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Abstract—Early fault identification in rolling-element 
bearings is critical for averting failures. While measuring 
overall vibration levels at the bearing housing offers a simple 
diagnostic method, spectrum analysis provides a more 
advanced and precise early warning. This study introduces 
an innovative approach to detecting, analyzing, and 
diagnosing bearing defects by comparing time-domain, 
frequency-domain, and spectrum plot analyses. By 
examining spectral variations under normal conditions and 
in the presence of outer and inner race faults, this research 
enhances the accuracy and reliability of fault diagnosis.  

Keywords—detection of rolling element bearing flaws, time 
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I. INTRODUCTION

Early diagnosis of faults in rolling element bearings is 
crucial to prevent catastrophic failures in rotating 
machinery. Various vibration analysis techniques have 
been employed to diagnose bearing defects, with methods 
primarily categorized into three techniques that are: time-
domain form, frequency-domain form, and time-frequency 
form. The vibration spectrum obtained for different 
rotating machinery problems is analyzed using techniques 
such as Fast Fourier Transform (FFT) [1–6], Short-Time 
Fourier Transform (STFT) [5–8], and Wavelet 
Transform [8, 9]. These methods facilitate the 
identification of frequency components and their 
variations with amplitude in terms of acceleration, velocity, 
and displacement.[10] Additionally, advanced techniques 
like Kurtogram analysis and Artificial Neural Networks 
(ANNs) are being increasingly utilized for condition 
monitoring [11] 

A. Research Gap

Despite the widespread use of vibration analysis
techniques, existing studies primarily focus on either time-
domain or frequency-domain methods in isolation. 
Limited research has provided a comprehensive 
comparison of these approaches alongside spectrum plot 
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analysis for rolling element bearing fault detection. 
Moreover, recent advancements in signal processing and 
machine learning-based diagnostics have not been fully 
integrated into traditional vibration analysis frameworks, 
leaving gaps in early and accurate fault detection [9, 12]. 
The lack of a unified approach limits the effectiveness of 
condition monitoring systems, particularly under varying 
load and speed conditions. 

B. Problem Statement

Rolling element bearings are subject to wear and failure
due to continuous operational stresses, leading to 
unexpected breakdowns and costly maintenance. 
Traditional vibration analysis techniques, which rely on 
either time-domain or frequency-domain methods alone, 
may not offer a holistic diagnostic framework. This study 
aims to bridge this gap by systematically comparing time-
domain, frequency-domain, and spectrum plot-based 
analyses to enhance fault detection accuracy. By 
incorporating recent advancements in vibration analysis, 
including enhanced spectral analysis techniques and 
intelligent diagnostic models, this research provides a 
more comprehensive and reliable approach for diagnosing 
rolling element bearing defects [10–12]. 

Numerous vibration analysis techniques are applied to 
examine rolling element faults and rotating machinery 
vibrations, and these methods are categorized into three 
primary domains: time, frequency, and time-frequency. 
Theoretical Basis for Time-Frequency Analysis:  

 The Short-Time Fourier Transform (STFT) was
applied to analyze transient fault signals [5].

 Wavelet Transform (WT) provided improved
frequency resolution, especially for non-stationary
signals [6].

 Envelope Analysis helped extract defect-related
amplitude modulations, isolating bearing faults
efficiently [8].

The time-domain method remains the simplest approach 
for vibration-based analysis, Including peak-to-peak 
amplitude values for both positive and negative cycles [13]. 
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The Short-Time Fourier Transform separates the vibration 
spectrum into short windows, whereas the Fast Fourier 
Transform extracts frequencies depending on their exact 
ranges. [14]. Additionally, the Wavelet Transform 
technique provides more accurate temporal resolution for 
high-frequency components compared to STFT [8, 9]. 

