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Abstract—Fault Detection and Diagnosis (FDD) of vehicle 
air conditioning (A/C) system is always a vital technique 
for achieving energy-saving goals and maintaining system 
reliability. The performance of k-Nearest Neighbors (kNN) 
and Random Forest (RF) models are invested for 
diagnosing faults in vehicle A/C systems. Two frequent 
faults, condenser fouling and refrigerant leakage, are 
selected in this study. A total of 745 validation samples and 
568 test samples, covering normal operation and seven 
fault conditions with varying levels of these two faults, were 
analyzed. Model performance was evaluated using 
accuracy, precision, recall, F1-Score, and Receiver 
Operating Characteristics (ROC) curve metrics. 
Additionally, the confusion matrix was employed to 
provide a detailed breakdown of a model’s classification 
performance. Results showed that both models achieved 
high validation accuracy (~91.68%), with RF slightly 
outperforming kNN in testing (RF: 90.26%). The kNN 
model exhibited higher recall, enhancing the detection of 
true positive faults, whereas RF demonstrated better 
balance between precision and F1-Scores. ROC curve 
analysis further confirmed that RF provided better 
discrimination of overlapping fault classes. Confusion 
matrix results indicated that both models struggled with 
intermediate levels of condenser fouling, revealing a need 
for improved fault differentiation. Overall, the RF model 
demonstrated greater robustness and consistency, making 
it more suitable for reliable diagnosis of vehicle A/C faults. 
 
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I.    INTRODUCTION 

The energy conversation has been a topic of concern 
for decades. End-use sectors, including the 
transportation, industrial, residential, and commercial 
sectors, consume large amounts of energy.  Among 

 
Manuscript received February 7, 2025; revised March 31, 2025; 
accepted May 22, 2025; published October 14, 2025. 

these, according to Ağbulut [1], transportation accounts 
for 28% of the total energy consumption. Meanwhile, 
vehicles are still an indisputable element of the human 
experience. Currently, the demand for vehicles is 
increasing, yet global fuel supplies remain limited. As a 
result, past studies have consistently shown an interest 
in the energy conservation of vehicles. However, several 
factors can affect a car’s fuel consumption, such as 
mechanical failure, driving competence, and the Air 
Conditioning (A/C) system. Among these factors, the 
A/C system, which is crucial for modern vehicles owing 
to its ability to provide thermal comfort, consumes the 
most energy: it requires up to 30% of the total fuel use 
or more than 27 billion liters of gasoline annually in the 
United States [2].  

Consequently, reducing energy usage has become a 
pressing requirement of vehicle A/C systems. 
Researchers have conducted various studies to reduce 
the energy consumption of automotive A/C systems. 
Generally, researchers found a close relationship 
between energy waste and A/C unit failure performance. 
According to several studies [3, 4], when the A/C system 
is in a fault state, it wastes about 30%–40% of the total 
energy consumed [5]. If the operating state of the A/C 
system can be regulated to ensure that it always 
functions under normal conditions, energy savings can 
account for 40% of the total energy usage. Therefore, a 
robust method for detecting and diagnosing faults in 
vehicle A/C systems is required to achieve this purpose. 

Machine learning has been widely researched and 
applied to cars to assist humans, such as in identifying 
traffic signals, pedestrians, road marking, and ensuring 
distances [6–8]. Thanks to machine learning, such 
vehicles can increase accessibility, improve road safety, 
and reduce accidents. According to a study published [9], 
employing machine learning techniques in vehicles has 
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benefits over not using machine learning. In addition, 
machine learning has been developed in the fields of 
fault detection and diagnosis in A/C systems.  
Tran et al. [10] employed the RBF method to detect and 
diagnose faults in chiller systems. The results showed 
that the RBF method was accurate for the detection and 
diagnosis of six chiller faults. Refrigerant leak detection 
based on machine learning, was reported by  
Lei et al. [11]. The results of refrigerant leak detection 
in vehicles showed that the accuracy of the proposed 
method can reach 95.69%. Similarly, the development 
of machine learning for A/C fault detection and 
diagnosis has also been discussed in various published 
works such as support vector regression [12, 13], the 
Kriging method [14], and artificial neural  
networks [15, 16]. In general, machine learning method 
methods are widely applied in fault detection and 
diagnosis in commercial and industrial A/C systems. 
Conversely, limited publications have addressed its 
application to A/C systems in vehicles. This study 
investigates two classification models, the k-Nearest 
Neighbor (kNN) algorithm and the Random Forest (RF), 
as the A/C fault detection and diagnosis model. Next, the 
A/C fault detection and diagnosis Fault Detection and 
Diagnosis (FDD) proposed a useful technique to 
improve the energy-saving goals for two frequent faults. 

