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Abstract—This paper presents a kinematic analysis of a 
three-link manipulator system, focusing on the calculation 
and visualization of joint angles (q1, q2, q3) as functions of the 
end-effector coordinates (xS, yS) and the orientation angle (α). 
The goal is to determine the values of the generalized 
coordinates (q1, q2, q3) that allow the manipulator’s Working 
Body (WB) to reach a given spatial point S in its workspace. 
The system’s configuration and inverse kinematics problem 
are addressed through geometric and trigonometric 
constraints, with the joint angles determined by solving 
relevant equations involving the manipulator’s link lengths 
and the positioning of the end-effector. We introduce a 
redundancy elimination technique by minimizing the 
positioning error, ensuring the accuracy of the manipulator’s 
trajectory. The results are visualized using 3D plots, which 
depict the relationship between the joint angles and the 
coordinates of the manipulator, aiding in the understanding 
of the system’s behavior under different configurations. The 
proposed method demonstrates efficient handling of 
kinematic redundancy and offers insights into optimizing the 
manipulator’s positioning accuracy. The findings contribute 
to improving the control and motion planning of robotic 
systems in precision tasks.  
 
Keywords—end-effector, manipulator’s positioning accuracy, 
visualization, manipulator’s trajectory, robotic systems  
 

I. INTRODUCTION 

The development and control of robotic manipulators 
have become integral to various applications in 
automation, manufacturing, and robotics. A key aspect of 
their design and operation is solving the Inverse 
Kinematics Problem (IKP), which entails determining the 
required joint angles for a manipulator to reach a desired 
position in space [1]. While many manipulators rely on 
open kinematic chains, the use of closed kinematic chains 
such as the 3rd-class manipulators offers several 
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advantages, including improved stiffness and load-bearing 
capacity [2]. Despite these benefits, closed-chain 
manipulators are less commonly used in practice due to the 
increased complexity of their kinematic analysis. In this 
study, we focus on a manipulator with a closed-loop 
kinematic structure, the manipulator, which belongs to the 
third-order, third-class category [3]. This manipulator is 
characterized by three leading links and three generalized 
coordinates, making it a compact and efficient design. To 
facilitate the control of this manipulator, it is essential to 
solve the inverse kinematics problem for various 
configurations of the manipulator’s end-effector, which is 
typically represented by its position in the workspace and 
its angular orientation [4]. The inverse kinematics problem 
for this manipulator is solved by using geometric 
relationships derived from the manipulator’s link lengths 
and the position of the end-effector. For cases where both 
the coordinates xS and yS of the end-effector and its angular 
orientation α are provided, the joint angles q1, q2, and q3 
can be calculated directly through a series of trigonometric 
relations and angle-based equations [5]. Additionally, in 
cases where the angular orientation α is arbitrary, the 
kinematic redundancy is resolved by minimizing the 
positioning error, ensuring optimal accuracy in the 
manipulator’s trajectory [6]. This paper presents a 
systematic approach to solving the inverse kinematics 
problem for the manipulator, with a focus on determining 
the joint angles under varying conditions of the workspace 
and angular orientation. The relationship between the joint 
angles and the manipulator’s position in space is explored 
through 3D plotting, providing a visual representation of 
the kinematic behavior of the manipulator. The methods 
presented aim to enhance the understanding of closed-
chain manipulator systems and contribute to more precise 
motion planning and control in robotic applications [7]. 
The design and control of robotic manipulators have 
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gained significant attention in recent years due to their 
essential role in automation, precision manufacturing, 
medical robotics, and other advanced fields [8, 9]. A 
fundamental challenge in the operation of robotic systems 
is the determination of joint angles needed to achieve a 
specific end-effector position and orientation in the 
workspace. This problem, known as the Inverse 
Kinematics Problem (IKP), is particularly crucial for 
manipulators that perform complex tasks requiring high 
precision and efficiency. Robotic manipulators can 
generally be categorized into two types based on their 
kinematic structure: open kinematic chains and closed 
kinematic chains [10]. Open kinematic chains are more 
commonly used in traditional robotic systems due to their 
simpler control and analysis. However, closed kinematic 
chains, which involve interconnected links that form 
loops [11], have gained interest due to their enhanced 
mechanical properties, such as higher stiffness, load-
bearing capacity, and robustness [12]. These advantages 
make closed-chain manipulators especially valuable in 
applications where stability and precision are critical. 
Despite these benefits, the complexity of modeling and 
controlling closed-chain manipulators has limited their 
widespread adoption in robotic systems. The manipulator, 
a third-class, third-order mechanism, represents an 
example of a closed-chain manipulator that operates within 
a 2D plane [13]. It consists of three leading links and three 
generalized coordinates, which define the position of the 
end-effector in the workspace [14]. Due to its closed-loop 
structure, this manipulator offers improved force 
transmission and rigidity, making it suitable for tasks that 
require high precision. However, the analysis and control 
of such a manipulator are inherently more complex than 
that of open-chain systems [15, 16]. This complexity arises 
from the need to solve the inverse kinematics problem for 
a set of non-linear equations derived from the 
manipulator’s geometry and kinematic constraints. The 
inverse kinematics problem involves determining the 
values of the joint angles q1, q2, and q3 that correspond to 
a given position and orientation of the manipulator’s end-
effector, typically expressed in terms of the end-effector’s 
coordinates (xS, yS) and its angular position α. In cases 
where the end-effector’s position and orientation are both 
provided, the kinematic equations can be solved to 
calculate the joint angles directly. For cases where the 
angular position is unspecified or arbitrary [17], kinematic 
redundancy arises, meaning multiple joint configurations 
can lead to the same end-effector position. To resolve this 
redundancy, it is necessary to introduce a criterion to 
minimize the positioning error, ensuring that the 
manipulator reaches the desired position while also 
maintaining optimal accuracy in the joint  
configurations [18]. One of the main objectives of this 
study is to develop a robust method for solving the inverse 
kinematics problem of the manipulator. The paper 
provides a systematic approach that uses geometric 
relationships and trigonometric equations to compute the 
joint angles required to position the end-effector at any 
desired location within the workspace [19]. Furthermore, 
the study addresses the issue of kinematic redundancy by 

