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Abstract—Object detection and grasping is one of the 
critical challenges in robotic research, particularly when 
working in complex environments with diverse objects in 
terms of shape and position. Although methods using RGB 
images have shown promising results in simpler scenarios, 
they still face numerous issues in more complex scenes, 
especially when objects overlap. Furthermore, prior 
research has primarily focused on object grasping, without 
focusing on addressing the interaction capabilities between 
robots and users during the grasping process. Recent 
advancements in vision-language models have opened up 
significant potential for the development of human-robot 
interaction systems based on multimodal data.  This paper 
presents an integrated model combining computer vision 
and language models to enhance object detection and 
grasping capabilities in real-world environments. The 
proposed approach consists of three key steps (1) identifying 
the locations of objects and generating segmentation masks 
using a visual-language model; (2) grasp candidates are 
predicted from the generated masks and bounding boxes via 
the Grasp Detection Head; and (3) the candidates are 
optimized and refined using the Grasp Refinement Head. 
The integration of vision-language models in the proposed 
approach not only enhances the ability of robot to 
understand the semantics of language, enabling more 
accurate grasping decisions, but also strengthens the 
interaction capabilities of robot with users. Experimental 
results demonstrate that the proposed model achieves 
higher grasping accuracy compared to existing methods, 
particularly in complex scenes with multiple objects. 
Additionally, the model also shows its ability to understand 
complex contexts through Interactive Grasp experiments.  
 
Keywords—robot grasping, robot grasping detection, grasp 
refinement, vision-language integration, image-text 
integration  
 

I. INTRODUCTION 

Robots and their applications have become 
increasingly prevalent in modern life [1]. Along with this, 
object grasping based on RGB images has emerged as an 
important area in robotic research, particularly in 
complex environments with overlapping objects and 
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diverse shapes [2, 3]. This task is crucial for developing 
robotic systems capable of performing precise and 
efficient manipulation in real-world applications. 
Previous studies have achieved high accuracy in simpler 
scenarios, such as the work [4]. However, in more 
complex scenes with multiple objects, this problem still 
presents significant challenges, especially when it comes 
to detecting and grasping objects with limited training 
data or objects that have not appeared in the training data. 
Moreover, current methods primarily focus on object 
detection or grasp detection based on a unimodal data, 
such as RGB or RGB-D images. That less focus on 
integrating diverse types of information, such as audio or 
text. This limits the effectiveness of robots in accurately 
identifying object locations as well as grasping positions.  
Some modern approaches have attempted to combine 
deep learning for object detection and segmentation, 
achieving high performance on benchmark datasets. 
However, these methods are still limited in their handling 
of information from RGB images and not yet to fully 
exploit the potential of diverse and complex data, such as 
user descriptions of the objects to be grasped. 

In recent years, the rapid development of large 
language models has opened new potentials for the field 
of language-driven robotic control. Models such as 
GPT [5], PathwaysLanguage Model (PaLM) [6], and 
Large Language Model Meta AI (LLaMA) [7] have 
demonstrated exceptional capabilities in understanding 
and processing natural language commands. They enable 
robots to perform complex tasks in real-world 
environments. This progress has been driven by 
advancements in the Transformer architecture [8] and the 
ability to train on large-scale, multimodal datasets. 
Notably, large language models have been integrated 
with vision-language models, such as Contrastive 
Language-Image Pre-training (CLIP) [9] and 
Bootstrapping Language-Image Pre-training for Unified 
Vision-Language Understanding and Generation  
(BLIP) [10], allowing computer not only to comprehend 
language but also to associate semantic information with 
image data. This integration has unlocked significant 
potential for developing robotic systems that can 
accurately recognize and manipulate objects based on 
language commands to performing complex multi-step 
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tasks. It was done through several steps of identifying and 
grasping specific objects. The language in text form 
provides rich context, significantly enhancing 
performance in complex scenarios. In particular, the 
combination of language and RGB image data offers a 
deeper understanding of context and tasks, even when 
objects have limited or unappeared in training data. This 
development not only enhances the flexibility and 
efficiency of robots grasping in real-world situations but 
also strengthens human-robot interaction, promoting the 
application of intelligent robots in industries, services, 
and daily life. However, research related to the 
integration of language in human-robot interaction, 
specifically in guiding robots to grasp objects, remains 
quite limited. 

In this research, a deep neural network design is 
presented that combines grasp detection and semantic 
segmentation, utilizing RGB images and user-provided 
text instructions. This approach employs a vision-
language model, an advanced system that integrates 
visual data with natural language to improve the robot 
capability to understand and navigate complex 
environments effectively. The research focuses on 
grasping household items, aiming for applications in 
home-assistive robots. This approach not only focuses on 
the detection of grasp candidates but also improves 
accuracy through refinement steps based on semantic 
understanding and natural language information. This 
method enhances performance in complex scenes and 
opens up the potential for more effective collaboration 
between robots and humans in real-world environments. 

