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Abstract—This study develops an innovative Unmanned 

Aerial Vehicles (UAV) framework incorporating GPS and 

Landmark Detection to refine relief delivery processes in 

emergency scenarios, particularly in expansive regions with 

intricate conditions. The system leverages extensive 

positioning capability of GPS to navigate UAV toward 

target zones, subsequently employing Landmark Detection 

to ascertain precise drop-off locations. Notably, an 

Archimedean spiral trajectory algorithm is deployed under 

unstable GPS conditions, enabling UAV to expand search 

coverage and enhance landmark detection capabilities, even 

in obscured areas. Experimental results in Vietnam reveal a 

precision drop rate of 98% at an altitude of 5 m, ensuring 

accurate delivery. Additionally, the landmark detection 

success rate under unstable GPS conditions achieved 100% 

when the overlap ratio of camera frames reached half the 

width of frame (0.5 W), demonstrating high efficacy in 

mitigating target omission risks. This approach not only 

minimizes delivery time but also enhances operational 

flexibility, facilitating rapid and precise UAV access to 

critical relief zones. The proposed system exhibits significant 

potential to deliver effective solutions for emergency relief 

missions, meeting stringent demands for speed, accuracy, 

and stability in time-sensitive delivery operations.   

 

Keywords—Unmanned Aerial Vehicles (UAV)-based 

delivery, GPS-independent navigation, spiral search 

algorithm, UAV emergency delivery  

 

I. INTRODUCTION 

With the continuous progress of technology, the field 

of robotics has seen remarkable advancements [1, 2]. 

Among these, Unmanned Aerial Vehicles (UAV) stand 

out for their diverse and impactful applications. UAV, 

represent autonomous aerial systems equipped with many 

technologies such as sensors, cameras, and navigation 

frameworks. Their versatility has enabled widespread 

application across diverse domains, including geospatial 

mapping, disaster response, and autonomous delivery 

within e-commerce [3]. In logistics, the exponential 
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growth of e-commerce has imposed significant demands 

on optimizing delivery processes, necessitating 

accelerated speeds, cost reduction, and enhanced 

operational efficacy. UAV have emerged as a promising 

solution for “last-mile delivery”, a critical phase in 

logistics often hindered by traffic congestion or 

challenging terrains [4]. The natural flexibility and 

adaptability of UAV effectively address these obstacles, 

driving substantial advancements in the logistics field. 

Their deployment marks a transformative milestone, 

offering unparalleled potential to streamline delivery 

systems while mitigating traditional logistical constraints. 

The deployment of UAV in delivery operations has 

rapidly expanded due to their unparalleled advantages, 

including flexibility, superior accessibility, and reduced 

operational costs. In e-commerce and food industries, 

UAV facilitate swift and efficient delivery, particularly 

for small-scale orders within densely populated urban 

environments [5]. In healthcare, UAV have proven 

instrumental in transporting medications and medical 

supplies to remote or disaster-stricken regions where 

conventional road access is infeasible [6]. Notably, 

during rescue operations, UAV plays a pivotal role in 

delivering relief items to inaccessible areas, mitigating 

risks, and expediting aid in critical emergencies. However, 

operator-dependent UAV systems face limitations in 

handling large-scale payloads within constrained 

timeframes, especially during disaster scenarios. This 

underscores the urgent need for advanced autonomous 

systems to reduce human workload and enhance 

operational reliability in high-pressure environments. 

To address challenges in automated UAV delivery, 

current methodologies emphasize enhancing drop-site 

identification to improve operational efficiency [7]. Each 

approach presents distinct advantages and limitations, 

tailored to specific scenarios. Semantic Segmentation, a 

prevalent technique, leverages deep learning models to 

segment images and identify critical areas such as 

rooftops, lawns, or other safe surfaces. This approach is 

extensively utilized in urban settings, where UAV must 

navigate narrow spaces and numerous obstacles to locate 
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secure drop sites. However, its limitation includes high 

computational demands and low performance under poor 

lighting conditions, such as at night or during adverse 

weather. Another research direction involves terrain 

analysis based on aerial imagery. UAV equipped with 

cameras detect flat surfaces and assess surrounding 

environments to select suitable delivery locations. This 

method is effective in simple terrains with minimal 

obstructions but shows significant limitations in complex 

landscapes or areas dense with obstacles. The GPS-based 

approach remains widely adopted due to its global 

positioning capabilities, enabling UAV to target specific 

coordinates for delivery. Nonetheless, its accuracy 

decreases in obstructed environments, such as indoor 

settings, under tree canopies, or urban areas with high-

rise buildings, rendering drop-site reliability less 

dependable. To overcome GPS constraints, Simultaneous 

Localization and Mapping (SLAM) [8] has emerged as an 

advanced alternative. SLAM utilizes sensors like cameras 

or Light Detection and Ranging (LiDAR) [9] to create 

real-time maps and localize UAV within space. This 

technique proves particularly valuable in GPS-denied 

environments or scenarios requiring detailed mapping. 