For rolling element bearing defects, improved methods 
such as the Kurtogram are also utilized [14, 15]. The 
Kurtogram technique aids in analyzing mixed vibration 
signals with frequency components using fuzzy logic 
systems, artificial neural networks (ANNs), and other 
neural network applications. These approaches are 
increasingly being implemented for diagnosing rotating 
equipment and rolling element bearing issues [11, 16]. 
Furthermore, neural networks play a crucial role in 
detecting and diagnosing defects in rotating equipment 
using various methodologies, with feed-forward networks 
being the most applied approach [17]. 

This study contributes to the field by systematically 
comparing different vibration analysis techniques and 
integrating contemporary advancements, ultimately 
enhancing the accuracy and reliability of rolling element 
bearing fault diagnosis. 

II. LITERATURE REVIEW 

Rolling element bearings are crucial parts in rotating 
machinery, and early identification of their shortcomings 
is crucial for preventing system failures. 

Vibration analysis is one of the most widely used 
techniques for fault detection, with various methods 
focusing on both time and frequency domains. studies have 
shown that regularly measuring vibration levels at the 
bearing housing can provide early signs of faults, while 
more detailed spectrum analysis is often required for 
earlier detection [1, 2]. The use of advanced techniques 
such as enhanced Kurtogram method [14] and wavelet 
cross-spectrum analysis [10] has further improved the 
accuracy of fault diagnosis.  

Additionally, researchers have explained the machine 
learning methodologies, such as support vector machines 
and convolutional neural networks, to enhance diagnostic 
abilities under varied load and speed conditions [9, 12]. 
Practical applications, like the MAXBE project [4], have 
provided insights into the real-world implementation of 
these methods, highlighting their effectiveness in 
condition monitoring systems. These studies collectively 
demonstrate the growing potential of combining 
traditional vibration analysis with advanced computational 
techniques for more accurate and reliable bearing fault 
detection. 

Theoretical Basis: Time-Frequency Analysis and Non-
Stationary Signal Processing 

Vibration signals from rotating machinery, such as 
rolling element bearings, are often non-stationary, i.e., 
their statistical properties change over time. To analyze 
such signals, time-frequency representations (TFRs) are 
essential as they provide both time and frequency 
information simultaneously. 

 

1) Short-Time Fourier Transform (STFT) 

Concept: 
 STFT breaks a non-stationary signal into small 

segments using a window function w(t), 
assuming each segment is approximately 
stationary. 

 Then it applies the Fourier Transform locally. 
The STFT partitions the signal into overlapping 

segments and applies the Fourier Transform to each: 
 

ሼ𝑆𝑇𝐹𝑇ሽሼ𝑥ሺ𝑡ሻሽሺ𝑡, 𝜔ሻ ൌ  න
ሼஶሽ௫ሺఛሻ௪ሺఛି ௧ሻ௘ሼషೕഘഓሽ,ௗఛ

ሼିஶሽ
 

x(t): input signal 
w(t): window function 
ω: angular frequency 

Derivation: 
1. Windowing: Multiply the signal x(τ) with a 

window w(τ−t) cantered at time t. 
2. Fourier Transform of this windowed segment 

yields the STFT. 
This gives both time and frequency localization, but the 

resolution is limited: 
 Wide window → good frequency resolution, 

poor time resolution. 
 Narrow window → good time resolution, poor 

frequency resolution. 
STFT provides a spectrogram: 
 

ሼ𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚ሽሺ𝑡, 𝜔ሻ ൌ  | ሼ𝑆𝑇𝐹𝑇ሽሺ𝑡, 𝜔ሻ|ଶ 
 

 This is the energy density at each time-frequency 
point. 

Limitation: The time-frequency resolution trade-off is 
fixed by the choice of window w(t), due to the Heisenberg 
uncertainty principle 

2)  Wavelet Transform (WT) 

Concept: 
 Uses a scaled and shifted version of a function 

called the mother wavelet ψ(t)\psi(t)ψ(t). 
 Allows multi-resolution analysis (time-

frequency resolution varies with frequency). 