The proposed model was evaluated for its accuracy in 
object segmentation and grasp location detection on two 
datasets, Object Clutter Indoor Dataset for Grasp (OCID 
Grasp) [11] and Jacquard [12]. The results demonstrate 
that the proposed method improves accuracy in grasp 
location determination, particularly in complex scenarios. 
In conclusion, the key contributions of this research can 
be summarized as follows: 

 A method that integrates language models to 
enhance grasp location detection and improve 
human-robot interaction. 

 Improved accuracy in object detection and 
segmentation, particularly in cases with complex 
contexts. 

 Enhanced segmentation of objects with limited or 
no training data, leveraging descriptive text. 

II. RELATED WORK 

Traditional methods for grasp detection rely on 
geometric information, physical modeling, and force 
analysis [13]. While these methods are effective in 
controlled environments, they often struggle to handle 
complex real-world scenes with multiple objects and 
clutter. The development of deep learning has driven the 
popularity of data-driven approaches in the field of grasp 
detection [14]. Early methods, such as Ref. [4], employed 
deep neural networks with supervised learning to predict 
multiple grasp candidates for each object, achieving 
significant improvements over traditional methods. 

A varied dataset containing grasp detection data is 
considered an important factor in improving the training 
and evaluation of neural networks. The Cornell dataset [4] 
and the Jacquard dataset [12] are commonly used in 
grasping research, with annotated bounding boxes being 
included to allow grasping parameters to be predicted 
from RGB or RGB-D images. These datasets provide an 
important foundation for the development of modern 
grasp detection models. 

Many researches have focused on improving 
Convolutional Neural Networks (CNNs) [15] to address 
the limitations of previous methods. Morrison et al. [16] 
introduced GGCNN, a real-time neural network model 
designed to predict grasp poses directly from depth 
images without the need for time-consuming candidate 
sampling. This appoarch eliminates the need for 
discretized sampling of grasp candidates, reducing 
computation time and achieving a grasp success rate of 
83%. GGCNN was further enhanced by adopting a multi-
view approach, which resulted 94% in the grasping 
success rate in cluttered environments [17].  
Kumra et al. [18] developed GR-ConvNet, a 
convolutional neural network that addresses the vanishing 
gradient problem and achieves high accuracy on the 
Cornell and Jacquard datasets. Yu et al. [19] proposed 
Squeeze-and-Excitation ResUNet, demonstrating that this 
mechanism enhances the generalization ability of model 
across different datasets. 

Two-stage detection methods, including region 
proposal networks and object detectors, have been 
effectively applied in grasp detection [20]. In the first 
stage, the region proposal network identifies candidate 
regions. In the second stage, features are extracted from 
these regions to detect the object. Although high accuracy 
is achieved, this approach often requires substantial 
computational time. To reduce computation time, one-
stage detectors have been developed [21]. This method 
divides the input image into a grid and performs detection 
on each cell. However, this approach often results in 
reduced accuracy compared to two-stage methods. 

Moreover, semantic segmentation plays a crucial role 
in supporting grasp detection. Several researches have 
applied encoder-decoder network architectures to 
improve accuracy in object recognition [22, 23]. Fine-
grained semantic segmentation at the object level, which 
helps clearly identify areas related to each object in the 
image, has been the focus of some studies [24–26]. In 
robot vision, various methods have been developed to 
segment unknown objects, helping the manipulation 
process of robot in complex scenarios. A notable 
contribution comes from the research of Araki et al. They 
designed a multitask deep neural network to integrate 
semantic segmentation and grasp detection [27]. These 
advancements have highlighted the importance of 
semantic segmentation in enhancing the effectiveness of 
grasp detection and object manipulation in modern 
robotic applications. 

Recently, the integration of natural language with 
grasp detection has opened up a new research direction. It 
enables robots to better understand and execute human 
commands with more flexibility. Approaches in [28] 
leverage large language models and vision-language 
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models to enhance human-robot interaction. However, 
many current studies focus solely on single-object 
scenarios or limit grasp detection to 3D space [29, 30]. 
This reduces the effectiveness of robotic systems in 
complex real-world environments. 

Inspired by the previous works, this study integrates 
object detection and object recognition models based on 
user prompts and 2D image into a grasp location 
detection model to improve accuracy. We validate model 
on the OCID Grasp and Jacquard datasets, with the goal 
of accurately predicting the grasp locations of objects 
based on user prompts. This approach effectively 
addresses challenges related to extracting multimodal 
features including both images and text while also 
enhancing user interaction with the robot. 