II.    RESEARCH METHODOLOGY 

A. The kNN Algorithm for Classification Model 

The kNN method is a commonly used in machine 
learning method. Scholars commonly use it for 
classification because of its simplicity and high accuracy. 
The kNN technique is based on a given data matrix with 
M rows and N columns. The prediction of a query point 
is based on the similarity of the data points in a given 
dataset. Generally, the kNN algorithm finds the K-
nearest neighbors to a given data point using a distance 
metric between the query and other points in the data 
matrix. Here, K represents the number of nearest 
neighbors to be considered when making predictions. 
The distance metric can employ one of the following 
distance functions: Euclidean distance (Eq. (1)), 
Manhattan distance (Eq. (2)), or Minkowski distance 
(Eq. (3)). The weighted or majority vote of the K 
neighbors then determines the class or value of the query 
data point. Therefore, the system can easily identify the 
K-nearest points to the query by sorting the distances in 
ascending order and retrieving the K points that have the 
shortest distance between the dataset and the query. 
Typically, the best way to select the best value for K is 
to first inspect the data. Although reducing the total 
noise makes the higher K values more precise, this is not 
a guarantee. Cross validation is another common method 
to find an acceptable K value between 3 and 10. 
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where 𝑥௜ and 𝑦௜ are the query point ith and a case from 
the training data sample, respectively.  

Two well-known voting method in the kNN 
classification are presented in the following equations. 

Majority voting: 
 

 𝑦ᇱ ൌ 𝑎𝑟𝑔 𝑚𝑎𝑥௬  ∑ 𝛿ሺ𝑦, 𝑦௜ሻሺ௫೔, ௬೔ ሻ ∈ ஽಼           (4) 

 
Distance-Weighted Voting: 
 

 𝑦ᇱ ൌ 𝑎𝑟𝑔 𝑚𝑎𝑥௬  ∑ 𝑤௜𝛿ሺ𝑦, 𝑦௜ሻሺ௫೔, ௬೔ ሻ ∈ ஽಼    (5) 

where: 
- 𝑦ᇱ is the predicted label for the test point data. 
- 𝐷௄ is the data set of the kNN of the test sample; 𝑥௜ and 
𝑦௜  denotes the data and the class label in 𝐷௄ , 
respectively. Cross validation was used to select the K 
value. 
- 𝛿ሺ𝑦, 𝑦௜ሻ = 1 if  𝑦௜ ൌ 𝑦 and 0 otherwise. 
- 𝑤௜ is the weighted distance of 𝑥௜ which is determined 
by the Euclidean distance metric as follows: 

 𝑤௜ ൌ 𝑒𝑥𝑝 ቀ
ି‖௫ି ௫೔‖మ

మ

௔మ ቁ                      (6) 

where a is an optional positive number. 

B. The Random Forest Machine Learning For 
Classification Model 

RFs are effective machine learning models for 
prediction. Injecting appropriate randomness makes 
them accurate classifiers and regressors. Furthermore, 
the framework, which considers the strength of 
individual predictors and their correlations, provides 
insight into the predictive capabilities of RF. RFs consist 
of an ensemble of tree predictors, where each tree relies 
on the values of a randomly selected vector, which is 
independently drawn and identically distributed over all 
trees in the forest. The generalization error in forests 
approaches a limit when the number of trees in the forest 
increases significantly. Consider an ensemble of 
classifiers, 𝑢ଵሺ𝑥ሻ, 𝑢ଶሺ𝑥ሻ, … 𝑢௡ሺ𝑥ሻ with the training set 
randomly sampled from the distribution of the random 
vectors Y and X. We define the margin function as 
follows: 

𝑚𝑔ሺ𝑋, 𝑌ሻ ൌ 𝑎𝜗௡𝐼ሺ𝑢௡ሺ𝑋ሻ ൌ 𝑌ሻ െ
𝑚𝑎𝑥௝ஷ௒𝑎𝜗௡𝐼ሺ𝑢௡ሺ𝑋ሻ ൌ 𝑗ሻ                       (7) 

where X represents the input measure, 𝑎𝜗௡ denotes the 
average number of votes at X and Y for the respective 
classes, and 𝐼ሺ. ሻ signifies the indicator function. The 
margin quantifies the degree to which the average vote 
count for classes X and Y exceeds the average vote for 
any alternative class. A larger margin indicates greater 
classification confidence. The generalization error is 
expressed as follows: 

 𝑃𝐸∗ ൌ  𝑃௑,௒ሺ𝑚𝑔ሺ𝑋, 𝑌ሻሻ ൏ 0       (8) 
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where the subscripts X and Y indicate that the probability 
lies within the X and Y space.  