3) Continuous Wavelet Transform (CWT) Formula 

 

𝑊௫ሺ𝑎, 𝑏ሻ ൌ
1

√∣ 𝑎 ∣
න

ஶ

ିஶ
𝑥ሺ𝑡ሻ 𝜓∗ ൬

𝑡 െ 𝑏
𝑎

൰ 𝑑𝑡 

 
To address resolution limitations of STFT, Wavelet 

Transform uses variable-sized windows.  
a: scale (inversely proportional to frequency) 
b: translation (time shift) 
ψ(t): mother wavelet 
∗: complex conjugate  

Derivation: 

1. Scale the wavelet: 𝜓௔ሺ𝑡ሻ ൌ
ଵ

√∣௔∣
𝜓 ቀ

௧

௔
ቁ 

2. Shift the wavelet: 𝜓௔,௕ሺ𝑡ሻ ൌ
ଵ

√∣௔∣
𝜓 ቀ

௧ି௕

௔
ቁ 
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3. Project the signal onto this basis:𝑊௫ሺ𝑎, 𝑏ሻ ൌ
ൻ𝑥ሺ𝑡ሻ, 𝜓௔,௕ሺ𝑡ሻൿ 

This allows high temporal resolution for high-frequency 
components and high frequency resolution for low-
frequency components. 

The wavelet transform provides high time resolution at 
high frequencies and high frequency resolution at low 
frequencies, making it highly suitable for transient signal 
detection in condition monitoring Hilbert-Huang 
Transform (HHT). 

HHT consists of two steps: 
(1) Empirical Mode Decomposition (EMD): 
Decomposes x(t) into a finite number of Intrinsic Mode 

Functions (IMFs) based on local extrema, without 
requiring a priori basis functions. 

 Each IMF ci(t) satisfies : 
 The number of extrema and zero-crossings 

must be equal or differ at most by one. 
 The mean of the upper and lower envelopes 

(formed by local maxima and minima) is 
zero. 

𝑥ሺ𝑡ሻ ൌ ෍ 𝑐௜ሺ𝑡ሻ
௡

௜ୀଵ

൅ 𝑟௡ሺ𝑡ሻ 

Process (Iterative): 
1. Identify all local maxima/minima. 
2. Fit upper and lower envelopes using cubic 

splines. 
3. Subtract mean of envelopes to get a candidate 

IMF. 
4. Repeat “sifting” until IMF conditions are met. 
5. Subtract the IMF from the signal and repeat. 

(2) Hilbert Transform of IMFs: 
For each IMF ci(t), compute its analytic signal. 
 

𝑥ොሺ𝑡ሻ ൌ
1
𝜋

 P·V·න
𝑥ሺ𝜏ሻ
𝑡 െ 𝜏

ஶ

ିஶ
𝑑𝜏 

 
Form the analytic signal: 
 

𝑧ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൅ 𝑗𝑥ොሺ𝑡ሻ ൌ 𝐴ሺ𝑡ሻ𝑒௝థሺ௧ሻ 
where 
 

 𝐴ሺ𝑡ሻ ൌ ඥ𝑥ଶሺ𝑡ሻ ൅ 𝑥ොଶሺ𝑡ሻ: Instantaneous 
Amplitude 

 

 𝜙ሺ𝑡ሻ ൌ tan ିଵ ቀ
௫ොሺ௧ሻ

௫ሺ௧ሻ
ቁ: Instantaneous Phase 

 
Then, Instantaneous Frequency is given by: 
 

 𝑓ሺ𝑡ሻ ൌ
ଵ

ଶగ

ௗథሺ௧ሻ

ௗ௧
 

 
This time-varying frequency analysis is well-suited for 

non-linear and non-stationary signals such as those from 
machinery under variable load or speed. 

Application: 
 Provides adaptive, data-driven time-frequency-

energy representation. 