III. GRASP DETECTION MODEL 

A. Overview 

This section presents the architecture of the proposed 
model, which integrates a visual-language model for the 
task of grasp detection. The flowchart in Fig. 1 provides a 
visual representation of the proposed grasp detection 
pipeline. The process begins with input data, comprising 
an RGB image and a descriptive text prompt, which are 
jointly processed to enhance object localization. This 
input is fed into the Object Detection module, which 
leverages a vision-language model to generate bounding 
boxes. From there, two parallel processes are initiated. 
Firstly, Image Processing and Feature Extraction prepares 
visual features for grasp analysis. These outputs are then 
used in the Grasp Candidates Prediction step to estimate 
potential grasp poses. Secondly, Segmentation Mask 
Generation detect object boundaries. Both results are fed 
into Grasp Refinement stage, where semantic and 
geometric features are fused to enhance the grasping 
accuracy, to further correct. The pipeline concludes with 
the Grasp Output, expressed as a five-dimensional vector, 
representing the optimal position, size, and angle for 
object grasping.  
 

 
Fig. 1. The proposed methodology. 

Specifically in this study, we utilize typical visual-
language models such as Grounding DINO [31], which 
stands for Grounding DEtection TRansformer with 
Improved deNoising anchOr Boxes, and Segment 
Anything Model (SAM) [25]. These models are used to 
identify bounding boxes and perform semantic 
segmentation for the objects within the image, as shown 
in Fig. 2. Grounding DINO model analyzes both the input 
image and descriptive text prompt to determine the 
positions of each object. Then a mask is generated to 
highlight the area corresponding to each object by SAM.  

 

 
Fig. 2. Architecture of proposed grasp detection model. 

Based on the identified bounding boxes, the objects 
within these regions are cropped and passed through the 
backbone. It is a deep convolutional neural network 
designed to extract key features from the images. The 
backbone processes the cropped images and transforms 
them into feature maps. They represent the spatial and 
shape information of the objects, providing the necessary 
input for subsequent grasp prediction steps. These 
features are then forwarded to the Grasp Detection Head, 
where the model predicts potential grasp candidates 
including parameters of center coordinates (x, y), size  
(h, w), and rotation angle θ. This process generates a list 
of grasp candidates for each object, with each candidate 
assigned its parameters. Finally, the mask information 
from the Grounded SAM module is combined with the 
grasp candidates from the Grasp Detection Head. They 
are then refined by the Grasp Refinement Head. In this 
stage, parameters such as the center coordinates, width, 
height and rotation angle are optimized to ensure the 
highest accuracy and manipulation capability. 

The final output consists of optimal grasp points that 
accurately located on the objects in the input image. With 
this approach, the model enhances the ability of robot to 
perform effective manipulation even in complex 
environments, where multiple objects with diverse shapes 
and intricate relationships exist. The integration of vision-
language models improves the ability of robot to 
recognize objects that are either rarely seen or not present 
in the training data. This study focuses on the three main 
stages highlighted in the blue circle of Fig. 2. The entire 
architecture can be formulated into three optimized stages 
as Eq. (1). The targets are determined by the 2D image 
captured the enviroment I and the description of object T. 
The image of the object is cropped based on the bounding 
box returned by EG-SAM denoted as Icrop. The term Mcrop 
and C represent the mask results of the EG-SAM process 
cropped according to the bounding box, and the list of 
grasp candidates, respectively. The three parameters 
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2,..,o  represent the sequence in which the stages are 

executed. In each stage, only one term in Eq. (1) is 
applied. 
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Unlike previous methods that typically rely solely on 
image data without robust user interaction capabilities, 
proposed approach utilizes vision-language models to 
understand user commands. Specifically, the visual 
language model like Grounding DINO is integrated to 
detect objects within the image based on user prompts. A 
notable strength of this method is its ability to recognize 
objects that the robot has never encountered before. In 
addition, the SAM is integrated to determine the 
segmentation masks of objects, enhancing precision in 
adjusting grasping parameters and improving accuracy. 

B. Grounding DINO-SAM 

The Grounding DINO-SAM architecture is designed 
similarly to the Grounded SAM [32] architecture. It is an 
advanced model that addresses the challenges of 
detection and segmentation in open-vocabulary tasks. 
Grounding DINO-SAM focuses on identifying and 
segmenting objects based on prompt input. The model 
combines the power of Grounding DINO, an open-
vocabulary object detection system based on text, and 
Segment Anything Model (SAM), a robust segmentation 
model. The process operates in two main stages. In first 
stage, Grounding DINO detects bounding boxes based on 
prompt. In second stage, results of previous stage are 
processed by SAM to generate detailed segmentation 
masks. However, Grounding DINO-SAM differs from 
Grounded SAM as it solely integrates Grounding DINO 
and SAM, without incorporating RAM or other models. 
This design choice aims to minimize model complexity 
and enhance processing speed. The architecture of 
Grounding DINO-SAM is illustrated in Fig. 3. 
 

 
Fig. 3. Architecture of Grounding DINO-SAM. 

