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Abstract—Control of Two-Dimensional (2D) rehabilitation 
robots is inherently challenged by nonlinearities,  
time-varying uncertainties, and modeling inaccuracies, 
which can significantly undermine compliance and tracking 
performance during human-robot interactions. To address 
these challenges, this paper presents a robust hybrid control 
strategy that integrates admittance control, adaptive Radial 
Basis Function (RBF) neural network compensation, and 
sliding mode control. Within this framework, admittance 
control is utilized to generate a compliant reference velocity 
based on the measured interaction force. The adaptive RBF 
neural network functions to estimate unmodeled nonlinear 
dynamics in real-time, operating without the need for prior 
system knowledge. Additionally, sliding mode control is 
employed to mitigate estimation errors and enhance system 
robustness. Stability analysis, grounded in Lyapunov theory, 
is performed to confirm the boundedness of the overall 
closed-loop system. Simulation and experimental results 
substantiate the efficacy of the proposed strategy in 
augmenting tracking accuracy and improving disturbance 
rejection. Preliminary simulation findings reveal that, 
compared to conventional admittance and sliding mode 
controllers that lack RBF integration, the proposed method 
achieves a reduction in root mean square tracking error by 
up to 95.0% (from 0.5658 m/s to 0.0285 m/s), and a decrease 
in maximum velocity tracking error by 51.7% (from 
0.8552 m/s to 0.4132 m/s). Moreover, the system recovers to 
the desired state within 0.08 seconds, while the baseline 
method fails to stabilize within a 5-second simulation 
interval. These results highlight the superior disturbance 
rejection and rapid recovery capabilities inherent in the 
proposed RBF-enhanced control strategy. Collectively, these 
findings suggest that the proposed approach holds significant 
promise for ensuring reliable and precise rehabilitation 
motions within nonlinear and uncertain environments. 
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I. INTRODUCTION 

The application of rehabilitation robots in the field of 
medical rehabilitation is becoming increasingly popular, 
especially for patients who have movement disorders due 
to accidents or diseases. This technology shows good 
prospects [1, 2]. These systems can provide repetitive 
exercise training, help patients improve motor 
coordination, and significantly reduce the workload of 
therapists in clinical environments. Therefore, 
rehabilitation robots have attracted widespread attention 
from researchers and clinical practitioners [3]. However, a 
major challenge in actual training is how to achieve safe, 
smooth, and high-precision human-computer interaction in 
the presence of individual patient differences, unmodeled 
system dynamics, and external interference. 

The rapid advancements in extremity rehabilitation 
have driven the development of multiple lower-limb 
exoskeleton prototypes, including Ekso (US), HAL 
(Japan), ReWalk (Israel), and HIT-LEX (China), which 
have demonstrated preliminary clinical efficacy [4, 5]. 
However, critical limitations persist in their control 
architectures that necessitate further refinement. While 
conventional Sliding Mode Control (SMC) exhibits robust 
disturbance rejection in exoskeleton implementations, its 
characteristic high-frequency control chattering induces 
accelerated mechanical degradation and potential patient 
discomfort [6]. Furthermore, model-dependent control 
frameworks frequently prove inadequate when confronted 
with parametric uncertainties and exogenous 
perturbations, significantly constraining their clinical 
applicability [7]. 

The efficacy of rehabilitation robotics is fundamentally 
contingent upon control strategy optimization, which 
governs three critical performance metrics: therapeutic 
outcome quality, user comfort level, and operational safety 
assurance. Existing approaches generally suffer from 
excessive dependence on precise dynamic modeling, 
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inadequate disturbance rejection capability, and  
high-frequency oscillations in control signals, which have 
severely impeded clinical translation [8]. Therefore, there 
is an urgent need to develop a control strategy capable of 
accurately compensating for unknown disturbances in real 
time while improving system tracking performance and 
robustness [9]. Successful implementation of such 
strategies could potentially elevate functional recovery 
rates, reduce patient-reported discomfort indices, and 
accelerate the clinical translation of rehabilitation robot 
technologies [10]. 

In recent years, adaptive control strategies have been 
widely investigated to address modeling errors and 
unknown disturbances. Among them, Radial Basis 
Function (RBF) neural networks have been extensively 
applied for real-time estimation and compensation of 
unmodeled dynamics and external disturbances in robotic 
systems, owing to their strong nonlinear approximation 
capability, fast online learning, and independence from 
precise system models. While RBF networks enhance the 
adaptability of control systems, their robustness remains 
constrained under sudden disturbances or inadequate 
excitation conditions. Therefore, the synergistic 
integration of RBF neural networks with sliding mode 
control to develop a composite strategy that facilitates both 
disturbance estimation and robust compensation emerges 
as a promising avenue for enhancing overall system 
performance. 

Based on the aforementioned analysis, this paper 
introduces a novel control strategy that harnesses the 
capabilities of an RBF neural network for the estimation of 
external disturbances. This is subsequently followed by 
robust compensation of the estimated errors utilizing a 
sliding mode controller. To address the issue of  
high-frequency chattering commonly associated with 
sliding mode control, the introduced control law 
incorporates a smooth activation function, specifically the 
hyperbolic tangent (tanh). This modification effectively 
mitigates discontinuities typically encountered with 
traditional sign functions. Furthermore, the compensatory 
effect provided by the RBF network diminishes the 
necessity for excessively high control gains within the 
sliding mode controller, thereby ensuring system 
robustness and stability even under relatively mild 
activation conditions. Consequently, this enhances the 
overall smoothness and comfort experienced during 
human-robot interactions. 

In light of this analysis, our research proposes a hybrid 
control strategy that amalgamates admittance control, 
adaptive RBF neural network estimation, and smooth 
sliding mode compensation tailored for Two-Dimensional 
(2D) rehabilitation robots. The primary objectives of this 
study are outlined as follows: 

(1) To facilitate compliant interactions between the 
robot and the patient through the implementation 
of admittance control, transforming the applied 
human forces into the desired motion velocities. 
This approach significantly improves both safety 
and comfort throughout the rehabilitation process. 

(2) To achieve real-time estimation and compensation 
for unknown nonlinear dynamics, leveraging an 
adaptive RBF neural network. 

(3) To integrate RBF-based disturbance compensation 
with a tanh-based sliding mode control law, 
thereby enhancing the robustness of the system 
while effectively mitigating high-frequency 
chattering. 

The main contributions of this paper are summarized as 
follows:  

(1) A hybrid control framework is proposed, 
integrating admittance control, SMC, and adaptive 
RBF neural network compensation. This 
architecture enhances the robot’s ability to handle 
external disturbances and dynamic uncertainties 
while maintaining compliant and safe  
human–robot interaction. 

(2) A novel velocity-tracking control law is developed 
based on velocity-level error dynamics and 
nonlinear compensation. This formulation 
significantly improves tracking accuracy and 
robustness under varying operational conditions. 

(3) The proposed method is validated through both 
MATLAB simulations and hardware experiments. 
Comparative analyses are conducted using 
quantitative performance metrics, including Root 
Mean Square Error (RMSE), maximum tracking 
error, and recovery time, to demonstrate the 
superior effectiveness of the proposed controller 
over traditional approaches. 

The proposed integrated control framework aspires to 
concurrently enhance trajectory tracking accuracy, 
dynamic response speed, and compliance in human-robot 
interactions. Comprehensive simulations and experimental 
validations have been conducted to assess the performance 
and feasibility of the proposed method, showcasing its 
promising potential for practical applications in 
rehabilitation training. 