 Excellent for nonlinear and non-stationary 
signals like machinery vibration under variable 
speed/load. 

III. MATERIALS AND METHODS 

A. For Experimental Setup 

The test rig layout, as shown in Fig. 1, incorporates 
turning machinery ball bearings [7]. Loading is applied in 
both the axial and radial directions on impaired bearing 
parts. The rolling element bearings and outer race have 
been placed in the bearing housing [18]. An accelerometer 
monitors vibrations by measuring displacement, velocity, 
and acceleration using a transducer [9]. The displacement 
transducer has limited effectiveness in monitoring 
vibrations along the rotating shaft axis caused by  
defects [11–13]. Load variation was monitored using  
high-precision strain gauges attached to the bearing 
housing, ensuring accurate measurement of forces. A 
mechanical tensioning mechanism was incorporated to 
regulate the applied load dynamically. The system was 
calibrated before each test to maintain consistent load 
conditions. Additionally, real-time monitoring was 
conducted using LabVIEW software to track load 
variations and adjust parameters accordingly. The belt-
driven system was used to apply radial and axial loads. 
Load variation was monitored using strain gauges and 
controlled using tensioning mechanisms. The belt-driven 
system was used to apply both radial and axial loads on the 
bearing. Many data collection systems employ signal 
conditioning techniques to investigate failure frequencies 
in industrial machinery rolling bearings. When the bearing 
is connected to the housing, the accelerometer signal is 
discrete to the frequency range., allowing for high-
frequency acceleration measurements. Displacement 
measurements use a low frequency, while velocity 
measurements are in the intermediate range. The vibration 
situation is monitored using an accelerometer with a 
sensitivity of 10 mV per m/s² and a magnetic base. The test 
equipment includes a bearing and two shafts with varied 
speeds. The experimental test rig was constructed and 
installed on a C-channel frame measuring 584.28×711 mm. 
The construction of the test rig is designed to minimize the 
impact of multiple variables, shocks, and vibrations 
triggered by rotating machinery and equipment. The robust 
structure is designed for experimental testing under 
various conditions. The accelerometer’s single axis is 
positioned horizontally inside the bearing housing, with a 
sensitivity range of 5 to 100 mV. LabVIEW software is 
used to collect data; fault data is recorded and saved for a 
specified period, and post-processing is completed using 
the LabVIEW front end and the necessary hardware. The 
DAQ system facilitates communication between the user 
and the computer, providing single-axis values from the 
accelerometer. The load is applied in line with the belt 
drive system along the bearing positioned in the test rig. 
Additionally, the rolling element bearing vibration 
spectrum is acquired with and without issues over a range 
of speeds. 
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The experimental procedure is as follows: 
 The national instrument data acquisition system is 

connected and paired with accelerometers and 
computer ports for data communication. 

 The accelerometer is fixed along the bearing 
housing. 

 Vibration spectrum data is collected while 
adjusting speed and load. 

 The rolling element bearing’s vibration signal is 
recorded and analyzed using waveforms. 

 The software analyzes spectrum vibration data 
using the Fast Fourier Transform approach to 
determine time and frequency. 

 The motor (on the left) drives the pulley, which 
transfers torque through the belt. The belt drive is 
connected to the shaft supported by bearings. The 
tension in the belt generates a radial load on the 
bearing mounted on the pulley shaft. As shown in 
Fig. 2(a) the annotations and Fig. 2(b) radial load 
acting on the bearing. 

 

   
Fig. 1. Layout of the experimental test rig with motor controller. 

 
 (a)  

 

 
(b) 

Fig. 2. (a) Layout with annotations; (b) Tension and Load on the 
bearing. 

The corresponding rolling element analysis for the 
condition monitoring vibration approach yields various 
vibration parameters, including RMS, peak-to-peak, zero-
to-peak, kurtosis, amplitude, and other factors. 
Additionally, the signal often contains phase and electrical 
spikes resulting from changes in the vibration signal’s 
amplitude. The RMS factor is a key measure of the energy 
content of the vibration signal. 