1) Prompt and image backbone 
The Prompt Backbone uses BERT-base model [33], a 

well-known Transformer network in natural language 
processing. BERT-base consists of 12 layers, a hidden 
size of 768 and 12 self-attention heads, resulting in a total 
of about 110 million parameters. The key distinction is 
using sub-sentence level text representations [31] to 
reduce unwanted interference between unrelated phrases 
in a sentence. The Image Backbone employs the Swin 
Transformer [34] consisting of 4 stages, where stages 1, 2, 
and 4 each contain 2 Swin Transformer Blocks, while 
stage 3 uniquely contains 18 blocks. This is an efficient 
image-transforming neural network. The image backbone 
is used to extract image features. 

2) Feature enhancer 
This is a key part of Grounding DINO, designed to 

enhance the integration of information between language 
and image. The architecture of the feature enhancer 
consists of three main components Self-Attention, Image-
to-Text Cross-Attention, and Text-to-Image Cross-
Attention. The general mathematical formulation for 
attention is presented in Eq. (2). Where Q, K, and V 
represent the query matrix, key matrix, and value matrix, 
respectively. dk is the dimension of the embedding vector 
in the key matrix. The primary objective of the Feature 
Enhancer is to create feature consistency between the two 
data domains including images and prompt. It improves 
contextual understanding and enhances object detection 
performance in complex scenarios. 

  , ,
T

k

QK
Attention Q K V sofmax V

d

 
   

 
           (2) 

3) Grounding DINO head 
This head is responsible for querying and selecting the 

necessary information from the embeddings of both the 
image and text. These embeddings are processed after 
passing through the Feature Enhancer block to produce 
the results. The key components of this block include the 
Language-guided Query Selection and Cross-Modality 
Decoder. The Language-guided Query Selection utilizes 
language information to guide the selection of relevant 
queries from the image features. The goal is to identify 
the top K features with the highest correlation from the 
image feature set EI. The text features are denoted as ET. 
The Max(−1) function is applied to extract the maximum 
values along dimension −1. The result IK is the set of 
selected indices from the image feature set. Eq. (3) 
represents this feature selection process. Subsequently, 
the Cross-Modality Decoder merges the information from 
the two semantic domains. 

     1
K K I TI Top Max E E   (3) 
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4) Prompt and image encoder 
This module is similar to the Prompt and Image 

Backbone but uses different models to extract features 
due to the different tasks being performed. In the SAM 
block, the Vision Transformer pre-trained with  
MAE [35, 36] is used as the image encoder. MAE is an 
asymmetric encoder-decoder design, where the encoder 
processes only a small subset of unmasked image patches 
without incorporating mask tokens, while a lightweight 
decoder reconstructs the original image from the latent 
representation combined with mask tokens. This process 
involves randomly masking a substantial proportion of 
the input image patches, with the encoder encoding the 
remaining visible patches and the decoder leveraging this 
encoded information alongside mask tokens to predict the 
missing pixel values. The text encoder from the CLIP 
model basing Transformer architecture with a multi-layer 
structure and self-attention mechanisms to generate 
contextualized embeddings. 

5) Memory attention 
This component in Grounding DINO is designed to 

integrate information from previous frames and 
predictions. It enables the model to handle long-term 
context in videos or a sequence of related images. 
Memory Attention enhances the model ability to make 
more accurate predictions in complex scenarios, 
particularly in long videos with objects that appear and 
disappear. It also allows the model to maintain high 
accuracy across tests on diverse datasets. 

6) Mask decoder 
This component is responsible for performing 

segmentation based on input features from images and 
prompt within the SAM block. The inputs consist of 
features from the image encoder and prompts such as 
points, bounding boxes, or masks. They are encoded 
before by the prompt encoder. The mask decoder is 
designed to be lightweight yet effective in mapping 
image embeddings and prompt embeddings to mask 
outputs. The architecture of this component is inspired by 
Transformer-based segmentation models. The Mask 
Decoder is customized from the standard Transformer 
Decoder architecture, incorporating Multi-Layer 
Perceptron (MLP) blocks and convolutional layers. It 
aims to ensure high computational efficiency while 
maintaining high segmentation accuracy. Fig. 4 shows the 
results of the Grounding DINO-SAM model in 
identifying and segmenting household objects. 

 

 
Fig. 4. The object detection and segmentation results of the Grounding 

DINO-SAM model with different prompts. 