II. LITERATURE REVIEW 

In recent years, a diverse array of compensation control 
methodologies has been progressively implemented in 
rehabilitation robotics to counteract modeling inaccuracies 
and external disturbances [11]. For instance,  
Ding et al. [12] proposed an admittance controller that 
significantly mitigates interaction impacts between 
patients and robotic systems; however, this approach 
exhibits limited adaptability to nonlinear disturbances and 
complex dynamic characteristics [13]. SMC, known for its 
robustness, is widely adopted in this field, yet traditional 
implementations of SMC are plagued by high-frequency 
chattering, which hinders practical application [14]. 

To overcome these issues, Shi et al. [15] conceptualized 
a control strategy that amalgamates Proportional-Integral-
Derivative (PID) control with RBF neural networks. This 
innovative approach capitalizes on the self-learning 
capabilities of neural networks to compensate for 
nonlinearities and uncertainties inherent in the system. 
However, it is noteworthy that neural-network-based 
control schemes often grapple with slow convergence rates 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 5, 2025

512



and susceptibility to local minima, rendering them less 
ideal for real-time rehabilitation applications [16]. 
Furthermore, Hussain pointed out that despite the 
robustness conferred by SMC, this method introduces 
increased complexity in controller design and fails to 
entirely mitigate the phenomenon of chattering [17]. 

These theoretical challenges are mirrored in practical 
rehabilitation devices. For instance, the Ekso exoskeleton 
robot, developed by Ekso Bionics (USA), supports 
multiple training modalities to cater to varying 
rehabilitation stages. Similarly, the HAL system from the 
University of Tsukuba (Japan) employs 
electromyographic sensors to discern user motion intent, 
facilitating intention-based active control [18]. The 
ReWalk exoskeleton from ReWalk Robotics (Israel) 
employs an array of sensors to dynamically modify motion 
strategies according to the user’s movements. 
Additionally, the HIT-LEX robot from Harbin Institute of 
Technology (China) is distinguished by its lightweight 
design and enhanced compliance control capabilities [6]. 
Moreover, Zaway et al. [19] proposed a multi-objective 
Fractional-Order PID (FOPID) optimization strategy 
specifically targeted at pediatric gait rehabilitation, 
employing a genetic algorithm for tuning controller 
parameters aimed at minimizing error, energy 
consumption, and startup torque. 

Notwithstanding the advancements represented by these 
studies and commercial solutions, several common 
challenges persist [20]. Firstly, conventional model-based 
control methodologies rely extensively on accurate 
dynamic models, displaying limited adaptability to 
individual variations [21]. Secondly, while SMC is 
heralded for its robustness, its tendency to induce severe 
chattering can compromise device stability and user 
comfort [22]. Lastly, single-strategy control 
methodologies often encounter difficulties in achieving a 
satisfactory balance between high tracking accuracy,  
real-time responsiveness, and necessary interaction 
compliance [23]. 

In recent studies, researchers have begun to explore 
hybrid frameworks that integrate RBF neural networks 
with SMC. Within these systems, the RBF network 
functions estimate external disturbances and model 
uncertainties in real time, while the sliding term provides 
robust error compensation.  in an adaptive hybrid control 
structure. This approach reduces dependency on precise 
system modeling and enhances the system’s disturbance 
rejection capability. 

In addition, traditional SMC faces inherent  
high-frequency switching problems, such as mechanical 
oscillations caused by sudden control transitions. In order 
to improve the continuity of control signals and user 
experience, researchers have incorporated smooth 
activation functions such as hyperbolic tangent (tanh) 
functions into control design [24].  

Overall, robust performance [25], high precision, and 
compatible human-robot interaction remain the top 
priorities in the development of rehabilitation robot control 
systems. The hybrid control strategy integrating 
admittance regulation, RBF neural networks, and sliding 

mode techniques has been established as a robust solution 
to address these interdisciplinary challenges [26]. The 
control method proposed in this paper builds upon this 
trend and further optimizes the controller structure and 
disturbance compensation capabilities. 

III. MATERIALS AND METHODS 

A. Structure and Dynamic Analysis of the Rehabilitation 
Robot 

The 2D rehabilitation robot employed in this study 
consists of two planar motion mechanisms arranged 
perpendicularly in the x and y directions. A handle is 
mounted on the upper x-direction mechanism to allow the 
patient to grip and interact with the robot. A  
two-dimensional force sensor (sensing forces in both x and 
y directions) is installed at the lower end of the handle to 
perceive the patient’s movement intentions in real time in 
any direction on the plane. A display screen is used to 
show the handle’s motion trajectory, interactive games, 
and other related information. 

 

 
Fig. 1. 2D rehabilitation robot. 

 

 
Fig. 2. Coordinate system of the rehabilitation robot. 

This rehabilitation robot offers four distinct control 
modes: active, passive, assistive, and impedance control. 
Notably, the active mode is the most frequently employed 
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but also presents considerable implementation challenges. 
In this mode, the handle is designed to respond to the 
user’s gentle guidance with a high degree of compliance, 
facilitating zero-force control [27, 28]. The control 
approach proposed in this study aims to accomplish such 
zero-force control effectively. The architecture of the 2D 
rehabilitation robot and its corresponding coordinate 
system are illustrated in Fig. 1. 

Based on the structure of the rehabilitation robot, the 
coordinate system of the upper-limb rehabilitation robot is 
established, as shown in Fig. 2. 

Utilizing this coordinate framework, the dynamic model 
of the 2D rehabilitation robot is established to enable 
motion control of the robot. The dynamic equation of the 
rehabilitation robot can be written in the standard form, as 
shown in Eq. (1): 

 𝑀ሺ𝑞ሻ𝑞ሷ ൅ 𝐶ሺ𝑞, 𝑞ሶ ሻ𝑞ሶ ൅ 𝐹ሺ𝑞ሶ ሻ ൅ 𝐺ሺ𝑞ሻ ൌ 𝐹 (1) 

where: 
𝑞,𝑞ሶ ,𝑞ሷ : denote the position, velocity, and acceleration of the 
moving joints, respectively; 
𝐹: is the driving force generated by the motors; 
𝑀ሺ𝑞ሻ ∈ 𝑅ଵൈଵ: represents the inertial force term caused by 
the acceleration of the handle mass; 
𝐶ሺ𝑞, 𝑞ሶ ሻ ∈ 𝑅ଵ௫ଵ : denotes the Coriolis and centrifugal 
forces; 
𝐹ሺ𝑞ሶ ሻ ∈ 𝑅ଵൈଵ: represents the friction force; 
𝐺ሺ𝑞ሻ ∈ 𝑅ଵൈଵ: is the gravitational force term. 

The rehabilitation robot investigated in this study is 
engineered as a two-Degree-of-Freedom (2-DOF) planar 
system, comprising two orthogonally positioned and 
independently actuated translational modules. To facilitate 
the analysis of dynamic interactions between the two axes, 
a comprehensive coupled dynamic model is established, as 
shown in Eq. (2): 

 ቂ
𝑚௫ 𝑚௫௬

𝑚௬௫ 𝑚௬
ቃ ൤

𝑥ሷ
𝑦ሷ ൨ ൅ ൤

𝑑௫ 𝑑௫௬

𝑑௬௫ 𝑑௬
൨ ൤

𝑥ሶ
𝑦ሶ ൨ ൌ ൤

𝐹௫
𝐹௬

൨ (2) 

The terms 𝑚௫௬ , 𝑚௬௫ , 𝑑௫௬ , and 𝑑௬௫  represent the  
cross-axis inertial and damping coupling terms. Such a 
matrix-based formulation is commonly employed in the 
analysis of multivariable mechanical systems, including 
robotic manipulators and mechatronic platforms. 