1. Bearing Specifications: SKF 6205 deep groove ball 
bearings. 
2. Test Rig Material Properties: Constructed from 
mild steel for structural stability. 
3. Environmental Conditions: Tests conducted at 
25°C with controlled lubrication conditions. 
The accelerometer was strategically positioned on the 

bearing housing at a 45° angle to enhance sensitivity to 
defect-related vibrations. Finite Element Analysis (FEA) 
was employed to determine the optimal placement by 
simulating vibration propagation and response. 
Additionally, experimental validation was conducted by 
placing sensors at different positions and analyzing the 
resulting signal clarity and amplitude. The selected 
placement ensured maximum defect detection while 
minimizing interference from external noise. 
Accelerometer positioned on the bearing housing at 45° to 
maximize sensitivity to defect-related vibrations. The 
placement was optimized through Finite Element Analysis 
(FEA) to identify the most responsive location. 
Experimental validation confirmed that this orientation 
captured fault-induced vibrations effectively while 
minimizing external noise. Accelerometer positioned on 
the bearing housing at 45° to maximize sensitivity to 
defect-related vibrations. The placement was optimized 
using finite element analysis and experimental validation 

B. For Tests Conducted in Real-Time at the Sugar 
Mills Methodology  

 After thorough cleaning, the bearing raceways and 
exterior surfaces, the extent of cage wear, the 
increase in internal clearance, and the degradation 
of tolerances were inspected. These areas were 
carefully examined for any damage or 
irregularities to determine if the bearing could be 
reused. 

 Testing was carried out using a Multi-Instrument, 
Piezoelectric Accelerometer, and Data Acquisition 
System. 

 The bearings were examined with greater scrutiny 
based on their criticality and comparing it with the 
ISO 20816-3:2022 standard limits. 

 The decision to reuse a bearing was made after 
considering the degree of bearing wear, the 
machine’s function, the bearing’s importance in 
the machine, operating conditions, and the time 
until the next inspection. 

 The equipment tested included Sugar Mill Rollers, 
Centrifugal Sugar Centrifuges, Conveyors. 

A side-by-side comparison of the sample vibration data 
for scenarios involving 75 HP, 150 HP, and 200 HP motors. 
Only these (75 HP, 150 HP, and 200 HP motors). These 
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power ratings were chosen because they were the only 
machines available for maintenance during the study at the 
sugar mills Only these (75 HP, 150 HP, and 200 HP 
motors.) These power ratings were chosen because they 
were the only machines available for maintenance during 
the study at the sugar mills, along with the ISO 20816-
3:2022 standard limits for rolling element bearings, 
considering frequencies up to 850 Hz with intervals of  
50 Hz shown in Table I and corresponding graph shown in 
Fig. 3.  

To ensure accuracy, the experiments were repeated five 
times under identical conditions. The results were 
compared against the ISO 20816-3:2022 standard, and 
deviation across trials remained within acceptable limits 
(±5%) [2]. 

TABLE I. OVERALL MEAN AVERAGE VALUES FOR 12,000 SAMPLE 

READINGS 

Frequency 
(Hz) 

Vibration 
Velocity (75 
HP Motor) 

(mm/s) 

Vibration 
Velocity (150 
HP Motor) 

(mm/s) 

Vibration 
Velocity (200 
HP Motor) 

(mm/s) 

ISO 
Standard 

Limit 
(mm/s) 

50 0.21 0.3 0.4 0.7 
100 0.31 0.4 0.48 0.7 
150 0.38 0.43 0.45 0.7 
200 0.33 0.41 0.48 0.7 
250 0.34 0.41 0.45 0.7 
300 0.41 0.43 0.45 0.7 
350 0.38 0.44 0.45 0.7 
400 0.38 0.43 0.46 0.7 
450 0.4 0.43 0.45 0.7 
500 0.41 0.43 0.45 0.7 
550 0.4 0.44 0.45 0.7 
600 0.4 0.41 0.45 0.7 
650 0.4 0.43 0.5 0.7 
700 0.4 0.83 0.5 0.7 
750 0.4 0.91 0.5 0.7 
800 0.4 0.95 0.5 0.7 

   

 

Fig. 3. Overall mean average values for 12,000 sample readings. 