C. Backbone and Grasp Detection 

This section presents the architecture for robot grasp 
location detection from RGB images that inspired by the 
work of Ainetter and Fraundorfer [11]. The model 
employs ResNet-101 [37] as the backbone with several 
modifications to suit the tasks of grasp detection. 
Specifically, ResNet-101 is combined with a Feature 
Pyramid Network (FPN) [38]. In addition, Synchronized 
Inplace Activated Batch Normalization [39] and 
LeakyReLU are used to replace Batch Normalization and 
ReLU in the original ResNet-101 as shown in Fig. 5. As a 
result, image features are extracted at multiple resolutions. 
These features are then passed to the Region Proposal 
Network [40], which identifies potential regions in the 
image that may contain grasp points. Then, they are 
processed by the grasp detection head. A model predicts 
grasp candidates, including the location and orientation of 
each grasp point. The input image for this process is a 
cropped image of the object based on the bounding box 
determined by the Grounding DINO-SAM model. 

 

 
Fig. 5. Detailed architecture of grasp detection. 

1) Region proposal network 
RPN is a fully convolutional network. The input to the 

RPN comes from the backbone module, which provides 
image embeddings. The RPN is responsible for 
generating rectangular region proposals based on image 
features. These regions are represented by center 
coordinates (x, y) and dimensions (w, h). However, due to 
its architectural characteristics, the output does not 
include information regarding the rotation angle θ. The 
RPN plays a critical role in reducing the number of 
regions to be examined, thereby improving computational 
efficiency in region detection tasks. 

2) Grasp detection head 
This component is responsible for predicting the grasp 

candidates. Each grasp point is determined based on the 
region proposals that have been computed beforehand. 
These region proposals are fed into the grasp detection 
head. The ROIAlign [41] is used to extract feature maps 
with a spatial resolution of 14×14, corresponding to the 
region proposals. Next, each feature map undergoes 
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average pooling with a kernel size of 2. The data is then 
passed through two fully connected layers, each 
containing 1024 neurons. Both fully connected layers 
apply Synchronized Inplace Activated Batch 
Normalization and Leaky ReLU activation. The data is 
then sent to two subnetworks, which include the 
prediction of grasp orientation and the prediction of the 
bounding box. The grasp orientation prediction 
subnetwork predicts the orientation of the grasp point, 
classified into 18 classes. Each class corresponds to an 
even division of orientations. The second subnetwork 
predicts the bounding box parameters for each grasp 
point, including position (x, y) and size (h, w). These 
parameters are used to determine the grasp candidates. 

3) Loss function cho grasp detection 
The loss function Lgrasp is defined in Eq. (5), where Lcls 

and Lreg represent the loss functions of the Region 
Proposal Network. Lbox and Lrot correspond to the loss 
functions for the bounding box location and the rotation 
angle of the grasp, respectively. Lcls and Lreg are used that 
similar to the study in [40]. Lrot is defined according to  
Eq. (5), where K = (K͟ union K+). K+ is the set of valid 
region proposals, and K͟ is the invalid set generated using 

the RPN. The terms cls
kp  and non

kp are defined as 

functions determining the likelihood of grasp candidate k 
being within the true class label and the likelihood of k 
being an invalid region. The term Lbox is formulated and 
presented in Eq. (6). The term i represents the values of 
each element in [x, y, h, w]. The correction factors td and 
the L1 regularization function smoothL1 are detailed in the 
study [42]. 

 grasp cls reg box rotL L L L L               (4) 

    1 1
log logcls non

rot k k
k K k K

L p p
K K

  

 
    

 
    (5) 

  1
{ , , , }

box L d
i x y h w

L smooth i t


          (6) 

D. Grasp Refinement Head 

The Grasp Refinement Head is a crucial component in 
the grasp detection model aimed at improving the 
accuracy of the grasp candidates. The input data consists 
of grasp candidates and semantic segmentation. Grasp 
candidates refer to the initial predicted grasp locations 
from the Grasp Detection block. Semantic segmentation 
is the object segmentation map, cropped according to the 
size (H, W) of the bounding box of object. The size of the 
semantic segmentation equals the input image size for 
both the backbone and Grasp Detection. Then, the grasp 
candidate parameters are fused and cropped with the 
semantic segmentation of object to determine the grasp 
candidates positions on the segmentation map. This 
fusion and cropping process allows the network to learn 

more detailed information about the grasp candidates 
based on the combination of geometric and semantic 
segmentation features. Subsequently, they are stacked 
together. The tensor of semantic segmentation and the 
tensor containing grasp location information are merged 
to create a tensor of size (H, W, 2). This step helps the 
model better understand the grasp candidates positions on 
the object. Finally, an MLP block is used to refine the 
grasp candidates. It improves the accuracy of grasp 
predictions. The result is a set of refined correction 
factors, including dx, dy, dw, dh, dθ. The architecture was 
shown in Fig. 6. 

 

 
Fig. 6. Architecture of grasp refinement head. 

Eq. (7) is used as the loss function for grasp refinement. 
The output of the grasp refinement head is denoted as di. 
The correction factors are denoted as ti. The smoothL1 

function is used similarly to how it is applied in Lbox in the 
Loss function cho grasp detection section. 

