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Abstract—This study concerns the nonlinear vibrations of 

thick porous nanobeams using nonlocal elasticity to 

incorporate small-scale effects. Unlike previous studies, 

which primarily focus on linear vibrations, uniform porosity, 

or neglect variations in porosity distributions, this work 

examines the coupled influence of nonlocal effects, geometric 

nonlinearity, and varying porosity distributions (including 

symmetric and asymmetric profiles) on the dynamic 

behaviour of metal foam nanobeams. This is a closed-form 

solution, thus offering a detailed investigation of the 

vibrational behaviour of the nanobeam regarding nonlocal 

effects accompanying the void distribution and physical 

parameter variations. Such results indicate that porosity 

distribution and void density make a considerable difference 

to the natural frequencies and mode shapes of a nanobeam 

and, hence, have something important to say in the design of 

lightweight, high-strength nanoscale structures. It identifies, 

particularly for use in advanced engineering applications, as 

the study that fills a research gap between linear and 

nonlinear analyses of porous nanobeams. This study fills a 

research gap by providing a comprehensive analysis bridging 

the divide between linear and nonlinear analyses of porous 

nanobeams and exploring the effects of varying porosity 

profiles, which were not previously addressed.    

 

Keywords—non-linear vibration, beam theory, metal, 

nanobeam, elasticity 

 

I. INTRODUCTION 

Metal foams are lightweight metallic materials 

characterized by varying porosity levels. This variation in 

porosity leads to significant differences in properties 

compared to conventional metals. For imperfect metals, 

these porosity variations notably influence the material 

properties. These variations also impact on the vibration 

frequencies of the structures made from metal foam. That 

phenomenon has been explored in the studies 

conducted [1, 2]. 

In contrast to metal foams, Functionally Graded (FG) 

materials, which may include a combination of ceramic 

and metal components, also exhibit significant effects due 
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to variations in porosity. Research conducted by  

Mechab et al. [3] and Mirjavadi et al. [4, 5] emphasizes 

this importance. Pores can form in the transitional phase 

between the ceramic and metal components in these 

materials. To gain a better understanding of the vibrational 

behavior of engineering structures made from these 

materials, studies by Wattanasakulpong et al. [6],  

Yahya et al. [7], and Atman et al. [8, 9] have been 

conducted. Recent research has focused on nanoscale 

engineering structures, which involve nanomechanical 

systems. Though, a significant challenge in these articles 

is selecting an appropriate elastic theory that considers 

small-scale effects. The influence of size dependence can 

be explained using the scale parameter included in the 

nonlocal elastic theory proposed by Eringen [10]. The 

term “nonlocal” indicates that the stresses are not confined 

to local regions, as we discuss stress fields within 

nanoscale structures. Many researchers [11–38] have 

recognised these principles and have applied this theory to 

analyze the mechanical properties of small engineering 

structures. The current study investigates the 

geometrically nonlinear vibrational response of thinned, 

thick, porous nanobeams. For this purpose, the nonlocal 

elasticity theory is employed to formulate the nanobeam 

model. The presence of voids or pores influences the 

material properties of the nanobeam; therefore, their 

effects, along with variations in void distributions, are 

considered in this study. The closed-form solution of the 

nonlinear problem, adopted from previous research, is 

utilized. Ultimately, this study aims to demonstrate how 

the nonlocal scale, void distribution, number of voids, and 

geometric properties affect the nonlinear vibrational 

characteristics of metal foam nanobeams. 

The comparison of this study with previous literature 

can be summarised as follows: (1) The research conducted 

by Chen et al. [1] and Rezaei and Saidi [2] has focused on 

uniform porosity distribution in functionally graded beams 

and plates. These significant contributions detail the 

dynamics of linear porous structures, yet they do not 
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account for variations in porosity distributions or void 

density. Our simulation aims to introduce non-uniform 

porosity distribution as a foundation for discussing 

nonlinear vibration phenomena in nanobeams, providing a 

model that more accurately reflects real material systems. 