IV. RESULT AND DISCUSSION 

A. For the Experimental Setup 

The frequency domain analysis of roller bearing 
problems was compared to normal bearings to establish the 
relationship with fault signals [19]. The equipment 
operates at speeds ranging from 800 to 1600 rpm. The 
complete fault signal is captured over a period of 0.2 s. 
When comparing roller faults to inner and outer race faults, 
the highest amplitude recorded is 650 Hz. The frequency 

domain characteristics of normal bearings and overall 
roller bearing failures vary and change with speed, ranging 
from 900 to 1600 rpm. Fig. 4 depicts the factors that 
influence RMS velocity. At 1200 rpm, the frequency is 
around 200 Hz, but at 1600 rpm, it can reach 700 Hz. In 
comparison to normal bearings, the frequency range and 
amplitude of overall roller defects increase. The amplitude 
of roller defects influences the inner and outer race 
frequencies, which rise with sidebands [20].  

  

 
Fig. 4. Time domain analysis for normal bearing. 

Damped resonance occurs at frequencies ranging from 
350 to 650 Hz. The complete roller bearing defect has a 
peak-to-peak vibration spectrum ranging from 0.4 µm to 
2.5 µm at various speeds. RMS values are greater and vary 
in frequency from 0.0017 mm/s to 0.0038 mm/s between 
115 and 700 Hz, increasing with speed up to 1600 rpm. 
The frequency distribution includes 95, 125, 250, 350, 480, 
and 750 Hz. Identifying defects in the frequency domain is 
rather simple, and particular frequencies may be 
dynamically added. 

However, undesired features, such as noise and other 
components, might influence the amplitude and excitation 
frequency [21].  

Non-deterministic and non-stationary variables in the 
vibration signal are recorded across several cycles and 
frequency ranges. Roller faults exhibit spikiness 
distributions for frequency and phase angle shift across the 
total number of cycles [10, 22]. Bearing issues are 
evaluated and documented in frequency tables for 
reference. Data for normal and overall roller fault bearings 
shows varying peak-to-peak frequencies [23]. The primary 
roller defect is clearly visible in the frequency spectrum, 
whereas sidebands and distinct harmonics appear at higher 
frequencies [24, 25]. Wideband noise can influence 
matching bearing defects and generate resonance in the 
bearing spectrum. The vibration signal for normal and 
inner race fault bearings is assessed using time-domain 
waveform analysis, which is a regular method [26, 27]. For 
rotational speeds of 800 to 1600 rpm, normal and inner 
race fault vibration signals were captured for 0.5 s from 
two successive bearings at sampling speeds of 120 Hz and 
180 Hz, respectively. 

In this study, vibration spectra were obtained for a 
predefined set of 15 cases using signals acquired via a 
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DAQ system. Key parameters—amplitude, kurtosis, and 
RMS—were used for fault detection and diagnosis of 
rolling element bearings. The recorded analog signals were 
digitized using the available data acquisition system and 
analyzed offline using LabVIEW software at our R&D 
center. 

To minimize noise interference, the following filtering 
methods were applied 

 Band-pass filtering to isolate defect-related 
frequencies [15].  

 Wavelet denoising to enhance fault signal 
clarity [28]. 

 FFT-based smoothing to reduce random noise 
components [24]. 