  1
{ , , , , }

refinement L i i
i x y h w

L smooth d t


   (7) 

The proposed model is composed of three components 
including Grounding DINO-SAM, Grasp Detection, and 
Grasp Refinement Head. However, this research only 
integrates and utilizes the pre-trained model for the 
Grounding DINO-SAM block. Therefore, it is no loss 
function for first component. The remaining two blocks 
are trained during the experiments, with the respective 
loss functions being Lgrasp and Lrefinement. To perform 
training for both tasks across these two blocks, a 
combined loss function is defined as in Eq. (8).  
where, α and β are weights that determine the influence 
of each process on the value of Lgeneral. In this research, 
the values of α and β are set to 1. 

 general grasp refinementL L L    (8) 

IV. EXPERIMENTS AND DISCUSSION 

A. Experiment Setup 

To evaluate the effectiveness of the proposed method, 
experiments were conducted on well-known grasping 
datasets including the OCID Grasp and Jacquard datasets. 
They are datasets widely used in the field of grasp 
detection. Additionally, the model was also tested on our 
HHI dataset to assess its applicability in human-robot 
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interaction scenarios for grasping objects based on 
prompt. The proposed method was compared with 
previous approaches, all of which use RGB data as input. 
Exceptionally, the Interactive Grasp Evaluation section 
uses both RGB images and prompts. 

In terms of training setup, the backbone is initialized 
with pre-trained weights from ImageNet. The parameters 
of the first two modules including conv1 and conv2 are 
frozen during the entire training process to enhance 
stability and efficiency. For the Jacquard dataset, the data 
is split with 95% allocated for training and 5% for testing. 
In the case of the OCID Grasp and HHI datasets, the data 
is divided with 80% for training and 20% for testing. All 
training and evaluation experiments are conducted on an 
NVIDIA RTX 3070 GPU. For the evaluation method, the 
Jaccard index is used to evaluate the performance of the 
methods in the experiments. The evaluation formula is 
given in Eq. (9). The terms gC and gT represent the 
parameters of the grasp candidates and the grasp ground 
truth, respectively. A predicted result is considered 
accurate if the angular deviation between the predicted 
value and the label is less than or equal to 30º and 
J(IoU) > 0.25. 

 ( ) ( , ) C T
C T

C T

g g
J IoU J g g

g g
 

I

U
 (9) 

B. Dataset 

1) Jacquard 
The Jacquard dataset is a dataset specifically designed 

to evaluate grasp detection and semantic segmentation in 
robotics. This dataset contains 54,000 RGB-D images 
generated from 11,000 unique objects. Each image 
includes ground truth labels, which consist of grasp 
locations and orientations for the robot and ground truth 
semantic segmentation. This dataset enables the 
evaluation of multitask learning approaches, including 
both grasp detection and semantic segmentation. 

2) OCID grasp 
The OCID Grasp dataset is an extended version of the 

OCID dataset. Initially, the OCID dataset contained 
objects, contexts, varying distances between the camera, 
viewpoints, and diverse lighting conditions. The primary 
purpose of this dataset was to evaluate semantic 
segmentation methods in increasingly complex scenes. 
Later, the OCID Grasp dataset was expanded by adding 
manually annotated labels of valid grasp candidates for 
each graspable object in the images. The OCID Grasp 
dataset includes 1,763 images. It contains over 11,400 
object segmentation masks and more than 75,000 
manually annotated grasp candidates. Objects in the 
dataset is categorized into 31 different classes. 

C. Grasp Accuracy Evaluation 

1) Evaluation on Jacquard dataset 
Images in the dataset is normalized to a size of 

512×512 before being input into the model. This resizing 
helps reduce computational load during training while 
retaining sufficient information from the images. The 

proposed model is trained using the Stochastic Gradient 
Descent method. Specific parameters include a learning 
rate of α = 0.02, regularization with L2 = 0.0001, and 
momentum of m = 0.9. The training process is performed 
solely on two blocks including grasp detection and grasp 
refinement heads. The Grounding DINO-SAM block is 
frozen during training. The average Frame Per Second 
(FPS) achieved was 14 with the RTX 3070 GPU 
hardware. 