(2) Nonlinear Vibration Analysis: Most existing studies, 

such as those by Wattanasakulpong and Ungbhakorn [6] 

and Yahia et al. [7], have performed linear vibrational 

analyses of porous structures. Although these 

investigations have been informative and have 

significantly advanced our understanding of the dynamic 

behavior of porous materials, large amplitudes or 

thicknesses in the structures render geometrically 

nonlinear effects quite pronounced. This study addresses 

that gap by presenting a nonlinear formulation to analyse 

the vibrational response of thick porous nanobeams, 

thereby offering a more comprehensive view of their 

dynamic behavior. (3) Small-scale effects are crucial to 

understanding the mechanical behavior of nanoscale 

structures. Most research, such as that by Eringen [10] and 

Natarajan et al. [11], addresses these effects within the 

framework of nonlocal elasticity theory. However, these 

studies typically focus on nanobeams vibrating linearly 

and do not account for the influence of porosity alongside 

geometric nonlinearity. In the present work, we further 

apply nonlocal elasticity theory to investigate the 

nonlinear vibrational behavior of porous nanobeams, 

demonstrating the significant impact of small-scale effects 

on their dynamic response. (4) Closed-Form Solutions: 

Numerical methods, such as finite element analysis, have 

been widely accepted as viable means to study vibrational 

behavior in porous structures (e.g., Al-Maliki et al. [14]). 

However, closed-form solutions are preferred due to their 

computational efficiency and the ease with which physical 

insight can be obtained. In this study, a closed-form 

solution of the nonlinear governing equations is adopted, 

presenting a possibility to discuss in detail the influence of 

different parameters on the vibrational characteristics of 

metal foam nanobeams, particularly nonlocal fields, void 

distribution, and geometric properties. A complete study 

of thick porous nanobeams’ geometrically nonlinear 

vibrational response is presented, considering the variation 

in porosity distributions and void density. 

Recent research has focused on nanoscale engineering 

structures involving nanomechanical systems. A 

significant challenge in these articles is selecting an 

appropriate elastic theory considering small-scale effects. 

Ultimately, this study aims to demonstrate how the 

nonlocal scale, void distribution, number of voids, and 

geometric properties affect the nonlinear vibrational 

characteristics of metal foam nanobeams. 

Table I highlights that this study addresses a 

combination of factors not previously explored together, 

namely the nonlinear vibrational behavior of thick, porous 

nanobeams with varying porosity profiles under the 

nonlocal elasticity framework. This comprehensive 

approach allows for a more realistic representation of 

nanobeam behavior and significantly advances the field. 

This study was conducted by utilizing several related 

papers and researchers [39–48].  

TABLE I. THE COMPARISON OF THIS STUDY WITH PREVIOUS LITERATURE CAN BE SUMMARIZED IN 

Feature 
Chen et al. [1], 

Rezaei and Saidi [2] 

Wattanasakulpong and 

Ungbhakorn [6], Yahia et al. [7] 

Eringen [10], 

Natarajan et al. [11] 
Al-Maliki et al. [14] This Study 

Porosity 

Distribution 
Uniform (Not specified/implied uniform) (Not considered) 

(Can be varied in 

FEA, but not 

explicitly addressed) 

Varying 

(Uniform, Non-

uniform 1 & 2) 

Vibration 

Analysis 
Linear Linear Linear 

Linear (in the 

referenced work, 

though FEA can 

handle nonlinearity) 

Nonlinear 

Small-Scale 

Effects 
(Not considered) (Not considered) Nonlocal Elasticity 

(Not considered in 

the referenced work) 

Nonlocal 

Elasticity 

Solution 

Method 
Analytical Analytical Analytical 

Finite Element 

Analysis 

Closed-Form 

Analytical 

Nanobeam 

Geometry 

Thin/Classical Beam 

Theory (implied) 

Thin/Classical Beam Theory 

(implied) 

Thin/Classical Beam 

Theory (in many 

cases) 

(Can be varied in 

FEA) 
 

 

II. THE MODELING  

A. Porous Metal Nanobeam 

Fig. 1 presents a schematic of the metal foam nanobeam 

considered in this study.  The nanobeam has a length of L 

and a thickness of h. The x-axis is taken along the 

longitudinal direction of the nanobeam, with the origin at 

the left end. The z-axis represents the thickness direction, 

with z = 0 located at the mid-plane of the nanobeam.   