Preliminary experimental tests and structural symmetry 
analysis indicate that these coupling terms are relatively 
small, Thus, the coupled model can be approximated as 
dynamically decoupled, as shown in Eq. (3): 

 𝑚௫ ⋅ 𝑥ሷ ൌ 𝐹௫, 𝑚௬ ⋅ 𝑦ሷ ൌ 𝐹௬ (3) 

This simplification allows for independent controller 
design on each axis and significantly reduces 
computational complexity during real-time 
implementation. 

Therefore, the control strategies for the two motion 
mechanisms can be independently evaluated by 
transforming them into one-dimensional motion systems. 

Given that the control algorithms for both axes are 
analogous, this paper will focus exclusively on the analysis 
of the x-direction motion mechanism. 

In this study, the motor driving force is utilized to 
actuate a sliding module, which subsequently translates the 
handle. The transmission of force is contingent upon the 
mechanical structure, which may include components such 
as electric actuators or lead screws. For the purpose of 
analysis, we will focus exclusively on the driving force 
transmitted to the handle via the associated transmission 
mechanism. 

The rehabilitation robot under consideration is a 
quintessential example of a nonlinear system, with its 
performance being highly sensitive to uncertainties in 
model parameters and external disturbances. The 
simplified dynamic equation of the system is described in 
Eq. (4): 

 𝑀𝑣ሶ ൌ 𝐹௠ ൅ 𝐹௘௫ െ 𝐹ௗ௜௦௧ െ 𝐹௙௥௜௖ െ 𝛥ሺ𝑥, 𝑣ሻ (4) 

In the equation: 
𝑀: mass of the handle; 
𝑣ሶ : acceleration of the handle; 
𝐹௠: motor output force; 
𝐹௘௫: interaction force measured by the sensor; 
𝐹ௗ௜௦௧ : external disturbance force (e.g., environmental 
forces, sudden impacts); 
𝐹௙௥௜௖: friction force (e.g., sliding friction, air resistance); 
𝛥ሺ𝑥, 𝑣ሻ: represents the modeling error in the system. 

Based on the system dynamics and the interaction forces 
exerted on the handle, the desired handle velocity is 
generated using an admittance control approach. The 
motor actuates the handle via a transmission mechanism, 
enabling it to follow the specified velocity in a compliant 
manner, thereby facilitating compliant motion control. 

Informed by the established dynamics, the subsequent 
control strategy is developed in a systematic sequence, 
commencing with the outer-loop admittance control, 
progressing to the inner-loop robust controller, and 
culminating in the synthesis of the complete control law. 

B. Admittance Control 

The outer-loop admittance controller is designed to 
produce a compliant desired velocity that reacts to the 
forces exerted by the user, which will subsequently serve 
as the input for the inner-loop robust controller. 

The essence of admittance control lies in its capacity to 
convert the measured interaction force into a desired 
velocity, as noted in Ref. [29]. A significant advantage of 
this approach is its ability to achieve compliant control 
without necessitating an accurate dynamic model of the 
robotic system. Given the complexities involved in 
dynamic modeling of robots—where frictional effects can 
be challenging to quantify precisely [30] and external 
disturbances often manifest unpredictably—admittance 
control is particularly well-suited for active compliant 
control applications in upper limb rehabilitation training 
robots. 
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The active motion control of the upper-limb 
rehabilitation robot can be described by the following 
differential Eq. (5): 

 𝑀ௗ𝑣ሶௗ ൅ 𝐵ௗ𝑣ௗ ൅ 𝐾ௗ ׬ 𝑣ௗ ൌ 𝐹௘௫ (5) 

where: 
𝑀ௗ: virtual mass; 
𝐵ௗ: virtual damping coefficient; 
𝐾ௗ: virtual stiffness coefficient; 
𝑣ௗ: desired velocity; 
𝐹௘௫: actual interaction force exerted on the robot handle. 

Since the rehabilitation training robot operates under 
active motion control, it is unnecessary for the robot to 
exert a restoring force. As a result, the influence of the 
stiffness matrix can be disregarded. Consequently, as 
demonstrated in Ref. [31], the application of Euler 
discretization to Eq. (5) leads to the following discretized 
representation of the desired velocity: 

 𝑣ௗሺ𝑛ሻ ൌ
ி೐ೣሺ௡ሻ⋅௱௧ାெ೏⋅௩೏ሺ௡ିଵሻ

ெ೏ା஻೏⋅௱௧
 (6) 

As shown in Eq. (6), the virtual mass 𝑀ௗ  affects the 
response speed of the system. When 𝑀ௗ  is large, the 
system exhibits stronger inertia and reduced compliance; 
when it is small, the system becomes more sensitive to 
external disturbances, which may lead to stability issues. 
The virtual damping coefficient 𝐵ௗ mainly influences the 
system’s responsive compliance. A large damping 
coefficient reduces the system’s ability to follow external 
forces, thereby affecting movement and decreasing the 
comfort of human-robot interaction. Conversely, if the 
damping coefficient is too small, although the system 
shows good adaptability, issues such as overshoot and 
instability may occur. 

Therefore, in rehabilitation robot applications, it is 
significant to properly tune the virtual mass and damping 
parameters, so as to optimize the system’s compliance and 
stability. To further improve the tracking performance and 
stability of the desired velocity generated by admittance 
control based on the measured interaction force, we 
introduce a compensation control method on the basis of 
an adaptive RBF neural network. 

C. Tracking Error and Control Objective 

Before constructing the inner-loop controller, it is 
imperative to define the tracking error and clarify its key 
role in the control system. This error serves as a bridge 
between the outer-loop admittance control and the  
inner-loop robust control, running throughout the entire 
control process. The admittance control module generates 
the desired velocity 𝑣ௗ based on the user’s applied 
interaction force, reflecting the user’s intended motion. In 
contrast, the actuator generates the actual velocity v, which 
signifies the robot’s genuine dynamic response. 

The discrepancy between the desired velocity and the 
actual velocity, defined as the velocity tracking error, is 
given in Eq. (7): 

 𝑒௩ ൌ 𝑣ௗ െ 𝑣 (7) 

This error signal is simultaneously fed into the sliding 
mode controller and the RBF neural network disturbance 
estimator. It captures the deviation from the desired 
trajectory arising from modeling inaccuracies and external 
perturbations. 

The inner-loop controller dynamically adjusts and 
compensates based on this error, enabling high-precision 
tracking of the desired velocity. In the proposed control 
strategy, the sliding mode component enhances robustness 
against disturbances and model uncertainties, while the 
neural network module estimates and compensates for 
unknown disturbances and modeling errors in real time 
through adaptive learning. 

The primary objective of this study is to ensure that the 
system maintains a stable and precise response that closely 
aligns with the user’s intended motion trajectory, even in 
the face of significant external disturbances or modeling 
deviations. The detailed architecture of the controller and 
the formulation of the control law will be elaborated on in 
the subsequent sections. 

D. Sliding Mode Control and RBF Neural Network 
Estimation 

1) Inner-loop robust control strategy 
To ensure precise velocity tracking performance under 

exogenous disturbances and parametric uncertainties, this 
work develops a dual-layer inner-loop control architecture 
integrating nonlinear compensation techniques with an 
adaptive parameter estimation framework. The proposed 
controller, formulated based on the predefined velocity 
tracking error dynamics, establishes real-time 
compensation mechanisms for both model inaccuracies 
and external perturbations. 