The proposed model demonstrates exceptional 
performance on the Jacquard dataset, achieving a grasp 
accuracy of 93.12%, as shown in Tables I–III, 
outperforming competing methods such as Zhang ROI-
GD (90.4%), Song ResNet-101 (91.5%), and Kumra GR-
ConvNet (91.8%). This high accuracy highlights its 
effectiveness in detecting precise grasp locations for 
robotic applications. When evaluated with varying angle 
thresholds in Table II, the model sustains robust 
performance at a 30° threshold, showcasing its reliability. 
Even as the angle threshold decreases, the accuracy 
experiences only a slight decline, yet it consistently 
surpasses other models. This performance is attributed to 
the integration of vision-language models and grasp 
refinement, enhancing object detection and grasp 
prediction. The results affirm the model capability to 
excel in single-object scenarios typical of the Jacquard 
dataset. In Table III, when applying different IoU criteria, 
our model continues to lead with 91.37% at a 30% 
threshold, though it performs slightly worse at a 35% 
threshold. These results indicate that the proposed model 
performs well in accurately detecting grasp locations 
under standard evaluation criteria (30° and 25% J(IoU)). 
However, when the evaluation conditions become more 
stringent, proposed model has yet to outperform previous 
studies. Specifically, when the angle threshold is set to 
10°, the grasp accuracy of the proposed model is lower 
than 0.65% the results of the previous study, 
Det_Seg_Refine. Furthermore, to enhance the reliability 
of the results, a 95% confidence interval was computed 
based on the outcomes of 5-fold cross-validation, with a 
lower bound of 92.86% and an upper bound of 93.38%. 

TABLE I. COMPARISON OF GRASP ACCURACY RESULTS ON THE 

JACQUARD DATASET 

Method Input Grasp Accuracy (%) 
Zhang, ROI-GD [43] RGB 90.4 

Song, Resnet-101 [44] RGB 91.5 
Kumra, GR-ConvNet [18] RGB 91.8 

Depierre [45] RGB 85.7 
Det_Seg_Refine [11] RGB 92.95 

Ours RGB 93.12 

TABLE II. COMPARISON OF GRASP ACCURACY RESULTS ON THE 

JACQUARD DATASET WITH DIFFERENT ANGLE THRESHOLDS 

Method 30o 25o 20o 15o 10o 

Zhou [20] 81.95 81.76 81.27 80.23 77.79 

Depierre [45] 85.74 85.55 85.01 83.65 80.82 

Det_Seg_Refine [11] 92.95 92.88 92.42 91.52 88.92 

Ours 93.12 92.90 92.39 91.46 88.27 
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TABLE III. COMPARISON OF GRASP ACCURACY RESULTS ON THE 

JACQUARD DATASET WITH DIFFERENT J(IOU) THRESHOLDS 

Method 25% 30% 35% 
Zhou [20] 81.95 78.26 74.33 

Depierre [45] 85.74 82.58 78.71 
Song [44] 91.5 89.7 87.3 

Det_Seg_Refine [11] 92.95 91.33 88.96 
Ours 93.12 91.37 88.45 

 
2) Evaluation on OCID grasp dataset 
In the experiment with the OCID Grasp dataset, 

proposed model was trained with a learning rate of 0.03. 
The other parameters were similar to those used during 
training on the Jacquard dataset. The evaluation metric, 
Jaccard index, was calculated for each object class that 
could be grasped in the scene, along with the Intersection 
over Union (IoU) for segmentation in each object class. 
The accuracy of grasp candidates was evaluated using 
this metric, which required the center of the grasp 
candidate to be located within the predicted segmentation 
mask of the corresponding object class. Experimental 
results in Table IV demonstrate that the grasp accuracy 
on the OCID Grasp dataset outperforms the previous 
Det_Seg_Refine study. Overall, the experimental results 
evaluating grasp accuracy across different datasets show 
that proposed method does not perform as effectively on 
single-object datasets like Jacquard. Instead, in more 
complex contexts with multiple objects, such as the 
OCID Grasp dataset, the proposed model achived better 
results due to its enhanced segmentation capability. 
Additionally, similar to Jaquard dataset, a 95% 
confidence interval was also calculated using the results 
of 5-fold cross-validation on the OCID Grasp dataset, 
yielding a lower bound of 89.78 and an upper bound of 
90.84. 

TABLE IV. COMPARISON OF GRASP ACCURACY RESULTS ON THE OCID 

GRASP DATASET 

Method  Grasp Accuracy (%)  

Det_Seg_Refine 89.02 
Ours 90.31 

D. Interactive Grasp Evaluation 

One of main objective in this study is to develop a 
grasping model capable of interacting with humans 
through prompts. Therefore, this experiment is 
implemented and evaluated based on the interaction of 
model with users during the grasping of household 
objects. HHI dataset is used to assess the results for two 
consecutive tasks, including object detection and grasp 
detection. The HHI contains 427 RGB images of 
household items, with the number of segmented objects 
matching the number of prompts, which is 2.6k. Each 
image in dataset includes multiple instances in same class 
that differ in color, size, and position. The grasping 
positions are manually labeled for each image-prompt 
pair. The labels in the dataset are manually annotated, 
similar to the OCID Grasp dataset. The model is fine-
tuned based on a pre-trained model with the OCID Grasp 
dataset. This setup helps to evaluate the model ability to 
understand text prompts and correctly select and grasp 

the intended object from complex scenes with similar 
items. The effectiveness of the Interactive Grasp 
experiments was also assessed using the same method as 
the Jacquard and OCID Grasp datasets, relying on the 
Jaccard index and angular deviation to determine grasp 
accuracy. The evaluation metrics used are consistent with 
those in the evaluation on OCID Grasp dataset section. 
The results achieve an accuracy of 82.26% with lower 
and upper bound of 95% confidence interval are 81.78% 
and 82.74%, respectively. 