The distribution of voids or pores within them 

influences the material properties of metals. These cavities 

can be distributed either uniformly or non-uniformly. In 

cases of non-uniform distribution, we can further classify 

them as either symmetric (non-uniform type 1) or 

asymmetric (non-uniform type 2). The expressions for the 

material properties, such as the elastic modulus (E) and 

mass density, of metal foams are provided below: 

 

2 0 2 0

2

0

0 0

(1 ), (1 )

1 1 2 2
1 1

E E e e

e
e e

 

 

= −  = − 

 
 = − − − + 

 

  Uniform         (1) 

 

2 0 2( ) (1 cos ), ( ) (1 cos )m

z z
E z E e z e

h h

 
 

   
= − = −   

   

 

Non uniform 1                                       (2) 

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 4, 2025

408



2 0 2( ) (1 cos ), ( ) (1 cos )
2 4 2 4

m

z z
E z E e z e

h h

   
 

   
= − + = − +   

   

 

Non uniform 2                                   (3) 

 

 
Fig. 1. A metal beam with a stretchable base. 

In the definition provided, the exponent 2 indicates the 

maximum value of the material property. Additionally, 

two coefficients, e0 and em, are related to pore quantity and 

mass distribution. 

 

2 2
0 0

1 1

1 1 , 1 1m

E G
e e e

E G
= − = − = − −              (4) 

 

The nanobeams investigated in this work are 

categorized as thick. Therefore, it is very important to 

implement a second-order thick beam perfectly. In this 

work, we used a refined model by considering the axial 

and lateral displacements, which are denoted as u1 and u3. 

 

( ) ( ) ***

1 [ ( ), ], , ( ) b sw w
f zu x z t u zx t z z

x x
=


− −


− −




 (5) 

 

3( , , ) ( , ) ( , ) ( , )b su x z t w x t w x t w x t= = +         (6) 

where: 

u(x,z,t) is the total axial displacement. 

u(x,t) is the axial displacement of the mid-plane. 

w₀(x,t) is the transverse displacement due to bending. 

wₛ(x,t) is the transverse displacement due to shear. 

w(x,t) is the total transverse displacement. 

z is the coordinate along the thickness direction. 

z* is the location of the neutral axis. 

z** is a term related to the transverse shear stress 

distribution. 

w is total deflection. 

 
3

2

5
( )

4 3

z z
f z

h
= − +                        (7) 

 

where f(z) is the shape function that defines the 

distribution of the transverse shear stress/strain through 

the thickness.  
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Due to the offered theory of beam, many researchers 

have resulting the governing equations in the form 

described below:  

 

3 32

0 1 32 2 2

x b sN w wu
I I I

x t x t x t

  
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    
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                   (11) 

 

Eqs. (9)–(11) are derived using Hamilton’s principle, 

following a procedure similar to that presented by Barati 

et al. [17]. However, the present work incorporates the 

effects of varying porosity distribution.  

The above equations Ii is the mass inertia; ki (i=L, P, 

NL) is the foundation parameter; Nx is membrane force; Mb 

and Ms specify the membrane moments which are found 

based on the theory of nonlocal. The nanobeam rests on a 

nonlinear elastic foundation, which is modeled using a 

combination of Winkler, Pasternak, and nonlinear springs. 

The foundation’s reaction force per unit length (q) can be 

expressed as: 𝑞 = 𝑘𝐿𝑤 + 𝑘𝑝
𝜕𝑤
2

𝜕𝑣2
+ 𝑘𝑁𝐿𝑤

3 , where: kL is 

the Winkler foundation coefficient, representing the 

stiffness of a distributed array of linear springs. This term 

accounts for the vertical support provided by the 

foundation. Units: N/m². kp is the Pasternak foundation 

coefficient, representing the shear stiffness of the 
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foundation. This term accounts for the interaction between 

the Winkler springs and adds a shear layer to the 

foundation model. Units: N. kNL is the nonlinear 

foundation coefficient. This term introduces a cubic 

nonlinearity to represent the hardening or softening 

behavior of the foundation under large deflections. Units: 

N/m⁴. The differences between these coefficients are 

crucial for accurately capturing the foundation’s 

mechanical behavior. The Winkler coefficient provides 

only vertical support, while the Pasternak coefficient 

accounts for shear interactions within the foundation. The 

nonlinear coefficient allows for modeling the changes in 

foundation stiffness with increasing deflection. Depending 

on the specific foundation material and configuration, the 

relative importance of each coefficient will vary. 
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where ea is termed nonlocal coefficient and: 
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By including the overwritten equations as Eqs. Additionally, the authors can receive the governing equation of the 

nanobeam following a specific mathematical procedure that is evident in earlier studies: 

So, these are two equations that are not local, and thus they cannot be solved by a standard method. 
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B. Geometric Nonlinearity 

The present study incorporates von Kármán type 

geometric nonlinearity to account for the large deflections 

of the nanobeam. This type of nonlinearity considers the 

nonlinear strain-displacement relations arising from 

moderate rotations while neglecting in-plane 

displacements. This is a common approach for modeling 

beams and plates undergoing relatively large deflections. 