III.     FAULTS SELECTION AND SIMULATED EXPERIMENTAL 

FAULTS 

A. Faults Selection 

A fault is defined as an unpermitted deviation of at 
least one characteristic property of a variable from the 
acceptable behavior. A fault can result in inefficiency, 
malfunction, or even system damage. Therefore, an 
accurate fault detection tool for the A/C system in 
modern vehicles is crucial for maintaining the system’s 
functionality and saving energy. The AC system is 
known to have numerous faults. Generally, these faults 
can be roughly distinguished into two major categories: 
abrupt and gradual faults. The obvious symptoms of 
abrupt faults such as locked compressors, burned 
magnetic compressor coils, and broken pipes, make 
them easy to address. Therefore, these faults are rarely 
the subject of scholars. Otherwise, common faults in the 
A/C system, such as refrigerant overcharge, refrigerant 
leakage, non-condensable gas, evaporator air blockage, 
and condenser air blockage, tend to occur gradually. 
These faults are typically difficult to detect because of 
their unclear symptoms. They only react when a feature 
undergoes a significant change, such as a large, sudden, 
or long-lasting, gradually increasing fault. Typically, 
they emerge when the system encounters significant 
operational problems; this implies that the indications of 
an A/C system failure are readily apparent. We selected 
refrigerant leakage and condenser fouling as these faults 
because their frequent occurrence in Vietnam.  

The time dependency of the faults can be 
distinguished, as shown in Fig. 1, as an abrupt fault 
(stepwise), an incipient fault (drift-like), and an 
intermittent fault. 
 

 
Fig. 1. Time-dependency of faults: (a) abrupt; (b) incipient. 

B. Experimental Data And Method 

In this study, refrigerant R134a was used in a 
conventional A/C system consisting of a belt-driven 
compressor, an air-cooled condenser, a laminar 
microchannel evaporator, and a thermostatic expansion 
valve. These components supported the development 
and evaluation of the proposed FDD methods, with the 
simulated faults detailed in Table I. Eight fault-related 
feature parameters were selected to reliably capture the 
system’s health state. Four PT-100 temperature sensors, 
each with typical accuracy of ±0.15 °C, were positioned 
to monitor the refrigerant temperatures at the 
condenser’s inlet (Tci) and outlet (Tco), and at the 
evaporator’s inlet (TEI) and outlet (TEO). Additional 
sensors recorded air temperatures at the condenser’s 
entry (Tai) and exit (Tao), enabling the calculation of the 
condensing (Tcd) and evaporating (Tev) saturation 
temperatures. The temperature sensors are arranged as 
shown in Fig. 2. 

 

 
Fig. 2. Structure diagram of the test for vehicular A/C system. 

Two types of experiments were conducted: fault-free 
and fault experiments. As mentioned above, two 
common faults, namely, refrigerant leakage and 
condenser fouling were chosen in the simulated 
experiment. Each fault was simulated at three distinct 
severity levels. For refrigerant leakage, the R134a 
refrigerant charge was incrementally reduced by 10% 
(525 g for normal). The amount of R134a refrigerant 
added was weighed on a commercial digital scale with a 
measurement error of ±5 g. For condenser fouling, the 
airflow through the condenser was adjusted by varying 
the step damper position. Data for fault-free and fault 
conditions were collected using a PNTECH 
CONTROLS DDC-C46 and transmitted to a PC via a 
Modbus RTU 485 at 5-s intervals. 

TABLE I. METHODS OF IMPLEMENTING THE FAULTS AND LEVELS SIMULATED 

Faults 
Severity levels of faults 

Methods of simulated faults 
Fault free Level 1 Level 2 Level 3  

Refrigerant leakage 0% −10% −20% −30%  % reduction in the total charge 

Condenser fouling 0% −10% −20% −30%  
The surface of the condenser coil was 
blocked with a volume control damper 

 
To enhance model accuracy, data quality was 

prioritized. Data preprocessing involved applying a 
moving window filter based on three standard deviations 

from the mean and 10 test points to remove ambiguous 
data. The cleaned data were then divided into training, 
validation, and testing sets for analysis. 