Although admittance control enables compliant  
human–robot interaction, it lacks the ability to actively 
compensate for system disturbances and parameter 
uncertainties. As a result, it often fails to ensure tracking 
accuracy under complex environmental conditions. To 
address this issue, a robust inner-loop control scheme is 
introduced as a supplement to the outer-loop admittance 
control. 

The proposed inner-loop controller consists of two core 
modules: a sliding mode compensation term and a 
disturbance estimator based on an RBF neural network. 
The sliding mode component ensures exponential stability 
through discontinuous control action with boundary layer 
optimization, effectively suppressing high-frequency 
disturbances. Concurrently, the RBF-based observer 
implements gradient descent learning with  
Lyapunov-stable weight adaptation, enabling real-time 
compensation of unmodeled dynamics and nonlinear 
coupling effects through continuous approximation of 
lumped disturbances extracted from tracking error signals. 

These two robust control methods together form a 
hybrid control strategy with strong disturbance rejection 
and high adaptability. 
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2) Sliding mode compensation term design 
In motion control systems, tracking accuracy is often 

affected by parameter variations and system 
imperfections. To bolster the system’s responsiveness 
across a spectrum of dynamic conditions, this research 
proposes the incorporation of a sliding mode 
compensation mechanism into the inner-loop controller, 
positioning it as a pivotal element of the robust control 
strategy. 

This approach uses the velocity tracking error as the 
core input variable and constructs a nonlinear control term 
to achieve rapid error suppression. The compensation term 
is defined as shown in Eq. (8): 

 𝐹௦௠௖ ൌ 𝑘௦ 𝑡𝑎𝑛ℎሺ𝑒௩ሻ (8) 

where 𝑘௦  is the control gain used to adjust the 
compensation strength, and 𝑡𝑎𝑛ℎሺ𝑒௩ሻ  is a smooth 
nonlinear function that effectively reduces the  
high-frequency chattering typically caused by 
discontinuous control in traditional sliding mode methods. 
This adaptation not only enhances the smoothness of the 
control action but also increases its practical applicability. 

The sliding mode compensation term plays a critical 
role in rapidly adjusting the system’s dynamic response, 
especially in scenarios involving external perturbations, 
load variations, or actuator delays. This compensation 
module will be integrated with the neural network 
estimator in the final control law design. 

3) Design of the RBF neural network disturbance 
estimator 

To improve the control system’s adaptability to 
unknown dynamic variations, an RBF neural network is 
incorporated into the inner-loop controller, functioning as 
a real-time disturbance estimator. This neural network 
employs the velocity tracking error as its input, facilitating 
online learning to effectively approximate the nonlinear 
uncertainties present within the system. 

In a typical operational environment, the total 
disturbance impacting the system is multifaceted, 
encompassing external perturbations, frictional forces, and 
dynamics that may not be accurately modeled. Utilizing 
the universal approximation capabilities inherent in RBF 
networks, these unknown disturbances can be represented 
as shown in Eq. (9) [32]: 

𝐹௧௢௧௔௟ሺ𝑥, 𝑣ሻ ൎ 𝐹ௗ௜௦௧ ൅ 𝐹௙௥௜௖ ൅ 𝛥ሺ𝑥, 𝑣ሻ ൌ 𝑊∗்𝛷ሺ𝑧ሻ ൅ 𝜀(9) 

where 𝑊∗ is the ideal weight vector of the neural network, 
and 𝛷ሺ𝑧ሻ  is the vector of Gaussian basis functions 
expressed as 𝛷ሺzሻ ൌ ሾ𝜙ଵሺ𝑧ሻ, 𝜙ଶሺ𝑧ሻ, … , 𝜙௡ሺ𝑧ሻሿ் ,where 
each basis function 𝜙௜ሺ௭ሻ is defined in Eq. (10): 

 𝜙௜ሺ௭ሻ ൌ 𝑒𝑥𝑝 ቀ
ሺ௭ି௖೔ሻమ

ିଶ௕೔
మ ቁ，𝑖 ൌ 1,2, … , 𝑛. (10) 

where 𝑧denotes the input of the neural network, typically 
the velocity tracking error 𝑒௩; 𝑐௜  represents the center of 
the 𝑖௧௛ Gaussian basis function, determining the location 
of the basis function in the input space; 𝑏௜ represents the 

width of the 𝑖௧௛  Gaussian basis function, controlling the 
spread or influence range of each basis function; 𝜀 is the 
approximation error of the neural network, which satisfies 
𝜀 ൑ 𝜀௠௔௫, and 𝜀 is bounded. 

To enable online adaptation, the weights of the RBF 
network are updated in real time using the adaptive law 
given in Eq. (11): 

 𝑊෡ሶ ൌ 𝛾𝛷ሺ௭ሻ𝑒௥ (11) 

where 𝛾 ൐ 0 is the learning rate, and the learning error 𝑒௥ 
is defined as: 

 𝑒௥ ൌ 𝑚ሺെ𝑒ሶ௩ െ 𝑘௩𝑒௩ሻ െ 𝑘௦ 𝑡𝑎𝑛ℎሺ𝑒௩ሻ  

This adaptive update mechanism ensures that the 
network gradually converges to the actual disturbance 
characteristics, enabling the controller to compensate for 
dynamic uncertainties more effectively. 

4) Control law formulation 
In this section, we present the formulation of the final 

control law, which is derived from an analysis of the 
system dynamics and the previously established inner-loop 
modules. The control law is designed by synthesizing three 
key components: the desired dynamic behavior derived 
from the admittance controller, the nonlinear 
compensation term produced by the sliding mode 
controller, and the disturbance estimation provided by the 
RBF neural network. 

The control input applied to the actuator is given by  
Eq. (12): 

𝐹௠ ൌ 𝑀ሺ𝑣ሶௗ ൅ 𝑘௩𝑒௩ሻ െ 𝐹௧௢௧௔௟ሺ𝑥, 𝑣ሻ ൅ 𝐹௦௠௖ െ 𝐹௘௫    (12) 

where 𝐹௠  is the motor driving force; 𝑣ሶௗ represents the 
desired acceleration obtained from the admittance model; 
𝑘௩ is the velocity feedback gain; 𝑒௩ is the velocity tracking 
error; 𝐹total is the disturbance estimated by the RBF neural 
network; 𝐹௦௠௖ is the sliding mode compensation term; and 
𝐹ex is the external interaction force applied by the user. 

This structure is designed to ensure a rapid response to 
user inputs, mitigate internal uncertainties, and 
compensate for unmodeled dynamics in real time. The 
inclusion of the nonlinear sliding mode term significantly 
enhances convergence during transient responses, while 
the adaptive neural network continually learns and adapts 
to varying conditions. 

The resulting control law not only achieves precise 
velocity tracking but also upholds stability and robustness 
across a diverse range of operating scenarios. The 
effectiveness of the closed-loop implementation will be 
rigorously validated through simulation and experimental 
analyses in the subsequent sections. 

5) Stability analysis based on the Lyapunov method 
This analysis verifies whether the overall system, 

including both the nonlinear controller and adaptive 
estimator, ensures boundedness of tracking and estimation 
errors under uncertain conditions. 
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To verify the stability and convergence of the proposed 
RBF neural network compensation control strategy, the 
Lyapunov function is constructed for analysis. 