The results demonstrate that the proposed model 
addresses the issue of previous grasp detection about 
inability of model to understand textual data and interact 
with users. Fig. 7 shows experimental results, with red 
rectangular boxes representing the predicted grasping 
areas by the model. The first pair of images illustrates the 
model ability to detect object by color. The second and 
third pairs of images highlight the contextual 
understanding ability, enabling the robot to correctly 
identify the object to grasp in scenarios with multiple 
similar objects. However, since the current model has the 
Grounding DINO-SAM component frozen, grasp location 
detection for complex images or prompts remains a 
challenge. In the other hand, the experimental results also 
showcase the significant potential of integrating 
Grounding DINO-SAM into grasp detection to enhance 
human-robot interaction. 
 

 
Fig. 7. Experimental results on HHI dataset with image and prompt 

input. 

E. Ablation Study 

To assess the contributions of individual components 
in the proposed model, an ablation study was conducted 
by systematically removing key elements and evaluating 
the impact on grasp detection performance. Specifically, 
we removed the segmentation mask generation from the 
Grounding DINO-SAM module and, consequently, the 
Grasp Refinement Head, as the latter relies on the 
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segmentation masks for refining grasp candidates. This 
ablation allows us to isolate the effects of semantic 
segmentation and grasp refinement on the overall 
performance of the model. The experiments were 
conducted on three datasets including Jacquard, OCID 
Grasp, and HHI, with the same training and evaluation 
protocols as previous described. The results of the 
ablation study are summarized in Table V, comparing the 
grasp accuracy of the full model against the ablated 
model across the three datasets. 

TABLE V. GRASP ACCURACY (%) OF ABLATION STUDY ON JACQUARD, 
OCID GRASP, AND HHI DATASETS 

Method Jacquard OCID Grasp HHI 
Full Model (Ours) 93.12 90.31 82.26 

Ablated Model 90.74 87.42 79.75 

 
The results showed that the segmentation masks 

generated by the Grounding DINO-SAM module and the 
subsequent refinement by the Grasp Refinement Head are 
integral to the model’s performance across all datasets. 
The consistent drop in grasp accuracy approximately 
2.38% to 2.89% underscoring their importance in 
enhancing both object detection and grasp localization. In 
simpler datasets like Jacquard, the impact is less 
significant, as bounding boxes alone provide sufficient 
information for reasonable grasp predictions. However, in 
more challenging scenarios, such as those in OCID Grasp 
and HHI, the absence of segmentation masks leads to a 
greater loss of contextual understanding, resulting in less 
accurate grasp candidates. The Grasp Refinement Head, 
by leveraging semantic segmentation, further fine-tunes 
these candidates, ensuring higher precision and 
robustness. 

Based on the outcomes of all prior experiments, the 
integration of vision-language models within the 
proposed grasp detection framework introduces notable 
advancements in both grasp accuracy and human-robot 
interaction. By leveraging the complementary strengths 
of visual and linguistic modalities, the model is capable 
of enhancing object recognition in complex scenes that 
involve overlapping items and unfamiliar objects. The 
utilization of combining descriptive language prompts 
with RGB image enables the system to semantically 
interpret and localize target objects, thereby overcoming 
limitations commonly associated with vision-only 
approaches. This capability is particularly beneficial in 
scenarios where objects have not been encountered 
during training or multiple items belong to the same class 
but differ in color, size, or other attributes. Furthermore, 
the vision-language integration significantly contributes 
to improved interaction between humans and robots, 
allowing users to guide robotic actions through intuitive 
natural language instructions. Evaluations confirm the 
effectiveness of this approach, with the proposed model 
achieving a high grasping accuracy on the Jacquard 
dataset, surpassing previous methods. 

V. CONCLUSION 

This paper proposes an integrated model combining 
computer vision and language models to enhance object 
recognition and grasping capabilities in complex 
environments, guided by user prompts. The proposed 
approach leverages the ability of visual-language models 
to identify and generate masks for objects based on user 
prompts, thereby improving accuracy. This integration 
not only enhances the object recognition capabilities of 
robot but also optimizes the grasping process in complex 
scenarios. Additionally, the model allows the robot to 
enhance user interaction through various prompts. The 
experimental results show that the proposed model 
achieves a grasping accuracy of 93.12% on the Jacquard 
dataset. It surpasses previous methods, particularly in 
contexts with multiple complex objects and diverse 
shapes. Furthermore, the model demonstrates its ability to 
understand complex contexts and interact effectively with 
users in Interactive Grasp experiments. 
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