System operating

Faults

Feature of System operating changing
f = F

t

f
(a)

(b)
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C. Data Preprocessing and Fault Diagnosis 
Performance Evaluation Indices 

Data quality is crucial for improving model accuracy 
in machine learning; however, clean, well-organized 
data are rarely available from the outset, because they 
often include transient and steady-state conditions. 
Therefore, data preprocessing is essential to convert raw 
data into usable format. Common preprocessing 
methods include data standardization and normalization. 
This study employs z-score normalization, a 
standardization technique that scales data to have a mean 
of 0 and a standard deviation of 1, ensuring that features 
share a common scale without altering the range of 
values. The z-score normalization is as follows: 

 

 𝑧 ൌ  
ሺ௑ିఓሻ

ఙ
                          (9) 

 
where: 
Z is the normalized value. X is the input data point. μ is 
the mean of the dataset. σ is the standard deviation of the 
dataset. 

D. Evaluation Metrics for Classification Models 

Evaluation metrics are essential for assessing the 
performance and effectiveness of machine learning 
models, particularly in the prediction phase of this study. 
The key metrics widely used for classification 
evaluation included accuracy, confusion matrix, 
precision, recall, and the F1-Score, which collectively 
measure the model’s predictive capability [17–19]. 
Particularly, accuracy reflects the overall proportion of 
correctly classified samples. Precision indicates how 
many of the predicted positive cases are actually positive, 
emphasizing the model’s reliability when predicting 
faults. Recall (sensitivity) measures the ability of the 
model to detect actual fault cases, focusing on 
minimizing missed detections. The F1-score combines 
precision and recall into a single metric, offering a 
balanced evaluation when both false positives and false 
negatives are important. The detailed formulas of these 
evaluation metrics are presented in Table II. 

According to Vujović’s report [17], this study utilized 
the confusion matrix to evaluate model performance in 
fault detection and diagnosis (Table III) for the binary 
classification setup. Here, faults represent the positive 
class, and fault-free conditions represent the negative 
class. Each metric was calculated by comparing the 

model’s predictions with the actual values in the training 
and testing datasets. 

TABLE II. METRICS FORMULA 

Metric Formula 
Accuracy (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 
Precision 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall (sensitivity) 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

F1_Score 
2 ൈ  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅  𝑅𝑒𝑐𝑎𝑙𝑙
 

TABLE III.  CONFUSION MATRIX 

Actual label 
Predicted label 

Fault Fault free 

Fault True positive (TP) False negative (FN) 

Fault free False positive (FP) True negative (TN) 

 
In Table III, TP represents the count of correctly 

predicted positive samples, FN represents the count of 
positive samples incorrectly predicted as negative, TN 
represents the count of correctly predicted negative 
samples, and FP represents the count of negative 
samples incorrectly predicted as positive. In a multi-
class classification problem such as fault diagnosis, the 
positive category refers to the class currently under 
consideration, and the negative category includes all 
other combined classes.  

IV.    RESULTS AND DISCUSSION 

We trained two machine learning models using 745 
data samples for validation and 568 data samples for 
testing. The test set included normal operating 
conditions and two fault types: condenser fouling and 
refrigerant leakage. The data covered seven distinct 
classes, labeled as “0” for fault-free, “1”, “2”, and “3” 
for increasing levels of condenser fouling severity, and 
“−1”, “−2”, and “−3” for increasing levels of refrigerant 
leakage severity. The performance results of both 
models are presented in Table IV. To evaluate the 
robustness and generalization ability of the classification 
models, a 10-fold cross-validation strategy was 
employed during model training. In this approach, the 
training dataset was randomly partitioned into ten equal 
subsets. For each iteration, one subset was retained for 
validation while the remaining nine were used for 
training. 