First, the Lyapunov candidate function is defined in  
Eq. (13): 

 𝑉 ൌ
ଵ

ଶ
𝑀𝑒௩

ଶ ൅
ଵ

ଶ
𝑊෩ ்𝛾ିଵ𝑊෩  (13) 

The weight estimation error of the neural network is 
defined as: 

 𝑊෩ ൌ 𝑊∗ െ 𝑊෡   

where 𝑊∗ is the ideal (optimal) weight vector and 𝑊෡  is the 
estimated weight vector updated during online learning. 

This error term encapsulates the disparity between the 
estimated and optimal network parameters and serves a 
crucial role in evaluating convergence within the context 
of Lyapunov stability analysis. Within this function, the 
inaugural term signifies the kinetic energy associated with 
the tracking error, whereas the subsequent term denotes the 
energy related to the weight estimation error of the neural 
network.  

Taking the time derivative of the above equation yields: 

 𝑉ሶ ൌ 𝑀𝑒௩𝑒ሶ௩ ൅ 𝑊෩ ்𝛾ିଵ𝑊෩ሶ   

According to the definition of the velocity tracking 
error, we have: 

 𝑒ሶ௩ ൌ 𝑣ሶௗ െ 𝑣ሶ   

From the control law: 

 𝐹௠ ൌ 𝑀ሺ𝑣ሶௗ ൅ 𝑘௩𝑒௩ሻ െ 𝐹௧௢௧௔௟ሺ𝑥, 𝑣ሻ ൅ 𝑘௦ 𝑡𝑎𝑛ℎሺ𝑒௩ሻ െ 𝐹௘௫ 

System dynamics: 

 𝑀𝑣ሶ ൌ 𝐹௠ ൅ 𝐹௘௫ െ 𝐹ௗ௜௦௧ െ 𝐹௙௥௜௖ െ 𝛥ሺ𝑥, 𝑣ሻ  

External disturbances approximated by the neural 
network [33]: 

 𝐹௧௢௧௔௟ ൌ 𝑊∗்𝛷ሺ𝑧ሻ ൅ 𝜀  

By substituting the control law into the system 
dynamics, we obtain: 

 𝑀ሺ𝑣ሶௗ െ 𝑣ሶሻ ൌ െ𝑘௩𝑀𝑒௩ െ 𝑘௦𝑡𝑎𝑛ℎሺ𝑒௩ሻ ൅ 𝑊෩ ்𝛷ሺ𝑧ሻ ൅ 𝜀 

That is, 

 𝑀𝑒ሶ௩ ൌ െ𝑘௩𝑀𝑒௩ െ 𝑘௦ 𝑡𝑎𝑛ℎሺ𝑒௩ሻ ൅ 𝑊෩ ்𝛷ሺ𝑧ሻ ൅ 𝜀  

Therefore, 

 𝑀𝑒௩𝑒ሶ௩ ൌ െ𝑘௩𝑀𝑒௩
ଶ െ 𝑘௦𝑒௩𝑡𝑎𝑛ℎሺ𝑒௩ሻ ൅ 𝑒௩൫𝑊෩ ்𝛷ሺ𝑧ሻ ൅ 𝜀൯ 

Since𝑘௦ ＞ 𝜀௠௔௫, we have: 

𝑀𝑒௩𝑒ሶ௩ ൑ െ𝑘௩𝑀𝑒௩
ଶ െ 𝑘௦

𝑒௩
ଶ

1 ൅ |𝑒௩|
൅ 𝑒௩൫𝑊෩ ்𝛷ሺ𝑧ሻ ൅ 𝜀൯ 

The adaptive weight update law is defined as: 

 𝑊෡ሶ ൌ 𝛾𝛷ሺ௓ሻ𝑒௥  

where the neural network approximation error 𝑒௥  is 
defined as: 

 𝑒௥ ൌ 𝑚ሺ𝑣ሶ െ 𝑥ሷௗ െ 𝑘௩𝑒௩ሻ െ 𝑘௦ 𝑡𝑎𝑛ℎሺ𝑒௩ሻ  

Consequently, we can conclude that: 

 𝑊෩ ൌ 𝑊ሶ   

From these results, we derive: 

 𝑊෩ሶ ൌ െ𝑊෡ሶ ൌ െ𝛾𝛷ሺ௭ሻ𝑒௥:  

Thus, 

 𝑊෩ ்𝛾ିଵ𝑊෩ሶ ൌ െ𝑊෩ ்𝛷ሺ௭ሻ𝑒௥  

Upon substituting these expressions back, the derivative 
of the Lyapunov function can be expressed as: 

𝑉ሶ ൑ െ𝑘௩𝑀𝑒௩
ଶ െ 𝑘௦

𝑒௩
ଶ

1 ൅ |𝑒௩|
൅ 𝑊෩ ்𝛷ሺ௭ሻ𝑒௥ െ 𝑊෩ ்𝛷ሺ௭ሻ𝑒௥

൅ 𝑒௩𝐹௧௢௧௔௟ ൅ 𝑒௩𝜀 

By eliminating the weight estimation error terms, the 
inequality can be simplified to: 

𝑉ሶ ൑ െ𝑘௩𝑀𝑒௩
ଶ െ 𝑘௦

𝑒௩
ଶ

1 ൅ |𝑒௩|
൅ 𝑒௩𝐹௧௢௧௔௟ ൅ 𝑒௩𝜀 

Assuming that 𝐹௘௫  remains bounded, and 𝑘௦ ＞ 𝜀௠௔௫ , 
an increase in 𝑘௦ can ensure that 𝑒௩ is ultimately bounded. 
This condition signifies that the system exhibits uniformly 
ultimate bounded stability. According to the principles of 
Lyapunov stability theory, by selecting appropriate control 
gains 𝑘௦  and 𝑘௩ , it is possible to maintain uniform 
asymptotic stability for the system. As a result, the tracking 
error 𝑒௩  will eventually converge to a defined 
neighborhood of zero. Furthermore, the implementation of 
neural network-based compensation control proves 
effective in mitigating nonlinear disturbances, thereby 
enhancing the velocity tracking accuracy of the system. 

E. Control Flow Diagram 

To clearly illustrate the structure and signal interactions 
of the proposed control strategy, the control flow diagram 
is presented below. It reflects the real-time data processing 
and feedback mechanism implemented in the simulation 
experiments. 
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Fig. 3 illustrates the overall structure of the proposed 
control system for the rehabilitation robot. The system 
combines admittance control to generate compliant 
reference motion, sliding mode control to enhance 
robustness, and an RBF neural network for disturbance 
estimation and compensation, forming a closed-loop 
adaptive robust control architecture. The operational flow 
of the control strategy is as follows: 

 

 
Fig. 3. Control flow diagram of the simulation. 

Initially, the external force exerted by the user via the 
handle is transformed into a desired velocity command by 
the admittance control module, thereby encapsulating the 
user’s intent for interaction. Subsequently, this desired 
velocity is juxtaposed with the actual actuator velocity to 
ascertain the tracking error. 

Simultaneously, the error signal is processed through 
two pathways: it is directed to the sliding mode 
compensator and the RBF neural network module. The 
sliding mode controller devises a nonlinear compensation 
term derived from the tracking error, thereby enhancing 
the system’s robustness in the face of modeling 
uncertainties and external disturbances. Concomitantly, 
the RBF neural network leverages the same error signal to 
estimate unknown disturbances and generate a 
corresponding compensation value. The network’s 
weights undergo adaptive updates informed by the 
learning error, facilitating improved estimation accuracy 
over time. 