proposing an error-minimization approach that ensures the 
manipulator’s trajectory is accurately tracked. In addition 
to solving the inverse kinematics problem, this paper also 
presents a set of 3D visualizations to illustrate the 
relationships between the joint angles q1, q2, and q3 and the 
end-effector’s position and orientation in  
space [20]. The graphical representations serve as an 
important tool for understanding the behavior of the 
manipulator under different configurations, enabling better 
control and trajectory planning for robotic 
applications [21]. These visualizations are generated using 
Python 3.13.0, and they provide valuable insights into the 
dynamics of the manipulator’s motion, which can be 
applied to optimize control algorithms in real-world 
scenarios. The contributions of this paper are threefold: (1) 
solving the inverse kinematics problem for a third-class, 
third-order closed-chain manipulator, (2) addressing 
kinematic redundancy by minimizing the positioning 
error, and (3) providing a set of 3D visualizations that 
highlight the relationship between joint angles and end-
effector coordinates. These methods not only improve the 
understanding of closed-chain manipulators but also 
provide a foundation for the development of more 
sophisticated motion planning and control algorithms in 
robotic systems [22]. 

II. MATERIALS METHODS 

The task of constructing program trajectories of the 
manipulator is that, given the movement of the Working 
Body (WB) of the manipulator in the workspace x ϵ R3, 
determine how the generalized coordinates q(q1,…,qn) ϵ Q 
should be changed in time in order to implement this 
movement. The given displacement of the WB is a spatial 
curve determined by an approximately finite set of points; 
for each given point of the working space, determine 
uniquely the values of the generalized coordinates of the 
manipulator [1]. At present, most manipulators are 
mechanisms consisting of open kinematic chains. Closed 
kinematic chains, in particular, high-class mechanisms, 
despite a number of their advantages, are still not widely 
used in the construction of manipulators. One of the 
manipulators with a closed structure is the manipulator, the 
kinematic diagram of which is shown in Fig. 1. This 
manipulator is a flat mechanism of the 3rd class, 3rd order, 
with 3 leading links, i.e., has three generalized coordinates, 
are on the bottom of the manipulator [2]. To build program 
trajectories of this manipulator, it is necessary to have a 
unique solution for any point of the working area. 

Inverse kinematics problem (IKP): 
Let in ОА = MB = NC = L1 is the length of the fixed base 

links; Аа = Bb = Сс = L2 is the length of the intermediate 
links; as = bs= cs = L3 is the length of the final links 
connecting the points a, b, c to the working point S. ∆abc 
is the equilateral triangle with side length L3, where S is the 
centroid (intersection of medians); S is the point of 
intersection of medians ∆abc (working point); ∆OMN is 
the equilateral triangle with side length L1, representing the 
fixed base. 
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Fig. 1. Kinematic scheme of a 3 DOF planar parallel manipulator. 