TABLE IV.   METRICS RESULTS OF THE TWO MODELS 

Metrics Accuracy Precision Recall F1-Score 

Model Validation Test Validation Test Validation Test Validation Test 

kNN 91.68% 89.26% 92.09% 92.15% 97.98% 92.62% 93.46% 89.61% 

RF 91.68% 89.26% 92.09% 92.15% 90.92% 93.59% 88.03% 90.46% 

 
The results presented in Table IV provide a 

comparative performance analysis between the kNN and 
RF models across the validation and test sets, using 
accuracy, precision, recall, and the F1-Score. Both 
models exhibited identical validation accuracy of 

91.68%, indicating similar learning performance during 
the training phase. However, on the test set, both models 
showed a slight drop in accuracy to 89.26%, suggesting 
a comparable ability to generalize unseen data. Precision 
remained consistent across both models, with identical 
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values of 92.09% during validation and 92.15% during 
testing, highlighting similar behavior in identifying TPs. 
Differences emerge between recall and F1-Scores. The 
kNN model maintained a higher recall (97.98% in 
validation and 92.62% in testing), suggesting that it 
performed better in capturing all relevant instances 
(TPs), compared to the RF model, which showed a lower 
recall (90.92% in validation and 93.59% in testing). The 
kNN’s F1-Score (93.46% in validation and 89.61% in 
testing) slightly declined on the test set but remained 
close to the RF model’s F1-Score (88.03% in validation 
and 90.46% in testing). The key takeaway from this table 
is that both models perform comparably; however, the 
kNN model has a slight advantage in recall, whereas the 
RF model demonstrates more stability in its performance 
across different metrics, particularly in precision. 

In terms of overall performance, the kNN and RF 
models exhibited competitive results across accuracy, 
precision, recall, and the F1-Score. However, each 
model had its strengths: the kNN model demonstrated 
higher recall, indicating better performance in 
identifying TPs, particularly during validation. The RF 
model demonstrated more stability across different 
metrics, with consistent precision and F1-Scores 
between the validation and test sets, which may suggest 
better generalizability and robustness. While the kNN 
model excels slightly in recall, the RF model’s 
consistent performance across multiple metrics, 
especially its stable precision, suggests that it may be the 
better overall performer, especially in scenarios where 
precision and stability across different conditions are 
crucial. Therefore, RF slightly outperformed kNN in 
terms of its balanced and reliable performance. 

To validate the robustness of the proposed models, we 
conducted a comparative performance analysis with 
findings reported in existing literature. Lei et al. [11] 
achieved a high F1-Score of 95.73% in refrigerant leak 
diagnosis using an Extremely Randomized Trees (EXT) 
model, which required advanced feature selection and 
tuning across 25 different machine learning algorithms. 
In contrast, our models, namely k-Nearest Neighbors 
(kNN) and Random Forest (RF), reached commendable 
F1-Scores of 89.61% and 90.46%, respectively, on the 
test set. Despite slightly lower F1-Scores, our approach 
benefits from reduced model complexity, fewer 
preprocessing steps, and excellent generalization across 
seven distinct fault and normal states. These results 
highlight that our models offer a more practical and 
efficient alternative for implementation in automotive 
air-conditioning fault diagnosis systems, especially 
where resource constraints or simplicity are prioritized. 
Furthermore, to assess and compare the classification 
models’ ability to distinguish between fault conditions 
in vehicle A/C systems, the ROC curve was employed. 
This curve visually represents the trade-off between the 
TP and FP rates across various decision thresholds, 
providing a comprehensive view of each model’s 
performance in classifying different fault conditions. By 
comparing the ROC curves for each model, this analysis 
highlights the strengths and weaknesses of each 

classifier, particularly their ability to handle multiple 
classes and generalize to unseen fault data. Fig. 3 
illustrates the ROC curves of the two classification 
models. 
 

  
(a) 

 
(b) 

Fig. 3. Evaluation of classifier performance using ROC curves (a) 
kNN model; (b) RF model. 