The control law module amalgamates the desired 
dynamic response from the admittance controller, the 
compensation term supplied by the sliding mode 
controller, and the disturbance estimation from the RBF 
neural network. This integration yields the final control 
input, which is subsequently applied to the actuator. 

As the actuator executes the prescribed motion, it 
remains susceptible to external disturbances. In real time, 
the actual velocity of the system is fed back to refresh the 
tracking error, thus establishing a robust closed-loop 
feedback control system. 

The control framework that integrates admittance 
control, sliding mode compensation, and neural network 
estimation not only enables compliant human–robot 
interaction, but also effectively resists external 
disturbances and continuously optimizes control 
performance through adaptive learning, making it suitable 
for rehabilitation training tasks in complex environments. 

IV. RESULT AND DISCUSSION 

To thoroughly evaluate the efficacy of the proposed 
control method across a range of disturbances and 
operational requirements, a comprehensive series of 
simulations was conducted using the MATLAB platform. 
The analysis centered on three primary dimensions: (1) the 
resilience of the controller in the presence of external 
disturbances, (2) the influence of sliding mode gain on 
both control precision and operational smoothness, and (3) 
a comparative assessment against a conventional  
PID-based control strategy. Additionally, to substantiate 
the practical applicability of the proposed method, 
hardware-in-the-loop experiments were meticulously 
designed and executed. 

To examine the robustness and adaptability of the 
controller, a simulation model that integrates admittance 
control, RBF neural network compensation, and sliding 
mode control was developed. This model aimed to 
evaluate the effectiveness of the proposed method in 
maintaining tracking performance amidst internal 
uncertainties and external disturbances. 

A. MATLAB Simulation Setup 

The simulation parameters are listed in Table I, 
encompassing the mechanical characteristics of the robot, 
the feedback control gains, and the structure of the RBF 
network. In the course of the simulation, an interaction 
force mimicking voluntary input from the patient was 
applied to the human-robot system. Additionally, a 
complex external disturbance was introduced to evaluate 
the system’s capacity for disturbance rejection. 

TABLE Ⅰ. PARAMETERS OF THE SIMULATION CONTROL SYSTEM 

Parameter Symbol Value 
Virtual Mass 𝑚ௗ  0.5 kg 

Actual Mass 𝑚 0.5 kg 

Virtual Damping 𝑏ௗ  6 Ns/m 

Velocity Feedback Gain 𝑘௩ 120 

Sliding Mode Control Gain 𝑘௦ 10 
RBF Learning Rate γ 2 
Number of Neurons N 30 

Basis Function Centers c [−3, 3] 
Basis Function Width b 1.5 

 
The interaction force was defined as a sinusoidal signal: 

𝐹௘௫＝10 𝑠𝑖𝑛൫2𝑡ሺ௜ሻ൯ 

The external disturbance was modeled as: 

𝐹௧௢௧௔௟＝ െ 20𝑠𝑖𝑛൫2𝑡ሺ௜ሻ൯ െ 10𝑐𝑜𝑠൫1.5𝑡ሺ௜ሻ൯ 
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These inputs were designed to simulate realistic 
dynamic loads encountered in rehabilitation scenarios. The 
simulation results, including position tracking, velocity 
tracking, and control force, were employed to assess the 
controller’s tracking accuracy, dynamic stability, and 
robustness. 

The MATLAB simulation was conducted based on the 
aforementioned configuration, and the resulting 
performance profiles are presented in Fig. 4. It is important 
to highlight that, in the absence of the RBF neural network 
control method, a conventional admittance combined with 
sliding mode control strategy is employed, where the 
control law is defined as follows: 

𝐹௠ ൌ 𝑀ሺ𝑣ሶௗ ൅ 𝑘௩𝑒௩ሻ ൅ 𝐹௦௠௖ െ 𝐹௘௫ 

All parameters remain consistent with those used in the 
RBF neural network control method. 
 

 

Fig. 4. MATLAB simulation results. 

Fig. 4 presents the simulation results of the system 
under external disturbances, highlighting a comparison of 
performance between scenarios with and without RBF 
neural network compensation. The analysis focuses on 
three critical aspects: position tracking, velocity tracking, 
and control force response. Notably, the incorporation of 
the RBF network substantially enhances tracking 
accuracy, response speed, and robustness in the face of 
disturbances. 

In Fig. 4(a), the actual position deviates considerably 
from the desired trajectory when the RBF module is not 
used, especially near turning points where dynamic 
changes occur. When RBF compensation is utilized, the 
system displays markedly improved path-following 
capabilities, with reduced steady-state and transient errors. 
These advancements indicate that the RBF neural network 
effectively addresses modeling uncertainties and adapts to 
time-varying disturbances, thereby significantly 
enhancing motion control precision in complex 
environments. 

Fig. 4(b) highlights the velocity tracking results. In the 
scenario without RBF support, a pronounced phase lag and 
larger error margins are observed, especially during  
high-acceleration phases. In contrast, the RBF-based 
controller demonstrates a close alignment with the 
reference velocity profile, underscoring its ability to 
compensate for nonlinearity, friction, and time-varying 
dynamics, the proposed strategy produces smoother 
velocity transitions and suppresses fluctuations typically 
encountered with conventional methods. 

Fig. 4(c) compares the motor force outputs. In both 
cases, the control inputs remain smooth and continuous. 
However, the RBF-enhanced method exhibits slightly 
reduced peak force amplitudes, which implies improved 
energy efficiency and better compliance during 
interaction. 

B. Accuracy of Disturbance Estimation by RBF Neural 
Network 

In addition to tracking performance, the ability of the 
RBF neural network to reliably identify external 
disturbances in real time is critical to achieving robust 
control. This estimation mechanism underpins the 
controller’s capacity to reject uncertainties and adapt to 
varying environments. As shown in Fig. 5, the actual 
applied disturbance is compared against the signal inferred 
by the neural network, providing a clear view of the 
estimator’s responsiveness and precision. 

 

 
Fig. 5. Comparison between the actual external disturbance and the 

output estimated by the RBF neural network. 

The figure reveals that the predicted disturbance 
trajectory aligns closely with the true signal in terms of 
both amplitude and phase—particularly during periods of 
rapid change or peak deviation. This close correspondence 
indicates that the network effectively learns the dynamic 
behavior of the disturbance through continuous online 
adaptation. 

Even in the presence of sharp fluctuations, the RBF 
observer maintains a high level of accuracy. Such real-time 
adaptability allows the control system to respond 
proactively, mitigating the influence of unknown forces 
before they degrade performance. By integrating this 
adaptive capability within the feedback loop, the overall 
system gains enhanced resilience against nonlinearities, 
frictional forces, and unmodeled dynamics. 

Ultimately, the estimation prowess of the RBF neural 
network is the cornerstone of the improvements illustrated 
in Fig. 4. In the absence of the neural network’s 
contributions, the controller would have been relegated to 
relying solely on fixed structural terms, which frequently 
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prove inadequate in the face of dynamic or unpredictable 
operating conditions. 

C. Comparative Evaluation between PID-Based and 
RBF-Based Disturbance Compensation 

To assess the efficacy of the proposed disturbance 
compensation strategy utilizing the RBF neural network, a 
comparative simulation study was conducted within an 
identical dual-loop control framework. The baseline 
methodology employs a conventional PID controller for 
disturbance estimation, while the proposed approach 
replaces it with an adaptive RBF neural network. Both 
strategies incorporate an admittance-based outer loop 
responsible for generating reference trajectories and a 
sliding mode controller in the inner loop for velocity 
tracking. The primary distinction between the two 
approaches lies in the configuration of the disturbance 
compensation term. 