Let us consider the solution of the inverse kinematics 
problem for two cases: 

WB coordinates (xS, yS) and angle α are given, which 
determines the angular position of the line aS relative to the 
x axis. From the initial data, you can find the coordinates 
(x1, y1) of the point α: 

𝑥ଵ ൌ 𝑥ௌ െ 𝑙ଷ 𝑐𝑜𝑠 𝛼
𝑦ଵ ൌ 𝑦ௌ െ 𝑙ଷ 𝑠𝑖𝑛 𝛼  

Let us consider ∆OAa, whose side length is 𝑂𝑎 ൌ
ඥ𝑥ଵ

ଶ ൅ 𝑦ଵ
ଶ, and the other two sides are known. In particular, 

the equation is used to calculate the joint angle q1 required 
to position the end effector at a desired location in the x−y 
plane [3]. Knowing the lengths of the sides ∆OAa, it is not 
difficult to determine its angles and calculate the values of 
the following angles: 

𝑞ଵ ൌ 𝑎𝑟𝑐𝑡𝑔
௬భ
௫భ
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟భ
మି௟మ

మା௫భ
మା௬భ

మ

ଶ௟భቆേට௫భ
మା௬భ

మቇ
              (1) 

The equation involves several variables and constants, 
which are defined as follows: x1 and y1 are the coordinates 
of the working point S, which is the point of intersection 
of the medians of an equilateral triangle with side length l3. 
l1 and l2 are the lengths of the first and second links of the 
manipulator [4], respectively. Both links are assumed to 
have a fixed length. α is the orientation angle of the end 
effector relative to the x-axis. 𝑎𝑟𝑐𝑡𝑔

௬భ
௫భ

 and 

𝑎𝑟𝑐𝑐𝑜𝑠
௟భ
మି௟మ

మା௫భ
మା௬భ

మ

ଶ௟భቆേට௫భ
మା௬భ

మቇ
 denote the arctangent and arccosine 

trigonometric functions, respectively. Where for the 
unambiguous determination of the value it is necessary to 
take any one of the values of the expression Eq. (1): 

𝑞ଵ,ଵ ൌ 𝜋 ∓ 𝑎𝑟𝑐𝑐𝑜𝑠
௟భ
మା௟మ

మି௫భ
మି௬భ

మ

ଶ௟భ௟మ
                   (2) 

where the sign “−” corresponds to the positive value of the 
root in Eq. (1), and “+” to the negative value. 

Knowing the values of q1 and q1,1 allows us to determine 
the coordinates of points b and c. Using these equations, 

we can calculate the coordinates of points b and c as 
follows: 

𝑥௕ ൌ 𝑙ଵ 𝑐𝑜𝑠 𝑞ଵ ൅ 𝑙ଶ 𝑐𝑜𝑠൫𝑞ଵ ൅ 𝑞ଵ,ଵ൯ ൅ 𝑙 𝑐𝑜𝑠 ቀ𝛼 െ
గ

଺
ቁ

𝑦௕ ൌ 𝑙ଵ 𝑠𝑖𝑛 𝑞ଵ ൅ 𝑙ଶ 𝑠𝑖𝑛൫𝑞ଵ ൅ 𝑞ଵ,ଵ൯ ൅ 𝑙 𝑐𝑜𝑠 ቀ𝛼 െ
గ

଺
ቁ

𝑥௖ ൌ 𝑙ଵ 𝑐𝑜𝑠 𝑞ଵ ൅ 𝑙ଶ 𝑐𝑜𝑠൫𝑞ଵ ൅ 𝑞ଵ,ଵ൯ ൅ 𝑙 𝑐𝑜𝑠 ቀ𝛼 ൅
గ

଺
ቁ

𝑦௖ ൌ 𝑙ଵ 𝑠𝑖𝑛 𝑞ଵ ൅ 𝑙ଶ 𝑠𝑖𝑛൫𝑞ଵ ൅ 𝑞ଵ,ଵ൯ ൅ 𝑙 𝑠𝑖𝑛 ቀ𝛼 ൅
గ

଺
ቁ

     (3) 

Here, l1, l2, and l are the lengths of the three links of the 
manipulator, and q1, q1,1, alpha, and phi are the joint angles 
and orientation angles we previously calculated [5]. These 
equations give us the coordinates of points b and c relative 
to the origin of the manipulator’s coordinate system [6]. 
To get the coordinates of the end effector in a global 
coordinate system, we would need to apply a 
transformation that takes into account the position and 
orientation of the manipulator’s base. 

Then, introducing the notation: 𝑥ଶ ൌ 𝑥஻ െ 𝑥ெ, 
𝑦ଶ ൌ 𝑦஻, 

𝑥ଷ ൌ 𝑥஼ െ 𝑥ே , 
𝑦ଷ ൌ 𝑦஼ െ 𝑦ே  

from the triangles ∆MBb 

and ∆NCc we define q1 and q3. To solve for the joint angles 
q1 and q3, we can use the triangles ∆MBb and ∆NCc as 
follows. 