However, its drawbacks include reliance on expensive 

sensors and substantial processing time, limiting its 

feasibility for low-cost or real-time applications. Each 

approach, while innovative, addresses specific 

operational contexts, highlighting the trade-offs between 

computational resources, environmental adaptability, and 

implementation cost. These comparative insights 

contribute to the development of more robust UAV 

delivery systems in diverse settings. 

Current research mainly focuses on precise delivery, 

often requiring UAV to land prior to releasing packages. 

While this approach is suitable for pre-planned scenarios 

under normal conditions, it demonstrates significant 

limitations in disaster contexts such as floods or 

earthquakes. In such cases, the vast expanse of affected 

areas and the time-consuming nature of landing 

procedures substantially reduce the efficiency of relief 

efforts. Currently, local rescue teams frequently deploy 

helicopters to expedite the transport and drop supplies, 

enabling swift access to critical zones. Building upon 

these practical insights, this study proposes an automated 

UAV-based delivery methodology that integrates high-

altitude package dropping to enhance time efficacy in 

relief missions. At the same time, this method ensures 

accuracy in determining drop-off locations, making it 

particularly suitable for relief packages, as they are 

carefully packed to withstand being dropped from 

significant heights. 

This study focuses on developing a method for 

accurate package drop-off location determination by 

integrating GPS and Landmark Detection. Specifically, 

the UAV begins its journey by navigating to the target 

area using coordinates provided by GPS. In cases where 

GPS signals are unavailable, a No-GPS mode is 

employed to temporarily guide the UAV until GPS 

functionality is restored. Upon reaching the designated 

area, UAV utilizes an onboard camera combined with a 

YOLO detection model to identify and accurately locate 

predefined landmarks. These landmarks serve as 

predefined indicators. Based on the positional 

information from landmarks, the UAV adjusts its 

trajectory and positioning to ensure precise delivery at the 

intended drop-off point. If the camera fails to detect 

landmarks within its field of view, a spiral search 

algorithm is deployed to locate the landmarks. This 

method combines wide-range positioning capability of 

GPS with the high accuracy of Landmark Detection in 

confined areas, along with advanced search techniques 

and aerial delivery mechanisms, to enhance both 

precision and delivery speed. The study aims to improve 

the efficiency of autonomous delivery systems by 

ensuring time-efficient and highly accurate package drops 

under real-world conditions. The key contributions of this 

research can be summarized as follows: 

• Enhancing relief delivery efficiency through 

high-altitude payload deployment. 

• Developing an integrated methodology 

combining GPS and landmark detection to 

improve delivery precision. 

II. RELATED WORK 

The deployment of Unmanned Aerial Vehicles for last-

mile delivery has gained increasing attention as a solution 

to optimize logistics, particularly in challenging 

environments such as dense urban areas and remote 

regions. Several methodologies have been proposed to 

address the key challenges of precision delivery, 

computational efficiency, and adaptability to real-world 

scenarios. This section reviews existing work on UAV 

delivery systems, focusing on GPS-based navigation, 

SLAM, visual landmark detection, semantic segmentation, 

and hybrid approaches. 

GPS has long been a primary method for UAV 

navigation due to its ability to provide wide-area 

localization with global coverage [10]. In UAV delivery, 

GPS is often used for coarse navigation to guide drones 

to target locations. However, its limitations become 

evident in complex urban environments where GPS 

signals suffer from interference or obstruction by tall 

buildings and dense foliage. Eskandaripour and 

Boldsaikhan [11] highlighted these challenges in urban 

logistics, particularly for achieving precise positioning 

during the final phase of delivery. Despite its utility, GPS 

alone cannot ensure reliable drop-off accuracy in 

environments requiring sub-meter precision. To 

overcome these limitations, recent studies have combined 

GPS with visual methods. For example, Brunner et al. 

proposed a system where UAV relies on GPS for 

approximate navigation but use visual markers for the last 

few meters of localization [12]. 

SLAM has emerged as a robust alternative to GPS for 

UAV navigation, particularly in GPS-denied 

environments [13, 14]. SLAM combines real-time 

mapping with localization, leveraging sensors such as 

cameras, LiDAR, and Inertial Measurement Unit (IMU) 

to enable UAV to navigate autonomously. Steenbeek and 

Nex [15] developed a monocular visual SLAM system 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 4, 2025

375



using inexpensive RGB cameras for UAV exploration in 

emergency conditions, highlighting the potential of 

method for real-time mapping in confined spaces. SLAM 

systems are particularly advantageous in environments 

where GPS is unreliable or unavailable, such as indoors, 

under dense canopies, or during natural disasters. 