In the PID-based scheme, the compensation force is 
constructed using a proportional–integral–derivative 
controller. The total control input 𝐹௠ applied to the system 
is given by: 

𝐹௠ ൌ 𝑚ሺ𝑣ሶௗ ൅ 𝑘௩𝑒௩ሻ ൅ 𝐹௉ூ஽ ൅ 𝐹௦௠௖ െ 𝐹௘௫ 

𝐹௉ூ஽ ൌ 𝐾௣𝑒௩ ൅ 𝐾௜ න 𝑒௩ሺ𝑡ሻ𝑑𝑡
௧

଴
൅ 𝐾ௗ𝑒ሶ௩ 

The parameters of the PID controller were set to 𝐾௣ = 4, 
𝐾௜ = 5, and 𝐾ௗ = 0.05. Although this configuration permits 
straightforward implementation, it is insufficiently 
adaptable to effectively manage time-varying or nonlinear 
disturbances. The results of the simulations comparing the 
two control strategies are presented in Fig. 6. 

 

 
Fig. 6. Comparison of velocity tracking and control force responses 

under PID and RBF compensation. 

To facilitate a quantitative comparison between the two 
methodologies, we analyzed three key performance 
indicators: RMSE, maximum tracking error, and recovery 

time. In this context, recovery time is defined as the 
shortest duration during which the velocity tracking error 
remains continuously within ±0.1 m/s for a minimum of 
0.3 s. 

The results are summarized in Table Ⅱ. The proposed 
RBF-based strategy outperformed the PID-based method 
across all metrics. Specifically, RMSE was reduced from 
0.2192 m/s to 0.0133 m/s, indicating a 93.9% 
improvement. The maximum velocity error decreased 
from 0.3305 m/s to 0.2012 m/s, a reduction of 39.1%. Most 
significantly, the recovery time dropped from 1.27 s  
to 0.04 s, corresponding to a 96.9% improvement in 
dynamic response. 

TABLE Ⅱ. QUANTITATIVE COMPARISON BETWEEN PID-BASED AND 

RBF-BASED DISTURBANCE COMPENSATION STRATEGIES 

Metric PID-Based RBF-Based Improvement (%) 
RMSE (m/s) 0.2192 0.0133 93.9 

Max Error (m/s) 0.3305 0.2012 39.1 
Recovery Time (s) 1.27 0.04 96.9 

 
These findings demonstrate that the adaptive learning 

capability of the RBF neural network enables more 
accurate disturbance estimation, allowing the system to 
respond quickly and robustly under varying external 
conditions. In contrast, the PID-based method exhibits 
limited adaptability and slower convergence when facing 
complex dynamic disturbances. 

 

 
Fig. 7. PID control improves tracking accuracy but induces oscillations. 

Furthermore, within the control framework 
incorporating admittance control, sliding mode regulation, 
and PID-based disturbance compensation, considerable 
velocity chattering was observed upon a moderate increase 
in PID parameters. As shown in Fig. 7, with the parameter 
settings of 𝐾௣  = 6, 𝐾௜ = 5, and 𝐾ௗ = 0.05, the system 
exhibited significant oscillations in the velocity response 
during dynamic transitions, which adversely affected the 
overall control stability. This result indicates that although 
PID compensation is easy to implement, it has limited 
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adaptability when facing complex external disturbances 
and nonlinear dynamics. In contrast, the compensation 
strategy based on RBF neural networks demonstrated 
superior robustness and stability under the same 
conditions. 

D. Performance Comparison under Various 
Disturbance Conditions 

To rigorously assess the robustness and adaptive 
capabilities of the proposed control strategy, we conducted 
simulation experiments across three distinct disturbance 
scenarios: reduced disturbance, normal disturbance, and 
increased disturbance. Each scenario involved a 
comparison between two approaches: the traditional 
admittance and sliding mode control method (Without 
RBF) and the proposed approach (With RBF), which 
integrates an adaptive RBF neural network. 

1) Reduced disturbance 
In the first scenario, the external disturbance was set to 

a lower magnitude, expressed as follows: 

𝐹௧௢௧௔௟＝ െ 5 𝑠𝑖𝑛൫2𝑡ሺ௜ሻ൯ െ 2 𝑐𝑜𝑠൫1.5𝑡ሺ௜ሻ൯ 

The simulation results are shown in Fig. 8. 
 

 

Fig. 8. MATLAB simulation results under reduced external disturbance. 

Under mild disturbance conditions, both methodologies 
exhibited commendable performance in accurately 
tracking the desired trajectories. However, the  
RBF-enhanced method demonstrated superior accuracy, 
with significantly reduced tracking errors and smoother 
force outputs. The improvement was particularly clear in 
response stability and recovery speed. 

2) Normal disturbance 
For this scenario, a moderate external disturbance was 

introduced, given by: 

𝐹௧௢௧௔௟＝ െ 20𝑠𝑖𝑛൫2𝑡ሺ௜ሻ൯ െ 10𝑐𝑜𝑠൫1.5𝑡ሺ௜ሻ൯ 

The simulation results presented earlier in Fig. 4 
unequivocally illustrate the distinct advantages of the 
RBF-based approach. Notably, there was a marked 
enhancement in trajectory accuracy, complemented by 
smoother velocity profiles and diminished fluctuations in 
control forces. These findings underscore the efficacy of 
the proposed neural network-enhanced controller in 
adeptly counteracting moderate disturbances commonly 
encountered in practical scenarios. 

3) Increased disturbance 
To challenge the system’s robustness further, the 

external disturbance was substantially increased, as 
defined by: 

𝐹௧௢௧௔௟＝ െ 50 𝑠𝑖𝑛൫2𝑡ሺ௜ሻ൯ െ 20 𝑐𝑜𝑠൫1.5𝑡ሺ௜ሻ൯ 

The simulation results are shown in Fig. 9. 
 

 

Fig. 9. MATLAB simulation results for increasing external perturbation. 

In this severe disturbance scenario, the performance of 
the conventional method without RBF deteriorated 
sharply, exhibiting significant deviations from the desired 
trajectory, pronounced oscillations, and delayed recovery 
times. Conversely, the approach that incorporated RBF 
compensation demonstrated markedly superior accuracy 
and exhibited enhanced resilience and adaptability. Such 
outcomes underscore the tangible advantages of 
integrating RBF neural networks into the control 
framework when confronted with challenging conditions. 

To provide a comprehensive assessment of robustness 
and adaptability, three key indices were extracted from 
each simulation run: 

RMSE—root-mean-square velocity error; 
Max Error—the peak magnitude of the velocity error; 
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Recovery Time—the first instant at which the absolute 
velocity error |𝑒௩|  remains inside ±0.05 m/s for a 
continuous 0.50 s window. 

Three disturbance levels were tested: reduced, normal 
and increased. For each disturbance level, we conducted a 
comparative analysis between the “without-RBF” 
admittance combined with a sliding-mode controller and 

the proposed RBF-assisted controller. The numerical 
findings are compiled in Table III, where the percentages 
highlighted in blue denote the relative enhancements 
achieved through the integration of the RBF  
neural-network compensator. 