First, let us define: 

𝑞ଶ ൌ 𝑎𝑟𝑐𝑡𝑔
௬మ
௫మ
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟భ
మି௟మ

మା௫మ
మା௬మ

మ

ଶ௟భቆേට௫మ
మା௬మ

మቇ
              (4) 

 

𝑞ଷ ൌ 𝑎𝑟𝑐𝑡𝑔
௬య
௫య
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟భ
మି௟మ

మା௫య
మା௬య

మ

ଶ௟భቆേට௫య
మା௬య

మቇ
             (5) 

To find the configuration that minimizes the positioning 
error, we need to find the values of q1, q2, and q3 that 
minimize the error. One way to do this is to use an 
optimization algorithm, such as gradient descent or a 
genetic algorithm [7]. The optimization algorithm would 
vary the values of q1, q2, and q3 and calculate the 
positioning error for each set of values. The algorithm 
would then adjust the values of q1, q2, and q3 in the 
direction that reduces the positioning error the most and 
repeat the process until the error is minimized [8]. 
Alternatively, we can use a simpler approach that assumes 
that the first link is directed towards the desired position. 
In this approach, we can calculate the angle between the 
first link and the line connecting the base to the desired 
position and set q1 to that angle. This ensures that the first 
link is directed towards the desired position and reduces 
the error in the direction of the first link [9]. We can then 
use the equations for q2 and q3 to find the values that 
minimize the error in the remaining directions [10, 11]. 
The optimization method implements the Constrained 
optimization by linear approximations method to minimize 
the error between the desired working point (xS, yS) and the 
position achieved by the manipulator’s forward kinematics. 
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The optimization includes constraints on the reachable 
workspace of the manipulator. 

Taking into account the uniqueness of the values q1, q2, 
q3 defined by formulas Eqs. (1), (4), (5), the graph of 
solutions of the IKP is shown in Fig. 2: 

 

 
Fig. 2. Hierarchical solution tree for determining the joint angles q1, q2, 
and q3 based on given workspace coordinates xS, yS and orientation α. 
Each level of the tree corresponds to the sequential computation of one 
joint angle, showing how geometric decomposition leads to a unique 
solution at each branch. 

The solution space of the inverse kinematics problem is 
represented as a hierarchical decision tree (Fig. 2). Starting 
from known values of the working body position and 
orientation (xS, yS, α), the angle q1 is first determined using 
triangle ΔOAa, followed by q2 via ΔMBb, and finally q3 
via ΔNCc. Each branch of the tree reflects one of the 
possible geometric configurations resolved by arctangent 
and arccosine constraints, ensuring a structured and 
unambiguous resolution path. Only the WB coordinates  
(xS, yS) are given, and the WB angular position can be 
arbitrary. In this case, kinematic redundancy appears 
which must be eliminated by introducing some criterion or 
fixing the values of one of the generalized coordinates. 

One way to introduce the criterion is to minimize the 
positioning error [12]. 

Let’s consider the OAaS chain, which is a three-link 
chain. The optimal positioning accuracy, according to  
Eq. (1), will be the configuration in which the first link is 
directed to the positioning point, i.e.: 

𝑞ଵ ൌ 𝑎𝑟𝑐𝑡𝑔
௬య
௫య

                              (6) 

We introduce the notation: 𝑥ଵ ൌ 𝑥ௌ െ 𝑙ଵ 𝑐𝑜𝑠 𝑞ଵ , 𝑦ଵ ൌ
𝑦ௌ െ 𝑙ଵ 𝑠𝑖𝑛 𝑞ଵ. Consider ∆АаS, where the lengths of the 
sides Аа and аS are known, and the length of the side АS 
is determined: 

𝐴𝑆 ൌ ට𝑥ଵ
ଶ ൅ 𝑦ଵ

ଶ 

Then, knowing the lengths of the sides ∆AaS, we 
calculate the values of the following angles: 

𝑞ଵ ൅ 𝑞ଵ,ଵ ൌ 𝑎𝑟𝑐𝑡𝑔
௬భ
௫భ
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟మ
మି௟య

మା௫భ
మା௬భ

మ

ଶ௟మቆേට௫భ
మା௬భ

మቇ
           (7) 

 

𝑞ଵ,ଶ ൌ 𝜋 ∓ 𝑎𝑟𝑐𝑐𝑜𝑠
௟మ
మା௟య

మି௫భ
మି௬భ

మ

ଶ௟భ௟య
                        (8) 

where in Eq. (8) the sign “-” corresponds to the positive 
value of the root in Eq. (7), and “+” to the negative root. 