However, SLAM systems present trade-offs between 

accuracy, sensor cost, and computational overhead. The 

use of dense SLAM methods, while effective, often 

demands significant computational resources, limiting 

their application in cost-sensitive scenarios. The 

challenge lies in balancing real-time processing with 

mapping precision, especially in dynamic environments. 

While GPS and SLAM provide foundational 

navigation capabilities, the integration of visual 

algorithms has become increasingly necessary to address 

their inherent limitations. Visual algorithms, particularly 

those based on deep learning, enable UAV to interpret 

their surroundings more effectively by detecting 

landmarks, recognizing safe zones, and navigating around 

obstacles. One of them is Semantic segmentation that 

allows UAV to classify image pixels, identifying safe 

drop-off zones [16]. Meanwhile, landmark detection 

leverages distinctive markers or natural features for 

precise localization [17]. Together, these techniques 

address the limitations of GPS and SLAM, significantly 

improving delivery accuracy and adaptability in complex 

environments. 

Semantic segmentation, a deep learning-based 

technique, has been widely adopted to identify safe drop-

off zones in complex environments [18, 19]. By 

classifying pixels in an image, semantic segmentation 

enables UAV to differentiate between surfaces such as 

rooftops, lawns, roads, and sidewalks. Kannan and Min 

proposed a semantic segmentation-based approach for 

autonomous drone delivery, allowing UAV to identify 

and navigate to safe drop-off zones around houses [20]. 

This method ensures safe deliveries even in unstructured 

environments. However, semantic segmentation methods 

face challenges such as sensitivity to lighting conditions, 

computational demands, and the need for high-quality 

datasets [21]. The reliance on deep learning models 

necessitates significant onboard processing power, which 

can be prohibitive for lightweight UAV. 

Landmark detection has been proposed as an effective 

method to enhance UAV delivery accuracy [22, 23]. 

Unlike GPS, landmark-based approaches rely on visual 

cues, such as fiducial markers, predefined features, or 

object detection algorithms, to localize UAV at short 

ranges. Visual markers, such as QR codes or ArUco tags, 

have been widely used to enable precise drop-offs. 

Innocenti et al. tested multiple fiducial marker systems 

for medicine delivery in smart cities, demonstrating that 

UAV equipped with high-resolution cameras can 

accurately locate drop-off points [24]. Brunner et al. [12] 

similarly employed visual navigation for balcony 

deliveries, where UAV identify visual markers placed on 

target locations. In more advanced systems, deep learning 

models are applied to detect landmarks and improve 

delivery precision. Xia et al. [25] proposed a computer-

vision-based system leveraging semantic segmentation 

and house-aware structures to guide UAV toward specific 

drop-off points, such as front doors or garages. These 

methods significantly reduce the reliance on GPS and 

improve localization accuracy in cluttered urban 

environments. 

Previous studies have focused on UAV delivery under 

normal conditions, achieving success in precise deliveries 

to doorsteps or balconies. These methods, however, 

require UAV to land, limiting their efficiency in disaster 

scenarios where quick delivery across large areas is 

critical. According to our survey, no prior research has 

specifically addressed emergency delivery through high-

altitude package drops, which highlights the novelty of 

this approach. Landing processes in such contexts can 

significantly delay the distribution of relief supplies. This 

research proposes an approach combining GPS, landmark 

detection, and high-altitude drops to overcome these 

limitations. By allowing UAV to release packages 

accurately without landing, the method enhances speed 

and adaptability for emergency relief operations. 

III. LITERATURE REVIEW 

A. Overview 

The UAV system is designed with an automated 

operation process to optimize delivery in various 

environmental conditions, as illustrated in Fig. 1. The 

process begins by identifying starting and destination 

points. GPS signals are periodically checked to ensure 

stability. If the GPS signal is stable, UAV operates in 

GPS mode, navigating to the target location using global 

coordinates to adjust its flight path. Conversely, if the 

GPS signal is unavailable or unstable, UAV switches to 

No-GPS mode, utilizing sensors such as the Inertial 

Measurement Unit (IMU), pressure sensors, and cameras 

to estimate its position and navigate using control 

algorithms. 

