore, for tasks involving
complex decision boundaries or requiring better
generalization across multiple classes, RF model is
preferred, while the k-NN may still be suitable for
simpler problems with fewer class overlaps.

To further analyze the results, this study presented the
results based on the confusion matrix for two cases, i.c.,
validation and testing. Fig. 4 illustrates the confusion
matrices for the kNN and RF model in the validation
case. At a glance, the classification model performs

better when the numbers on the main diagonal are higher.
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Fig. 4. Confusion matrix of the two models in validation case.

Fig. 4 presents each with an accuracy of 91.68%, for
diagnosing various system conditions labeled as “0” for
the fault-free state, “17, “2”, and “3” for increasing
levels of condenser fouling severity, and “—1, “—2”, and
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“=3” for increasing levels of refrigerant leakage severity.
For both models, the fault-free condition (label 0) and
severe fault conditions (labels —3, =2, —1, and 3) were
accurately  identified  with  100%  precision,
demonstrating  strong model performance in
distinguishing clear-cut cases. However, both models
encounted difficulties with intermediate levels of
condenser fouling, particularly between labels 1 and 2.
The kNN model misclassified 44.6% of the label 1
instances as label 2 and 54.5% of the label 2 instances as
label 1, indicating a challenge in distinguishing these
similar states. The RF model exhibits an identical pattern,
misclassifying the same percentage between these two
labels, suggesting that the feature space overlap between
mild and moderate condenser fouling levels complicates
classification. Overall, both models performed well in
diagnosing distinct conditions but struggled to
differentiate between close severity levels, particularly
in condenser fouling, highlighting an area for potential
feature refinement or model enhancement.

From the perspective of fault diagnosis, the figure
indicates that mild to moderate levels of condenser
fouling (labels 1 and 2) are the most challenging to
diagnose accurately for the kNN and RF models. The
models exhibit substantial misclassification between
these two levels, with 44.6% of label 1 instances
incorrectly classified as label 2 and 54.5% of label 2
instances misclassified as label 1. This suggests that
features representing these intermediate stages of
fouling severity may overlap in the feature space, which
makes it difficult for the models to distinguish between
subtle variations. This issue differs from the
performance of the models in more specific scenarios,
such as when there are no faults (label 0) and when there
are significant issues with condenser fouling (label 3)
and refrigerant leakage (labels —1, —2, —3), where both
models consistently perform well. It is challenging to
identify these intermediate fouling conditions,
indicating the need for improved feature engineering to
more accurately capture the nuances of the varying
severity levels.

Fig. 5, which presents the confusion matrices for the
kNN and RF models on the test dataset, shows that both
models achieved an overall accuracy of 89.26%. For
both models, the fault-free condition (label 0) and the
severe levels of refrigerant leakage and condenser
fouling (labels —3, —2, —1, and 3) were accurately
classified with 100% accuracy, demonstrating the
models’ capability to distinguish clear fault boundaries.
However, both models struggled with intermediate
levels of condenser fouling severity, particularly
between labels 1 and 2, similar to the validation results.

Both the kNN and RF models consistently
misclassified approximately 55% of the label 1 instances
as label 2 and 45% of the label 2 instances as label 1.
This consistent misclassification suggests overlapping
features between these fouling severity levels, thereby
complicating the accurate diagnosis, even for new,
unseen data. Such errors point to limitations in the
models’ ability to distinguish subtle differences between
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mild and moderate fouling conditions, which could be
due to insufficient feature differentiation for these
specific fault levels.
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Fig. 5. Confusion matrix of two models in test case.

Overall, although both models perform well in
identifying distinct fault states and severe conditions,
they exhibit significant challenges in diagnosing
intermediate fault severities, particularly in the early
stages of condenser fouling. This highlights a potential
area for model refinement, such as enhanced feature
engineering or alternative modeling approaches, to
improve the diagnostic accuracy of closely related fault
conditions.

In summarizing both Figs. 4 and 5, the kNN and RF
models exhibit similar strengths and limitations across
the validation and test datasets. Both models accurately
identified the fault-free condition (label 0) and severe
fault levels for refrigerant leakage (labels —3, —2, —1)
and condenser fouling (label 3), achieving 100%
classification accuracy for these distinct states.
However, both models face significant challenges in
distinguishing between intermediate levels of condenser
fouling severity (labels 1 and 2). In both the validation
and test cases, KNN and RF showed considerable
misclassification between these two levels, with
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approximately 55% of label 1 misclassified as label 2
and 45% of label 2 misclassified as label 1. This
consistent pattern of misclassification across both
datasets suggests that the feature space overlap for these
mild to moderate fouling levels hinders the models’
diagnostic accuracy, despite their overall high
performance in distinguishing more pronounced fault
conditions. Improving feature representation or
exploring alternative modeling techniques could
enhance the models’ ability to diagnose closely related
intermediate faults.

Overall, the kNN and RF models demonstrated
comparable performance, with each achieving high
accuracy for clearly defined conditions, such as fault-
free (label 0) and severe fault levels (labels —3, —2, —1
for refrigerant leakage and 3 for condenser fouling).
However, when evaluating the two models on subtle
diagnostic capabilities, specifically the intermediate
levels of condenser fouling severity (labels 1 and 2),
both exhibited similar misclassification rates, suggesting
that neither model outperforms the other in this area.

Despite this, the RF model tends to have a slight edge
in overall performance owing to its consistency and
robustness across various metrics in other analyses (e.g.,
precision and F1-Score stability). RF often generalizes
better to different datasets and may be more adaptable to
complex, nonlinear patterns. Consequently, although
both models proved limitations in distinguishing
between close severity levels, RF's robustness across
metrics generally makes it the preferable choice,
particularly if consistent performance across diverse
conditions is prioritized.

V. CONCLUSION

This study evaluated and compared the performance
of two machine learning models, kNN and RF, for fault
diagnosis in vehicle A/C systems using a dataset of 745
validation samples and 568 test samples. The data cover
seven distinct fault conditions, including normal
operating conditions and varying severities of condenser
fouling and refrigerant leakage. Both models
demonstrated strong performance, achieving an
identical validation accuracy of 91.68%, with a slight
decrease to 89.26% for the test set. Precision remained
consistent across both models, whereas differences
emerged in recall and F1-Scores.

The kNN model outperformed the RF model in recall,
particularly in capturing TPs, while the RF model
proved superior stability and consistency across all
performance metrics, including precision and F1-Score.
The evaluation using ROC curves further supported the
RF model’s robustness, with stronger classification
ability across all fault conditions compared to kKNN. The
confusion matrix analysis highlighted both models’
strengths in diagnosing fault-free and severe conditions
but revealed significant misclassification between
intermediate levels of condenser fouling, suggesting that
improved feature differentiation is required for better
diagnosis of these subtle fault variations.



International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 5, 2025

Despite both models performing well in identifying
clear fault boundaries, their inability to effectively
distinguish between mild and moderate condenser
fouling (labels 1 and 2) remains a challenge. This issue
underscores the need for further refinement in feature
engineering or the exploration of alternative modeling
approaches to improve the classification accuracy of
overlapping fault conditions.

Overall, while kNN and RF models exhibit similar
strengths in fault diagnosis, the RF model’s superior
generalization and stability across different performance
metrics make it a more reliable choice, particularly in
scenarios where consistent performance and robustness
are crucial. This study highlights the importance of
model choice depending on the specific requirements of
fault diagnosis systems, with RF emerging as the
preferred option for handling complex fault conditions
with better adaptability to unseen data.
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