Let’s determine the coordinates of points b and c: 

 

 

 

  





 







 







 







 

6
sinsinsin

6
coscoscos

6
cossinsin

6
coscoscos

2,11,111,11211

2,11,111,11211

2,11,111,11211

2,11,111,11211









qqqlqqlqly

qqqlqqlqlx

qqqlqqlqly

qqqlqqlqlx

c

c

b

b

 (9) 

Then, introducing the notation: 𝑥ଶ ൌ 𝑥஻ െ 𝑥ெ,  
𝑦ଶ ൌ

𝑦஻, 
𝑥ଷ ൌ 𝑥஼ െ 𝑥ே,

 
𝑦ଷ ൌ 𝑦஼ െ 𝑦ே 

from the triangles ∆MBb 
and ∆NCc we define: 

𝑞ଶ ൌ 𝑎𝑟𝑐𝑡𝑔
௬మ
௫మ
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟భ
మି௟మ

మା௫మ
మା௬మ

మ

ଶ௟భቆേට௫మ
మା௬మ

మቇ
             (10) 

 

𝑞ଷ ൌ 𝑎𝑟𝑐𝑡𝑔
௬య
௫య
െ 𝑎𝑟𝑐𝑐𝑜𝑠

௟భ
మି௟మ

మା௫య
మା௬య

మ

ଶ௟భቆേට௫య
మା௬య

మቇ
            (11) 

where for the uniqueness of the solution it is necessary to 
take one of the values of the root in Eqs. (10) and (11). The 
decision graph is shown in Fig. 3: 

 

 
Fig. 3. Solution tree of the joint angles q1, q2 and q3 based on given 
Cartesian coordinates xS, yS of the end-effector. Each hierarchical level 
corresponds to the sequential resolution of one joint angle, reflecting the 
geometric constraints of the manipulator’s closed-loop configuration. 

As illustrated in Fig. 3, the inverse kinematics solution 
process can be represented as a decision tree driven by the 
input coordinates (xS, yS). The root node initiates the 
calculation of q1 using the known geometry of triangle 
ΔOAa. Once q1 is determined, the system branches to 
compute q2 through ΔMBb, followed by the determination 
of q3 using ΔNCc. This tree-based representation 
underscores the sequential dependency of joint angle 
calculations in the absence of end-effector orientation α 
and highlights how geometric symmetry can result in 
multiple valid configurations under workspace constraints. 
One way of fixing a generalized coordinate is to keep its 
value equal to the previous one. Let we have some fixed 
value q1. Two cases are possible here. If the given 
positioning point is reachable, i.e.: 

ቚඥሺ𝑥ௌ െ 𝑙ଷ 𝑐𝑜𝑠 𝑞ଵሻଶ ൅ ሺ𝑦ௌ െ 𝑙ଷ 𝑠𝑖𝑛 𝑞ଵሻଶቚ ൑ 𝑙ଶ ൅ 𝑙ଷ 
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Then, introducing the notation: 𝑥ଵ ൌ 𝑥ௌ െ 𝑙ଷ 𝑐𝑜𝑠 𝑞ଵ , 
𝑦ଵ ൌ 𝑦ௌ െ 𝑙ଷ 𝑠𝑖𝑛 𝑞ଵ  we calculate the values of the 
generalized coordinates q1, q3 using formulas Eqs. (7) and 
(11). 

If the given point is unreachable, i.e.: 

ቚඥሺ𝑥ௌ െ 𝑙ଷ 𝑐𝑜𝑠 𝑞ଵሻଶ ൅ ሺ𝑦ௌ െ 𝑙ଷ 𝑠𝑖𝑛 𝑞ଵሻଶቚ ≻ 𝑙ଶ ൅ 𝑙ଷ 

then it is expedient to give the generalized coordinate q1 a 
new value: 

𝑞ଵ ൌ 𝑎𝑟𝑐𝑡𝑔
𝑦ௌ
𝑥ௌ

 

Ensuring the achievement of any point of the working 
area, and then as the first case. The decision graph is shown 
in Fig. 4: 

 

 
Fig. 4. Hierarchical graph of the solution process for joint angles q2 and 
q3 based on workspace coordinates xS, yS and and α known base joint 
angle q1. This structure reflects how the intermediate and end-effector 
joints are resolved sequentially using triangle geometry after establishing 
the configuration of the first link. 

Fig. 4 presents a partial inverse kinematics resolution 
tree where the base angle q1 is assumed known. This 
configuration occurs, for example, in scenarios where the 
first actuator is pre-aligned with the desired direction of 
motion or preset based on feedback. The remaining joint 
angles q2 and q3 are then computed using triangles ΔMBb 
and ΔNCc, respectively. The tree illustrates that, even with 
partial pose data, the system retains multiple geometric 
paths to valid configurations, emphasizing the role of 
structural redundancy and decision branching in closed-
loop manipulator kinematics. 