Fig. 3(a) and (b) display the ROC curves for the k-NN 
and RF classifiers, which provide insights into the 
performance of these models across multiple classes. In 
Fig. 3(a), the k-NN classifier exhibited varying 
performance across different classes. For classes −3 and 
−2, the ROC curves indicate poor performance with high 
FP rates and low TP rates, suggesting that the proposed 
k-NN struggled to distinguish between these classes, 
possibly due to class overlap or imbalanced data. In 
contrast, classes 0, 1, and 3 demonstrate better 
separation, with higher TP rates and lower FP rates, 
indicates that k-NN performs well when the classes are 
more distinct. In contrast, Fig. 3(b), which shows the 
ROC curves for the RF classifier, demonstrates the 
generally superior performance. RF handles class 
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separation better across all classes, with stronger curves 
that show higher TP rates and lower FP rates than k-NN. 
This was particularly evident for classes −2, −1, and 0, 
where the RF classifier consistently outperformed the k-
NN. Class 3, which also performed well in the k-NN 
model, showed a similar high performance in the RF 
model, but with even sharper separation, which indicates 
that the RF is more robust and better at handling class 
overlap or noise in the data. When comparing the two 
classifiers, RF consistently provided more reliable and 
accurate results across most classes, as reflected by its 
stronger ROC curves. The higher area under the curve 
for RF further supports its superior classification ability. 
In contrast, the proposed k-NN, while effective in some 
cases, struggles with more complex class distributions 
and overlapping classes. Therefore, for tasks involving 
complex decision boundaries or requiring better 
generalization across multiple classes, RF model is 
preferred, while the k-NN may still be suitable for 
simpler problems with fewer class overlaps. 

To further analyze the results, this study presented the 
results based on the confusion matrix for two cases, i.e., 
validation and testing. Fig. 4 illustrates the confusion 
matrices for the kNN and RF model in the validation 
case. At a glance, the classification model performs 
better when the numbers on the main diagonal are higher.  
 

 

 
Fig. 4. Confusion matrix of the two models in validation case. 

Fig. 4 presents each with an accuracy of 91.68%, for 
diagnosing various system conditions labeled as “0” for 
the fault-free state, “1”, “2”, and “3” for increasing 
levels of condenser fouling severity, and “−1”, “−2”, and 

“−3” for increasing levels of refrigerant leakage severity. 
For both models, the fault-free condition (label 0) and 
severe fault conditions (labels −3, −2, −1, and 3) were 
accurately identified with 100% precision, 
demonstrating strong model performance in 
distinguishing clear-cut cases. However, both models 
encounted difficulties with intermediate levels of 
condenser fouling, particularly between labels 1 and 2. 
The kNN model misclassified 44.6% of the label 1 
instances as label 2 and 54.5% of the label 2 instances as 
label 1, indicating a challenge in distinguishing these 
similar states. The RF model exhibits an identical pattern, 
misclassifying the same percentage between these two 
labels, suggesting that the feature space overlap between 
mild and moderate condenser fouling levels complicates 
classification. Overall, both models performed well in 
diagnosing distinct conditions but struggled to 
differentiate between close severity levels, particularly 
in condenser fouling, highlighting an area for potential 
feature refinement or model enhancement. 

From the perspective of fault diagnosis, the figure 
indicates that mild to moderate levels of condenser 
fouling (labels 1 and 2) are the most challenging to 
diagnose accurately for the kNN and RF models. The 
models exhibit substantial misclassification between 
these two levels, with 44.6% of label 1 instances 
incorrectly classified as label 2 and 54.5% of label 2 
instances misclassified as label 1. This suggests that 
features representing these intermediate stages of 
fouling severity may overlap in the feature space, which 
makes it difficult for the models to distinguish between 
subtle variations. This issue differs from the 
performance of the models in more specific scenarios, 
such as when there are no faults (label 0) and when there 
are significant issues with condenser fouling (label 3) 
and refrigerant leakage (labels −1, −2, −3), where both 
models consistently perform well. It is challenging to 
identify these intermediate fouling conditions, 
indicating the need for improved feature engineering to 
more accurately capture the nuances of the varying 
severity levels. 

Fig. 5, which presents the confusion matrices for the 
kNN and RF models on the test dataset, shows that both 
models achieved an overall accuracy of 89.26%. For 
both models, the fault-free condition (label 0) and the 
severe levels of refrigerant leakage and condenser 
fouling (labels −3, −2, −1, and 3) were accurately 
classified with 100% accuracy, demonstrating the 
models’ capability to distinguish clear fault boundaries. 
However, both models struggled with intermediate 
levels of condenser fouling severity, particularly 
between labels 1 and 2, similar to the validation results. 

Both the kNN and RF models consistently 
misclassified approximately 55% of the label 1 instances 
as label 2 and 45% of the label 2 instances as label 1. 
This consistent misclassification suggests overlapping 
features between these fouling severity levels, thereby 
complicating the accurate diagnosis, even for new, 
unseen data. Such errors point to limitations in the 
models’ ability to distinguish subtle differences between 
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mild and moderate fouling conditions, which could be 
due to insufficient feature differentiation for these 
specific fault levels. 