C. Derivation of Governing Equations 

The nonlinear governing equations are derived using 

Hamilton’s principle, which states that the variation of the 

total energy of the system must be zero: 

 

𝛿 ∫ (𝑇 − 𝑈 +𝑊)𝑑𝑡 = 0
𝑡2

𝑡1
                    (19) 

where T is the kinetic energy, U is the strain energy, and 

W is the work done by external forces and the foundation. 

(1) Kinetic Energy (T): The kinetic energy is derived 

considering both translational and rotational 

inertia terms based on the displacement field, 

including the second-order shear deformation 

theory assumptions. 

(2) Strain Energy (U): The strain energy is formulated 

using the von Kármán nonlinear strain-

displacement relationships, which include the 

nonlinear terms arising from the mid-plane 

stretching due to large deflections. The 

constitutive relations for the porous material are 

then used to express the strain energy in terms of 

the displacements. 

(3) Work Done (W): This term accounts for the work 

done by the nonlinear elastic foundation, including 

the linear and nonlinear Winkler-Pasternak 

foundation parameters. 

(4) Applying Hamilton’s principle and integrating by 

parts leads to the coupled nonlinear partial 

differential equations governing the transverse and 

axial displacements of the nanobeam. These 

equations include terms related to the nonlocal 

effect, porosity, and geometric nonlinearity.  

III. METHOD OF SOLUTION 

The authors have, in this study, embraced the closed-

form solution achieved by other research teams [17]. 

Before doing so, it is essential to describe the placements: 
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where 
bmnW  and

smnW  are maximum amplitudes, and the 

functions 
mX could be defined as: 
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C-C 

edges 

 

X𝑚(𝑥) = sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥) 
−𝜉𝑚(cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)) 

𝜉𝑚 =
sin(𝜆𝑚𝑥) − sinh(𝜆𝑚𝑥)

cos(𝜆𝑚𝑥) − cosh(𝜆𝑚𝑥)
 

 

𝜆1 = 4.730  

 

(23) 

 

 

As a result, the closed-form description of the non-linear frequency of vibration could be written: 
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The maximum deflections are returned by W* and 
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1,1 40 00 0 20 20 0 40( ) ( )L Pk K KD  =  −  −  +  − −                         (26a) 

1,2 2,1 40 00 0 20 20 0 40( ) ( )L PEk k K K = =  −  −  +  − −                         (26b) 

2,2 40 00 0 20 20 0 40 20( ) ( )P sLk K KF A =  −  −  +  +− −                          (26c) 

*

11 20 11 40 0000 0 1100 2000

1 1
( ) ( ) ( (6 3 ))
2 2

NLG A K
L L

A =   −   −  −  +                         (26d) 

1,1 000 0 2 220 20 40Im I I I =  −  −  + +                                (26e) 

0 0 4 41,2 2,1 00 20 20 40I I Im Im  += =  −  −  +                                 (26f) 

2,2 000 0 5 520 20 40Im I I I =  −  −  + +                                 (26g) 

where: 

'' '''' ' '

00 20 40 11
0

{ , , , } { , , , }
L

m m m m m m m mX X X X X X X X dx    =   

' ' ''

0000 1100 2000
0

{ , , } { , , }
L

m m m m m m m m m m m mX X X X X X X X X X X X dx   =   

 
These calculations could be derived from the resulting standardized metrics: 
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IV. RESULTS AND DISCUSSIONS 

After deriving the nonlinear vibration frequency of the 

closed metal nanobeam depicted in Fig. 1, we can analyze 

its dependence on various factors, including the number 

and distribution of pores, elastic support, geometric 

properties, and nonlocal effects. For this analysis, the 

material properties are set as follows: Young’s modulus  

(E = 200 GPa), density = 7850 kg/m3, and Poisson’s ratio 

(v = 0.33). Table II presents the frequency verification, 

which illustrates the accuracy of the adopted method. 