III. RESULTS 

The results of this study present the outcomes of the 
inverse kinematics analysis for a three-link manipulator 

system, focusing on the computation and visualization of 
joint angles (q1, q2, and q3) in relation to the end-effector 
coordinates (xs, ys) and orientation (α = π/2, α = π/4,  
α = π/6) shown in Figs. 5–7. The base joint angle (q1) 
demonstrated a direct dependency on the position of the 
end-effector. As xs and ys increased shown in Fig. 8, q1 
shifted to maintain alignment with the desired 
positioning [13]. q2 and q3 these angles, corresponding to 
the second and third links [14], exhibited more complex, 
nonlinear behavior due to their dependence on both the 
position and orientation of the end-effector shown in  
Fig. 9. The joint angles were visualized in 3D plots, 
showing their variation with respect to: The xs and ys 
coordinates of the end-effector. The orientation α of the 
end-effector. The 3D plots revealed the interplay between 
joint angles and end-effector configuration [15, 16], 
providing a clear understanding of how each joint adjusts 
to achieve the desired pose. The computed positioning 
error, defined as the Euclidean distance between the 
desired and actual end-effector positions, remained within 
acceptable limits, with a maximum error of less than 0.1 
units across all tested configurations. This low error 
margin confirmed the accuracy of the inverse kinematics 
solutions and the robustness of the implemented  
model [17]. The joint angles exhibited significant 
sensitivity to changes in the orientation (α) of the end-
effector. Specifically: q3 showed the largest variations, as 
it is primarily responsible for adjusting the orientation. q1 
and q2 contributed to both positioning and orientation but 
had less pronounced sensitivity to α. The results from the 
3D plots highlight the workspace boundaries of the 
manipulator. Certain configurations (xs, ys, and α) near the 
edges of the workspace resulted in joint angle values 
nearing their physical limits shown in Fig. 10. Symmetry 
in joint angle variations was observed for configurations 
mirrored about the manipulator’s base, consistent with 
theoretical expectations [18]. The analysis demonstrated 
that the proposed inverse kinematics algorithm accurately 
computes joint angles for a wide range of end-effector 
positions and orientations. The results also confirmed the 
system’s ability to minimize positioning error while 
operating within the manipulator’s workspace constraints. 
This lays a strong foundation for practical 
implementations in robotic applications where precise 
positioning and orientation are critical. 

 

 
Fig. 5. For α = π/2 separate sets of 3D plots for q1, q2, and q3 as functions of xs and ys. 
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Fig. 6. For α = π/4 separate sets of 3D plots for q1, q2, and q3 as functions of xs and ys. 

 
Fig. 7. For α = π/6 separate sets of 3D plots for q1, q2, and q3 as functions of xs and ys. 

To analyze and visualize the uniqueness of the solutions 
for the generalized coordinates (q1, q2, q3) in the 
manipulator’s workspace [19], we can create a graph that 
examines the relationship between the joint angles and the 
end-effector positions (xs, ys, α = π/4) shown in Fig. 8. 
Such a graph can help identify regions where the solutions 
are unique and regions where multiple solutions exist (due 
to redundancy or ambiguities). 

 

 
Fig. 8. Computed plot of the for joint angles q1 in values xS, yS and a. 

 
Fig. 9. Computed plot of the for joint angles q1, q2, and q3 in values xS, 

yS and a. 
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Fig. 10. Computed plot of the for joint angles q1, q2, and q3 in values xS, yS for α = 0.7853981633974483. 

The computed plot of joint angles q2 and q3 against 
workspace coordinates (xS, yS) and joint angle q1 provides 
critical insights into the manipulator’s kinematics and its 
ability to achieve various configurations shown in Fig. 11. 
The joint angles q2 and q3 exhibit a non-linear dependency 
on the workspace coordinates (xS, yS). This is expected due 
to the geometric constraints of the manipulator’s links. For 
points near the center of the workspace [20], smaller joint 
angles are required, as the links are positioned closer to the 
origin. For points near the boundary of the workspace, the 
joint angles increase, indicating that the links must extend 
further. The variation in q1, which primarily determines the 
orientation of the first link, impacts the achievable 

configurations of q2 and q3. This highlights the coupling 
effect between q1 and the other joint angles, a key 
characteristic in redundant manipulators. The shown in  
Fig. 12 indicates whether specific combinations of xS, yS, 
q1 fall within the manipulator’s reachable workspace. 
Infeasible points, where solutions for q2 and q3 do not exist, 
represent areas outside the workspace or those requiring 
configurations that violate mechanical limits. For certain 
workspace coordinates, there may be multiple valid 
solutions for q2 and q3. These are visible as clusters or 
overlapping regions in the shown in Fig. 12. This 
redundancy can be exploited for optimizing trajectories or 
avoiding singularities [21].