Fig. 5 shows vibration spectra for normal and inner race 
faults. The time-domain spectrum acquired over a specific 
time frame indicates that the amplitude of inner race 
defects is much bigger than that of normal bearings [29]. 
The passing element finds a damped resonance situation in 
the bearing, which causes defect to excite at a higher 
frequency [10, 24]. 
 

    
Fig. 5. Oscilloscope and spectrum analyzer graphs for the inner race 

bearing at 250 Hz. 

As a result, the rate of degradation accelerates over 
time [28]. The nature of strikes and errors is not well-
represented in the obtained vibration spectrum, which may 
contain undesirable components from impulsive impacts 
in the vibration signal. Obtaining faulty information in the 
time domain is challenging because the vibration signal 
receiver captures a sum of dynamic signals over time [16]. 
Noise and other characteristics are not easily masked in the 
time domain spectrum. Statistical parameter determination, 
particularly in the time domain, involves values that are 
neither deterministic nor stationary, making it difficult to 
address rolling element bearing issues in the resulting 
vibration spectrum [10, 24]. Statistical techniques are used 
to extract parameters in time domain analysis [30], and the 
output of this vibration signal provides information about 
the spikiness and overall level of faults in terms of the 
overall vibration level [31].  

The most commonly used approach for time-domain 
waveform analysis is employed to study vibration signals 
from both normal and inner race fault bearings. The 
vibration signal for the normal and inner race fault 
bearings is captured for 0.5 s from two successive bearings, 
with sampling rates of around 120 Hz for the normal 
bearing and 180 Hz for the inner race fault bearing. This 

examination is performed throughout a rotating speed 
range of 800 to 1600 rpm. The vibration spectra for the 
normal and inner race defects reveal significantly distinct 
patterns, as seen in Fig. 6 below. 

 

 
Fig. 6. Study of the spectrum envelope for the inner race  

bearing at 250 Hz. 

Frequency domain analysis revealed outer race faults 
had the highest amplitudes. Resonance effects and wide-
band noise shifted vibration energy, requiring sideband 
and harmonic analysis for accurate fault detection [32–34]. 
Envelope detection effectively highlighted defect 
frequencies. 

Figs. 8–11 show spectra and time histories at 250 Hz, 
confirming that spectral tools are key to isolating fault 
signatures. 

 

   
Fig. 8. Oscilloscope and spectrum analyzer graphs for the outer race 

bearing at 250 Hz. 

 
Fig. 9. Spectrum envelope study for the outer race bearing at 250 Hz.  
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Fig. 10. Oscilloscope and Spectrum Analyser Graphs for the entire 

bearing at 250 Hz. 

 
Fig. 11. Spectrum envelope study for the entire bearing at 250 Hz. 

B. For Tests Conducted in Real-Time at the Sugar Mills 

1) Interpretation 
 The data chart compares the vibration velocity data 

for 75 HP, 150 HP, and 200 HP motors, with the 
ISO standard limits for rolling element bearings. 

 In all scenarios except for the 150 HP motor. The 
defect in the 150 HP motor is evident by the 
increased vibration velocities between 700 Hz and 
850 Hz, which exceed the ISO standard limits. 

2) Action 
 Immediate action is warranted for the 150 HP 

motor scenario with the defect. Maintenance and 
diagnostic procedures should be conducted to 
identify and rectify the underlying cause of the 
increased vibration levels to ensure the reliable 
operation of the equipment. 

 The 75 HP and 200 HP motors exhibit acceptable 
vibration levels within the ISO standard limits and 
do not require immediate action. Regular 
monitoring and maintenance should still be 
conducted to ensure continued reliability.       

C. Overcoming a Bearing Defect in a 150 HP Motor 

 Inspection: Identify the type of defect in the 
bearing, such as wear due to insufficient 
lubrication. 

 Lubricant Selection: Choose a high-performance 
grease with the correct viscosity. 

 Manual Greasing: Apply the recommended 
amount of grease using a grease gun, ensuring 
even distribution. 