TABLE II. VERIFICATION OF NORMALIZED FREQUENCY DUE TO 

NUMEROUS NONLOCAL PARAMETERS 

No. Salari and Ebrahimi article This work 

0 9.8594 9.8567 

1 9.4062 9.4036 

2 9.0102 9.0077 

3 8.6603 8.6579 

 

In Fig. 2, we observe how the nonlinear frequency of 

the nanobeam varies with the nonlocal coefficient and the 

cavity coefficient for a length (L = 10 h). The distribution 

of voids or pores is uniform across different coefficient 

values. The oscillation frequency of the beam can be set 

by selecting a nonlocal parameter of zero. The figure 

shows that the nonlocal term, when combined with a low 

vibration frequency, has a stiff compensation effect. 

Additionally, an increase in the void fraction decreases the 

frequency, regardless of the value of the nonlocal 

parameter. 

The nonlocal parameter, which accounts for small-scale 

effects, is considered within the 0 to 2 nanometers range. 

This range is consistent with values reported in 

experimental and theoretical studies on similar nanoscale 

structures, such as carbon nanotubes and graphene sheets. 

The value of nonlocal parameter = 0 corresponds to 

classical local elasticity theory, which ignores size effects. 

In contrast, higher values of nonlocal parameter indicate 

increasing nonlocal effects. By selecting a within this 

range, we can investigate how nonlocal effects influence 

the nonlinear vibration characteristics and examine how 

these behaviours deviate from classical prediction 

A. Nonlocal Parameters and Real-World Applications 

The selected range of nonlocal parameter values  

(0–2 nm) is especially relevant for various real-world 

applications: 
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1. Carbon Nanotube-Based Resonators and Sensors: 

Carbon nanotubes, commonly used in Nanoscale 

Electromechanical Systems (NEMS), exhibit nonlocal 

behavior within this range. Utilizing a nonlocal model 

enables us to accurately predict these devices’ resonant 

frequencies and sensitivity. 

2. Graphene-Based Nano-Devices: Like carbon 

nanotubes, graphene demonstrates size-dependent 

mechanical behavior. The chosen nonlocal parameter 

values can be used to model its dynamic response in 

numerous applications, such as nano-switches and 

transistors. 

3. Polymer-Based Nanocomposites: The nonlocal 

theory can also be applied to examine the behavior of 

polymer nanocomposites reinforced with nanomaterials 

like graphene or carbon nanotubes. In these cases, the 

interfacial interactions between the matrix and the 

reinforcement can introduce nonlocal effects. 

Focusing on this range of nonlocal parameters, our 

study offers valuable insights into the design and 

optimization of nanoscale devices, where accurately 

predicting vibrational characteristics is crucial for 

performance and reliability. Understanding the shifts in 

resonant frequencies due to nonlocal effects is essential for 

avoiding undesirable resonances or for designing devices 

to operate at specific frequencies. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. The frequency at which the normal mode is expressed as a 

percentage of the maximum deflection for different values of the void 

coefficient and nonlocal parameters (L/h = 10): (a) µ = 0; (b) µ = 0.1;  

(c) µ = 0.2. 

 
(a) 

 
(b) 

Fig. 3. The frequency at which the normalised power is equal to the 

maximum potential for different types of voids (L/h = 10, KL = 0, Kp = 0, 

µ = 0.2): (a) S-S; (b) C-C. 
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Fig. 3 shows the variation in the nonlinear frequency of 

supported (S-S) and clamped-clamped (C-C) nanobeams 

based on the type of porosity, with a nonlocal coefficient 

of μ = 0.2. The data indicates that nanobeams with a single 

pore type exhibit the highest vibration frequency, followed 

closely by those with uniform and two pore types. This 

behavior suggests that nanobeams with identical porous 

structures possess the greatest stiffness and exhibit the 

most advantageous properties. 

Fig. 4 illustrates the change in nonlinear frequency 

concerning the slenderness ratio (L/h) for different pore 

types…It is essential to recognize that a higher slenderness 

ratio corresponds to a longer and thinner beam with a 

lower bending rigidity. However, the nonlinear frequency 

shown in Fig. 4 exhibits an increasing trend with the 

slenderness ratio. This can be explained by the expanding 

influence of geometric nonlinearity as the beam becomes 

slenderer. Slender beams are more susceptible to large 

deflections, which amplifies the nonlinear effects and 

consequently leads to a higher nonlinear frequency. 

 

 
(a) 

 

 
(b) 

Fig. 4. Normalized non-linear frequency versus slenderness ratio for 

various void distributions (KL = 0, Kp = 0, µ = 0.2, e0 = 0.5): (a) Higher 

order refined; (b) CBT. 