 

 
Fig. 11. Computed plot of the for joint angles q2 and q3 in values xS, yS for q1 = 0.7853981633974483. 
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Fig. 12. Computed plot of the for joint angles q2 and q3 in values xS, yS and q1. 

The analysis may involve examining the relationship 
between the joint angles and the end-effector coordinates, 
such as visualizing joint angles, computing the positioning 
error, and analyzing the performance of the inverse 
kinematics solution [22]. A 3D plot is created for the joint 
angles q1, q2, and q3 against the xs, ys coordinates and the 
alpha angle shown in Fig. 13. This helps visualize how 
each joint angle behaves relative to changes in the end-
effector’s position and orientation. 

The shown in Fig. 14 also includes a section that 
calculates the positioning error between the desired end-
effector position (xs, ys) and the actual position computed 
from the joint angles using forward kinematics. This error 
is plotted to visualize how accurately the manipulator 
reaches the desired points [23]. The insights from the  
Fig. 12 are valuable for designing efficient trajectories. 
Smooth transitions in joint angles q2 and q3 indicate 
regions suitable for continuous motion, while abrupt 
changes suggest potential challenges. The variation in q2 
and q3 based on q1 emphasizes the need for coordinated 
control strategies to manage joint coupling effectively. 
 

 
Fig. 13. Computed plot of the for joint angles q1, q2 and q3 in values xS, 

yS and α. 

 
Fig. 14. Computed plot of the for-positioning error in values coordinate 

xs.  

IV. DISCUSSION 

The study of inverse kinematics for the manipulator has 
provided valuable insights into the complexities of closed-
chain robotic systems and the challenges associated with 
determining joint configurations for a desired end-effector 
position. This section explores the key findings of the 
study, discusses the practical implications of the results, 
and highlights potential avenues for further research. The 
inverse kinematics problem for the manipulator was 
successfully solved using geometric and trigonometric 
relationships derived from the manipulator’s kinematic 
chain. By applying these relationships, the joint angles q1, 
q2, and q3 can be computed given the end-effector 
coordinates (xS, yS) and the angular position α. This 
approach enables the calculation of joint configurations for 
any arbitrary position and orientation of the manipulator’s 
end-effector within the workspace. One of the primary 
challenges in solving the inverse kinematics problem for 
closed-chain manipulators is dealing with the non-linearity 
of the resulting equations. In particular, the trigonometric 
terms involved in the calculations can lead to multiple 
solutions or undefined behavior, especially when joint 
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angles approach their boundary values. However, the 
systematic approach developed in this study provides a 
reliable method for calculating the joint angles without 
encountering significant numerical instability. An 
important aspect of the inverse kinematics problem is the 
occurrence of kinematic redundancy, particularly when 
only the end-effector position (xS, yS) is provided, and the 
angular position α is unspecified. This redundancy arises 
because multiple joint configurations can achieve the same 
end-effector position, leading to different possible 
solutions for the joint angles. To resolve this issue, the 
study proposes an optimization criterion that minimizes 
the positioning error by selecting a configuration that 
ensures the most efficient and accurate positioning of the 
manipulator. The optimization criterion presented in this 
paper is based on the error minimization approach, which 
reduces the difference between the desired and actual 
position of the end-effector. By selecting the configuration 
that minimizes this error, we ensure that the manipulator 
operates with higher accuracy, improving the performance 
in tasks requiring precision, such as assembly operations, 
surgical procedures, or fine manipulation tasks. While the 
error minimization criterion is effective in resolving 
kinematic redundancy, it is important to note that this 
approach introduces a degree of flexibility in the system. 
Different configurations with similar positioning errors 
may still be valid, and selecting one over the other could 
depend on additional factors such as energy consumption, 
joint limit avoidance, or task-specific requirements. 
Therefore, further refinement of the error minimization 
approach could involve incorporating additional criteria to 
further optimize the manipulator’s behavior. The 3D 
visualizations presented in this paper serve as a crucial tool 
for understanding the relationship between the joint angles 
q1, q2, and q3 and the manipulator’s end-effector position. 
These graphical representations are particularly valuable 
in robotic design and control, as they provide an intuitive 
understanding of the kinematic behavior of the 
manipulator under different configurations. By plotting the 
joint angles against the end-effector coordinates, we can 
visualize how small changes in the joint angles affect the 
end-effector’s position and orientation, aiding in motion 
planning and control strategy development. Additionally, 
the visualizations can be used to better understand the 
workspace of the manipulator. The workspace defines the 
region in space where the manipulator can move the end-
effector. By exploring how the joint angles q1, q2, and q3 
impact the available workspace, we can identify any 
limitations in the manipulator’s motion range and potential 
obstacles that could hinder its performance. This analysis 
is critical in practical applications where the manipulator 
must operate within a confined or predefined workspace. 
The methods developed in this study have significant 
implications for the design and control of robotic 
manipulators, particularly in fields that require high 
precision and complex motion planning, such as medical 
robotics, industrial automation, and robotics for 
exploration. By providing a reliable method for solving the 
inverse kinematics problem and addressing kinematic 
redundancy, this work lays the foundation for more 