Quantitative results for each scenario are summarized in 
Table Ⅲ, providing a clear comparison between the two 
approaches: 

TABLE Ⅲ. TRACKING PERFORMANCE UNDER DIFFERENT DISTURBANCE CONDITIONS 

Disturbance 
Level 

Method 
RMSE 
(m/s) 

Improvement 
(%) 

Max Error 
(m/s) 

Improvement 
(%) 

Recovery Time 
(s) 

Improvement 
(%) 

Reduced 
Without RBF 0.0548 

66.4% 
0.0864 

59.3% <0.01 
0.0% 

With RBF 0.0195 0.0352 <0.01 

Normal 
Without RBF 0.2319 

94.3% 
0.3503 

42.6% 
n/a¹ 

- 
With RBF 0.0133 0.2012 0.06 

Increased 
Without RBF 0.5658 

95.0% 
0.8552 

51.7% 
n/a¹ 

- 
With RBF 0.0285 0.4132 0.08 

Note: The ±0.05 m s⁻¹ for 0.50 s rule mirrors the tolerance band used in our laboratory trials. If this band is never held for the required duration within 
the 5 s simulation window, the recovery time is reported as n/a. 

The presented figures illustrate a distinct trend: as the 
level of disturbance increases, the performance disparity 
between the two control strategies becomes increasingly 
evident. At the highest disturbance level, the conventional 
controller (devoid of RBF integration) exhibits an RMSE 
of 0.5658 m/s and a maximum velocity error of 
0.8552 m/s. This controller does not achieve recovery 
within the specified ±0.05 m/s tolerance for 0.5 s, resulting 
in a “n/a” recovery time as indicated in Table III. In 
contrast, the proposed RBF-enhanced strategy markedly 
enhances performance, achieving an RMSE  
of 0.0285 m/s—representing a 95.0% decrease—and a 
maximum error of 0.4132 m/s, with a successful recovery 
time of 0.08 s. Even under conditions of minimal 
disturbances, the RMSE notably decreases  
from 0.2319 m/s to 0.0133 m/s (a substantial improvement 
of 94.3%), while the recovery time is reduced from “n/a” 
to 0.06 s. Such consistent advancements in tracking 
accuracy, disturbance rejection, and dynamic recovery 
accentuate the practicality of integrating an adaptive RBF 
module into the control architecture of rehabilitation 
robots, particularly in unpredictable or dynamically 
fluctuating environments. 

Moreover, these consistent enhancements in tracking 
precision, control stability, and responsiveness affirm the 
practical efficacy of incorporating neural network-based 
compensation into the control strategies of rehabilitation 
robots. This methodology proves especially advantageous 
in real-world scenarios characterized by unpredictable or 
variable disturbances. 

Consequently, in situations where external disturbances 
are minimal and computational resources for the control 
system are constrained, pure sliding mode control may be 
adequate. However, since RBF-based control necessitates 
greater memory and processing capabilities, it is 
particularly suited for applications that demand high 
precision or rapid dynamic responses. It is noteworthy that 
in this study, supplementary integral terms with 
appropriate gains 𝑘௩𝑒௩  were introduced to mitigate 
velocity tracking errors. This suggests that relying on a 

single control method to correct velocity errors often fails 
to achieve ideal results in practice. 
E. Experimental Validation in the Laboratory 

To ascertain the practical effectiveness of the proposed 
control strategy, a series of experimental tests were 
conducted utilizing a physical prototype platform 
developed in the laboratory. As depicted in Fig. 10, the 
system consists of two orthogonally arranged linear 
motion modules that together form a planar X–Y motion 
platform. Each module is actuated by a ball screw 
mechanism powered by a 200 W DC servo motor 
(manufactured by Kinco, Shenzhen, China), and is 
supplemented by a rotary encoder for precise velocity 
feedback. Additionally, a two-dimensional force sensor, 
with a measuring range of ±200 N in both X and Y 
directions and a resolution of ±1 N, is positioned below the 
handle to continuously monitor the interaction forces 
applied by the user. The control algorithm operates on a 
dSPACE DS1104 real-time control unit, maintaining a 
control loop frequency of 1 kHz. 

Throughout the experimental trials, participants were 
allowed to apply force freely to the handle, while the 
controller employed an admittance control approach to 
convert this force into a desired velocity. Under the 
proposed robust control strategy enhanced by RBF neural 
network compensation, the system responded smoothly. 
Distinct from conventional trajectory tracking tasks, this 
particular experiment eschewed predefined motion paths, 
instead simulating a rehabilitation training scenario 
wherein users actively manipulated the handle. The 
primary focus was to evaluate the compliance and 
responsiveness of the human–robot interaction without 
relying on preset trajectories. 

Each training session varied in duration from 5 to  
20 min, contingent upon the participant’s physical 
condition and fatigue levels. Notably, throughout the 
entire session, no transitions to different control modes 
were made—the system remained in active control mode, 
dynamically adjusting its response in real-time to the 
interaction forces exerted by the user. 
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As illustrated in Fig. 11, the velocity of the handle 
exhibited a close correlation with the variation trends of 
the interaction force, signifying exceptional compliance 
and responsiveness. Even in the face of abrupt changes or 
intentional perturbations, the system maintained stable 
operation, exhibiting no significant overshoot, delay, or 
oscillation. These findings underscore the robust 
adaptability and disturbance rejection capabilities of the 
proposed control framework under dynamic conditions. 

Overall, the experimental results confirm the feasibility 
of the proposed “admittance control + RBF neural network 
compensation + sliding mode robust control” strategy for 
real-world rehabilitation robots. This approach enables 
natural and real-time human–robot interaction, delivers 
smooth and safe motion, and holds significant potential for 
practical deployment in clinical or home-based 
rehabilitation training systems. 

 

 
Fig. 10. Prototype experimental verification. 

 

Fig. 11. Curves of collected interaction force and corresponding 
velocity variation. 

V. CONCLUSION 

This paper proposes a two-dimensional rehabilitation 
robot control strategy based on admittance control and 

adaptive RBF neural network compensation, primarily 
targeting upper-limb rehabilitation for patients with 
residual muscle strength and voluntary motor capabilities. 

In practical motion control, constructing precise 
mathematical models for friction and external disturbances 
is challenging. Moreover, modeling errors in the derived 
dynamic equations are inevitable. When using only 
admittance control and sliding mode control to achieve 
compliant interaction, the system performs well under 
small disturbances; however, as unmodeled uncertainties 
and external disturbances increase, the tracking 
performance significantly degrades, thereby 
compromising control compliance and patient comfort. 

To address these challenges, an RBF neural network 
was integrated into the control framework. This controller 
enables real-time estimation and compensation of external 
disturbances and friction, effectively improving the 
system’s compliance under disturbed conditions. 
Additionally, it adapts to sudden changes in interaction 
force, ensuring smooth and compliant motion during 
handle manipulation. 

Nonetheless, some limitations remain in the current 
study. The experiments were conducted exclusively in a 
laboratory setting with healthy participants, and the 
interaction mode was simplified. Clinical validation 
involving real patients with complex neuromuscular 
impairments has not been conducted. Furthermore, 
although the RBF-based compensation enhances 
adaptability, it imposes relatively high computational 
demands, which may create performance bottlenecks 
during long-term use or when deploying the system on 
low-cost embedded devices.  

Therefore, future work will involve collaboration with 
rehabilitation medical institutions to conduct formal 
clinical trials, assessing the system’s effectiveness, 
comfort, and safety in real rehabilitation scenarios, as well 
as analyzing its long-term impact on patient outcomes. 
Additionally, efforts will be directed toward the 
optimization of the control algorithm to facilitate efficient 
operation on lightweight embedded platforms, with the 
objective of achieving an optimal balance between  
real-time responsiveness and control performance. 
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