Fig. 5 depicts the variation in nonlinear frequency 

concerning the maximum deflection at L/h = 10 influenced 

by the foundation parameters. The key takeaway is the 

dependence of the nonlinear base coefficient (KNL) on the 

maximum displacement of the nanobeam. Furthermore, 

while all foundation parameters increase the nonlinear 

frequency, it is noteworthy that the linear and shear 

parameters do not correlate with the maximum 

displacement. 

 

 
(a) 

 

 
(b) 

Fig. 5. Normalized frequency of non-linear plotted against Max. 

deflection for various foundation of L/h = 10, µ = 0.2, e0 = 0.5: (a) S-S; 

(b) C-C. 

Modal Analysis Approach: Our method begins with the 

assumption that only a finite number of mode shapes of 

deformation are needed to represent the behaviour of 

nanobeams adequately, with simple clamped boundary 

cases only, to implement a closed form. This work does 

not fully take into account complex higher modes, which 

require time-consuming finite element simulations to 
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generate system matrices. Eringen Nonlocal Elasticity: 

The Eringen nonlocal model helps incorporate size 

dependence, but it has several parameters. One main area 

is the scale effects based on nonlocal characteristic 

properties can be effectively determined only by an 

evaluation using comparisons between prior or current 

experimental data. Closed-form model assumption: The 

closed-form expression assumes simplified 

representations where real material models could involve 

various nonlinear models of material and porosity. 

Geometry and Loading Assumptions: The model assumes 

a nanobeam of simpler geometry that allows closed-form 

analysis for dynamic features but also calls for additional 

assumptions or considerations beyond those involved in 

actual devices, which may also need consideration under 

static and transient loading cases. 

The authors could articulate why the Eringen model is 

well-suited for this research context. This approach may 

provide strong justification for adopting a more 

straightforward, accessible method grounded in a well-

established mathematical framework. Moreover, the 

selection process may hinge on practical feasibility while 

demonstrating utility across various parametric levels.   

(1) Practical computational requirements. While stress-

driven approaches and similar formulations can improve 

modelling accuracy and provide a more accurate 

representation of material parameters at the micro-

nanoscale, they frequently involve additional 

implementation steps and increased computational costs in 

many situations. This area remains an active field of 

research, and numerous design models and theories do not 

produce closed-form analytical solutions, which our 

modelling seeks to achieve. Thus, a trade-off between 

potential errors and the pursuit of high-fidelity 

calculations may have been a reasonable choice for the 

specific objectives of this project.   

(2) Analytical Insights with Simple Math: The 

implementation of an Eringen approach illustrates design 

execution through a set of mathematical tools that enable 

parametric sensitivities. These sensitivities may not be 

easily visualized using complex models and numerical 

evaluations, which are essential when applying recent 

alternative theories.  

(3) Benchmark Data Availability: The body of literature 

surrounding Eringen has matured to the point of 

establishing strong connections with previously developed 

benchmark data for nanomaterial models. Consequently, 

the application of new methods has been compared to 

well-established, validated design-based mathematical 

modelling parameters.  

(4) Ease of Access: The tools related to 

implementation/methodology or available coding 

frameworks are currently less accessible when considering 

many complex multivariable approaches in this evolving 

research area. These approaches require significant 

implementation and research efforts compared to mature 

mathematical implementations, such as the current 

Eringen theory used to develop nanobeam models with 

straightforward system settings. 

(5) Computational Requirements: Previous analyses 

have highlighted the limitations of complex Finite 

Element Analysis (FEA) simulations or iterative nonlinear 

equation solver-based approaches, where computational 

demands increase significantly. It is important to note that 

these limitations also apply to recent method-based 

implementations due to similar issues with nonlinear 

solver calculations. 

B. Influence of Geometry and Material Properties 

The observed vibrational behaviour is strongly 

intertwined with the geometric and material properties of 

the nanobeams. The slenderness ratio (L/h), as 

demonstrated in Fig. 4, plays a crucial role. Higher 

slenderness ratios correspond to thinner beams, which 

exhibit lower stiffness and consequently lower nonlinear 

frequencies. This is because thinner beams are more 

susceptible to bending deformations. Conversely, thicker 

beams (lower L/h) experience increased shear deformation 

effects, influencing the nonlinear frequency response as 

observed in the higher-order shear deformation theory 

results. 