 

 

 
Fig. 5. Confusion matrix of two models in test case. 

Overall, although both models perform well in 
identifying distinct fault states and severe conditions, 
they exhibit significant challenges in diagnosing 
intermediate fault severities, particularly in the early 
stages of condenser fouling. This highlights a potential 
area for model refinement, such as enhanced feature 
engineering or alternative modeling approaches, to 
improve the diagnostic accuracy of closely related fault 
conditions. 

In summarizing both Figs. 4 and 5, the kNN and RF 
models exhibit similar strengths and limitations across 
the validation and test datasets. Both models accurately 
identified the fault-free condition (label 0) and severe 
fault levels for refrigerant leakage (labels −3, −2, −1) 
and condenser fouling (label 3), achieving 100% 
classification accuracy for these distinct states. 
However, both models face significant challenges in 
distinguishing between intermediate levels of condenser 
fouling severity (labels 1 and 2). In both the validation 
and test cases, kNN and RF showed considerable 
misclassification between these two levels, with 

approximately 55% of label 1 misclassified as label 2 
and 45% of label 2 misclassified as label 1. This 
consistent pattern of misclassification across both 
datasets suggests that the feature space overlap for these 
mild to moderate fouling levels hinders the models’ 
diagnostic accuracy, despite their overall high 
performance in distinguishing more pronounced fault 
conditions. Improving feature representation or 
exploring alternative modeling techniques could 
enhance the models’ ability to diagnose closely related 
intermediate faults. 

Overall, the kNN and RF models demonstrated 
comparable performance, with each achieving high 
accuracy for clearly defined conditions, such as fault-
free (label 0) and severe fault levels (labels −3, −2, −1 
for refrigerant leakage and 3 for condenser fouling). 
However, when evaluating the two models on subtle 
diagnostic capabilities, specifically the intermediate 
levels of condenser fouling severity (labels 1 and 2), 
both exhibited similar misclassification rates, suggesting 
that neither model outperforms the other in this area. 

Despite this, the RF model tends to have a slight edge 
in overall performance owing to its consistency and 
robustness across various metrics in other analyses (e.g., 
precision and F1-Score stability). RF often generalizes 
better to different datasets and may be more adaptable to 
complex, nonlinear patterns. Consequently, although 
both models proved limitations in distinguishing 
between close severity levels, RF's robustness across 
metrics generally makes it the preferable choice, 
particularly if consistent performance across diverse 
conditions is prioritized.  

V.    CONCLUSION 

This study evaluated and compared the performance 
of two machine learning models, kNN and RF, for fault 
diagnosis in vehicle A/C systems using a dataset of 745 
validation samples and 568 test samples. The data cover 
seven distinct fault conditions, including normal 
operating conditions and varying severities of condenser 
fouling and refrigerant leakage. Both models 
demonstrated strong performance, achieving an 
identical validation accuracy of 91.68%, with a slight 
decrease to 89.26% for the test set. Precision remained 
consistent across both models, whereas differences 
emerged in recall and F1-Scores. 

The kNN model outperformed the RF model in recall, 
particularly in capturing TPs, while the RF model 
proved superior stability and consistency across all 
performance metrics, including precision and F1-Score. 
The evaluation using ROC curves further supported the 
RF model’s robustness, with stronger classification 
ability across all fault conditions compared to kNN. The 
confusion matrix analysis highlighted both models’ 
strengths in diagnosing fault-free and severe conditions 
but revealed significant misclassification between 
intermediate levels of condenser fouling, suggesting that 
improved feature differentiation is required for better 
diagnosis of these subtle fault variations. 
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Despite both models performing well in identifying 
clear fault boundaries, their inability to effectively 
distinguish between mild and moderate condenser 
fouling (labels 1 and 2) remains a challenge. This issue 
underscores the need for further refinement in feature 
engineering or the exploration of alternative modeling 
approaches to improve the classification accuracy of 
overlapping fault conditions. 

Overall, while kNN and RF models exhibit similar 
strengths in fault diagnosis, the RF model’s superior 
generalization and stability across different performance 
metrics make it a more reliable choice, particularly in 
scenarios where consistent performance and robustness 
are crucial. This study highlights the importance of 
model choice depending on the specific requirements of 
fault diagnosis systems, with RF emerging as the 
preferred option for handling complex fault conditions 
with better adaptability to unseen data. 
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