 Automatic Lubricator: Install an automatic 
lubricator to maintain consistent lubrication. 

 Condition Monitoring: Implement vibration 
analysis to monitor bearing condition and detect 
any further issues. 

 Table II shows a comparison of Detection rate and 
False Alarm Rate for Each method. 

TABLE II. COMPARING DETECTION RATE (%) AND FALSE ALARM 

RATE (%) FOR EACH METHOD 

Method 
Detection 
Rate (%) 

False Alarm 
Rate (%) 

Time Domain Analysis 85 12 
Frequency Domain Analysis 90 10 

Spectrum Plot Approach 95 7 
Traditional Vibration (RMS) 78 15 

 
A re-test was done after maintenance for 150 HP motor 

the results are shown in Table III and Fig. 12. 

TABLE III. OVERALL MEAN AVERAGE VALUES FOR 12,000 SAMPLE 

READINGS 

Frequency (Hz) 
150 HP Motor 

(mm/s) 
ISO 20816-3:2022 Limit 

(150 HP ≤) (mm/s) 
50 0.15 1.2 

100 0.25 1.2 
150 0.35 1.2 
200 0.45 1.2 
250 0.55 2 
300 0.65 2 
350 0.75 2 
400 0.85 2 
450 0.95 2 
500 1.05 3.2 
550 1.15 3.2 
600 1.25 3.2 
650 1.35 3.2 
700 1.45 3.2 
750 1.55 3.2 
800 1.65 3.2 
850 1.75 3.2 

 

  
Fig. 12. Comparison data with ISO standard. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 4, 2025

442



The 1 HP motor setup limits industrial relevance. Future 
work will include high-power motors, adaptive signal 
processing, and AI-based diagnostics. 

V. CONCLUSION 

The study explored a multi-domain approach for 
diagnosing faults in rolling element bearings, focusing on 
time-domain, frequency-domain, and spectrum plot 
analyses. Each method offered distinct advantages and 
limitations when applied to experimental data collected 
from both a custom-built test rig and real-time industrial 
setups, such as sugar mill machinery. 

In the time-domain analysis, statistical parameters such 
as RMS, kurtosis, and peak values were computed. While 
this approach allowed for basic fault detection, the clarity 
of the results was limited due to the presence of noise and 
impulsive components that masked subtle fault signatures. 
The inability to isolate specific frequencies made it less 
reliable for early fault identification, particularly in 
complex operating environments. 

Frequency-domain analysis, on the other hand, enabled 
clearer visualization of defect frequencies, especially those 
related to outer and inner race faults. The shift in dominant 
frequencies and increase in amplitude under faulty 
conditions confirmed the diagnostic value of spectral 
techniques. The presence of sidebands and harmonic 
components helped in pinpointing defect locations and 
understanding their severity. 

Among the methods evaluated, spectrum plot analysis 
showed the highest diagnostic accuracy. This approach not 
only captured variations in signal amplitude and frequency 
but also highlighted damped resonance and wideband 
noise effects, which are critical in assessing progressive 
damage. The spectrum plots consistently revealed fault 
signatures that were not easily observable in the time 
domain, making this method particularly effective in early 
fault detection and condition monitoring. 

The real-time validation at sugar mills, involving 75 HP, 
150 HP, and 200 HP motors, further strengthened the 
practical relevance of the approach. Vibration data 
exceeding ISO 20816-3:2022 limits in the 150 HP motor 
confirmed a bearing defect, which was subsequently 
mitigated through targeted maintenance. Post-
maintenance results showed significant improvement, 
validating the diagnostic framework used in this study. 

Overall, the integration of experimental data, advanced 
signal processing techniques, and comparative domain 
analyses provided a holistic understanding of bearing fault 
behaviour’s. The findings highlight the superiority of 
spectrum plot methods over traditional time-domain 
analysis, offering a more reliable and adaptable solution 
for real-time industrial applications. 
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