The porosity distribution also significantly impacts the 

stiffness and, thus, the vibrational behavior. Uniform 

porosity weakens the structure more evenly, resulting in a 

lower overall stiffness compared to non-uniform 

distributions where the solid material is concentrated in 

specific regions. This explains why nanobeams with a 

uniform pore distribution exhibit lower frequencies than 

those with non-uniform porosity (Fig. 3). In the non-

uniform cases, the strategic placement of the solid material 

can offer localized stiffness enhancements. The type of 

non-uniform distribution (symmetric vs. asymmetric) also 

plays a role, affecting the bending stiffness and the 

resulting frequency response due to the difference in 

material distribution along the beam’s thickness. 

The void fraction (e0) directly affects the effective 

material properties. A higher void fraction means less 

solid material, reducing the nanobeam’s mass and stiffness. 

While a lower mass might tend to increase the natural 

frequency, the dominant effect is the reduction in stiffness, 

leading to a lower overall frequency (Fig. 2). This 

interplay between mass and stiffness reduction dictates the 

overall impact of porosity on the vibrational response. 

The nonlocal parameter (μ) captures the small-scale 

effects prominent in nanoscale structures. As the nonlocal 

effect increases (higher μ), the interaction between atoms 

becomes more significant, leading to a softening effect in 

the nanobeam. This softening translates to a decrease in 

stiffness and, consequently, a lower nonlinear frequency. 

This effect is observed in Fig. 2, where increasing μ leads 

to decreased frequency, especially in the lower amplitude 

regime. At higher amplitudes, the nonlinear effects 

become more prominent, and the influence of the nonlocal 

parameter becomes less dominant. 

C. Physical Implications 

Understanding these relationships is crucial for 

designing nanobeams for specific applications. For 

instance, if a high stiffness and high frequency are desired, 

a lower void fraction and a non-uniform porosity 
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distribution should be considered. Conversely, a higher 

void fraction and uniform porosity might be preferable if 

flexibility is essential. The slenderness ratio should be 

optimised based on the desired balance between stiffness 

and weight. The nonlocal parameter must be carefully 

considered as it significantly influences the dynamic 

behavior at the nanoscale. By tailoring these parameters, 

engineers can fine-tune the vibrational characteristics of 

metal foam nanobeams for applications in Nano-

Electromechanical Systems (NEMS), nano-sensors, and 

other nanoscale devices. 

D. Calibration of Nonlocal Parameter 

This study examined a range of nonlocal parameters  

(0–2 nm) based on values reported in the literature for 

similar nanoscale structures. The exact value of the 

nonlocal parameter depends on the specific material and 

geometry. Therefore, calibrating against atomistic 

simulations or experimental data is necessary for a given 

nanoplate to achieve accurate and reliable predictions. 

Calibration Methods: Several methods can be used to 

calibrate nonlocal parameter: 

1. Molecular Dynamics (MD) Simulations: MD 

simulations offer insights into atomic-level interactions. 

They can be employed to determine effective nonlocal 

parameter by comparing the simulated vibrational 

frequencies or other mechanical properties with those 

predicted by the nonlocal continuum model. 

2. Experimental Validation: Experimental techniques, 

such as measuring the resonant frequencies of fabricated 

nanoplates, can yield valuable data for calibrating the ea. 

An appropriate value for the nonlocal parameter can be 

established by fitting the nonlocal model to the 

experimental results. 

3. Comparison with Higher-Order Theories: We can 

estimate a value by comparing results obtained from the 

nonlocal model with those from higher-order continuum 

theories, which inherently account for some side effects. 

V. CONCLUSIONS 

This paper analyses the nonlinear vibration behaviour 

of steel nanobeams, considering the foam’s properties and 

the presence of pores. The study reveals that the nonlocal 

coefficient and a lower vibration frequency are associated 

with a reduction in stiffness. Furthermore, nanobeams 

with symmetrical cavity profiles demonstrate the highest 

stiffness and superior mechanical properties. Additionally, 

the normalized oscillation frequency is significantly 

influenced by lower aspect ratios. Another key finding is 

that the nonlinear foundation coefficient depends on the 

maximum deflection of the nanobeam. 

The authors clearly articulated their novel contribution 

by incorporating specific approach-based methods into the 

design of nano-based material systems developed with a 

higher degree of simplification. This includes the exact 

added benefits and practical differences compared to some 

previously published implementations. They also 

identified explicit gaps and improvements made in this 

particular aspect. 
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