advanced control strategies, such as motion planning 
algorithms and trajectory optimization. In medical robotics, 
for example, closed-chain manipulators can offer 
enhanced stability and precision, making them ideal for 
tasks such as minimally invasive surgery. The ability to 
solve the inverse kinematics problem in real-time, while 
ensuring that the manipulator’s end-effector reaches the 
desired position with minimal error, can lead to more 
effective surgical procedures with greater patient safety. In 
industrial automation, robotic manipulators are often 
required to perform assembly, packaging, or inspection 
tasks in environments where the workspace is constrained. 
The methods proposed in this study can help optimize the 
manipulator’s movements within these environments, 
ensuring efficient and precise operations while avoiding 
obstacles and minimizing energy consumption. Despite 
the effectiveness of the proposed method, there are several 
limitations that warrant further investigation. First, the 
approach assumes ideal conditions without accounting for 
external factors such as joint friction, compliance, or 
actuator dynamics, which can introduce errors in real-
world applications. Future work could focus on extending 
the current model to incorporate these factors and develop 
a more robust solution that accounts for real-world 
uncertainties. Second, the study only addresses the inverse 
kinematics problem for a specific type of manipulator with 
a closed-chain kinematic structure. While the approach is 
applicable to this type of manipulator, extending the 
method to other types of robotic systems, such as open-
chain manipulators or manipulators with more degrees of 
freedom, could provide a more general framework for 
solving the inverse kinematics problem. Lastly, although 
the error minimization approach effectively handles 
kinematic redundancy, it could be further refined by 
incorporating additional optimization criteria, such as joint 
limit avoidance, energy efficiency, or task-specific 
constraints. These refinements could lead to more efficient 
and flexible manipulator control in dynamic and complex 
environments.  

V. CONCLUSION 

This study presents a comprehensive approach to 
solving the inverse kinematics problem for the 
manipulator, focusing on a closed-chain robotic system 
with three degrees of freedom. The following key 
conclusions can be drawn from the research: 

1. The inverse kinematics problem was successfully 
solved using geometric and trigonometric 
relationships derived from the manipulator’s 
kinematic chain. By leveraging these relationships, 
the joint angles q1, q2, and q3 can be determined for 
any given end-effector position (xS, yS) and angular 
orientation α. This approach provides a reliable 
method for computing joint configurations and 
achieving precise manipulation in a defined 
workspace. 

2. Kinematic redundancy, a common challenge in 
closed-chain robotic systems, was effectively 
addressed through an optimization criterion based 
on error minimization. This method reduces the 
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difference between the desired and actual position 
of the end-effector, ensuring optimal positioning 
and accuracy. By selecting the configuration that 
minimizes positioning error, the manipulator can 
perform tasks with higher precision, which is 
critical in applications that demand high accuracy. 

3. The 3D visualizations of the joint angles q1, q2, and 
q3 against the end-effector coordinates (xS, yS) 
provided valuable insights into the kinematic 
behavior of the manipulator. These visualizations 
not only helped in understanding the relationship 
between the joint angles and the manipulator’s 
motion but also aided in optimizing motion 
planning and control strategies. By analyzing the 
workspace of the manipulator, we identified any 
potential limitations in its range of motion, which 
can be critical for real-world robotic applications. 

4. The methods and solutions proposed in this study 
have significant implications for various robotic 
applications, particularly in fields such as medical 
robotics, industrial automation, and precision 
manufacturing. The ability to solve the inverse 
kinematics problem in real-time with minimal 
error can enhance the performance of robotic 
systems in tasks that require precise motion and 
positioning. 

5. While the proposed solution is effective under 
ideal conditions, further research is needed to 
account for real-world uncertainties such as joint 
friction, actuator dynamics, and external 
disturbances. Additionally, extending the 
approach to more complex robotic systems, such 
as those with additional degrees of freedom or 
varying kinematic structures, will further enhance 
its applicability. Future work could also involve 
refining the optimization criterion to include 
additional factors such as energy efficiency, joint 
limit avoidance, and task-specific constraints. 

In conclusion, this study provides a solid foundation for 
solving the inverse kinematics problem in closed-chain 
robotic systems and offers valuable insights into the 
optimization of robotic motion. The findings contribute to 
the development of more efficient, accurate, and adaptable 
robotic systems for a wide range of applications. 
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