 

 

Fig. 1. Structure of proposed UAV delivery method. 
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Upon reaching target area, the UAV activates a 

landmark detection function based on deep learning 

models to accurately identify drop-off location. If the 

landmark is detected, system automatically aligns and 

performs the delivery. If the landmark is not immediately 

identified, the UAV deploys a search algorithm based on 

an Archimedean spiral trajectory to expand the scanning 

area. The search process continues until landmark is 

located or a predefined limit is exceeded. After 

completing delivery mission, UAV returns to starting 

point to conclude the operation cycle. 

B. Autonomous Navigation 

This is a critical capability of UAV systems, enabling 

them to operate independently in diverse environments. 

The proposed UAV system supports two distinct modes 

of navigation: GPS navigation and No-GPS navigation, 

ensuring flexibility and adaptability in many different 

environmental conditions. These two modes are designed 

to complement each other, addressing limitations of each 

approach and enhancing the overall reliability and 

precision of UAV operations. Below, we provide a 

detailed explanation of each mode and their integration 

into the UAV system. 

1) GPS navigation 

GPS navigation relies on the Global Positioning 

System to determine the position of UAV and guide it to 

predefined points or target locations. The proposed 

method does not focus on improving navigation; instead, 

existing algorithms from the ArduPilot library are utilized 

for guidance. 

Initialization: The UAV connects to the ground 

control system (GCS) using MAVLink protocol and 

switches to GPS navigation mode. The system 

automatically checks to ensure that the UAV is armable 

and ready for operation. 

Takeoff: The takeoff process is executed by gradually 

increasing the thrust of motors. To ensure a stable and 

safe ascent, the thrust is adjusted in two stages. For the 

first stage, initial thrust is gradually increased to 140% of 

the total weight to quickly lift the UAV off ground. 

However, it is not excessively strong to avoid sudden 

acceleration, which could destabilize the UAV. In the 

second stage, as the UAV reaches approximately 60% of 

target altitude, the thrust is slightly reduced to ensure a 

smooth and precise approach to target altitude. This 

prevents the UAV from overshooting the target altitude 

or oscillating unstably. 

Navigation: The UAV navigates to target locations 

using GPS coordinates. To optimize travel time, the 

navigation system enables the UAV to fly in a straight 

line when there are no obstacles. However, this approach 

becomes less effective in areas with dense obstacles, such 

as tall forests. An obstacle avoidance algorithm [26] is 

integrated with the straight-line navigation method to 

help the UAV bypass obstacles along its flight path while 

maintaining time efficiency. 

Landing: After completing the mission, the UAV 

returns to its starting position and lands. 

 

 

2) No-GPS navigation 

No-GPS navigation is designed for environments 

where GPS signals are unavailable or unreliable. This 

method uses accelerometers, gyroscopes, and barometers 

to estimate the UAV position and altitude. The UAV 

operates in No-GPS mode, which allows it to perform 

autonomous tasks without GPS data. 

Initialization: The UAV connects to ground control 

system and switches to No-GPS navigation mode. The 

system checks the UAV in a similar manner to the 

initialization process in GPS mode. 

Takeoff: The takeoff method is similar to that in GPS 

navigation. However, to control the UAV position during 

takeoff, a Quaternion-based approach is used. Detail of 

approach was shown in section a) Quaternion-based 

approach. 

Navigation: Propose method used the Inertial 

Navigation System for navigation. Detail of approach 

was shown in section b) Inertial Navigation System. 

Landing: The landing process is the same as in GPS 

navigation. 

a) Quaternion-based approach 

Specifically, Quaternions are a mathematical 

representation used to describe the orientation of an 

object in 3D space. They are superior to Euler angles as 

they avoid limitations such as gimbal lock and provide a 

compact and efficient way to represent rotations. In UAV 

navigation, particularly during the takeoff phase without 

GPS, the attitude control system based on quaternions 

ensures the UAV maintains stable attitudes (roll, pitch, 

yaw) to perform vertical ascent and counteract external 

disturbances. The rotation angles are denoted as Roll (ϕ), 

Pitch (θ), Yaw (ψ). The mathematical connection 

between the No-GPS takeoff algorithm and quaternion-

based attitude control can be summarized as follows: 

Thrust Control: The thrust (T) is calculated based on 

current altitude of UAV (h-current) and target altitude (h-

target): 

 _ , 0.6

_ , 0.6

current target

current target

DEFAULT THRUST if h h
T

SMOOTH THRUST if h h

 
= 

 

  (1) 

This dynamic adjustment ensures that the UAV 

ascends smoothly and avoids sudden changes in altitude. 

In Quaternion Conversion, the desired roll, pitch, and 

yaw angles are converted into a quaternion using the 

following equations 

 

cos cos cos sin sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2

w

x

y

     

     

     

           
= +           

           

           
= −           

           

         
= +         

          2

sin cos cos cos sin sin
2 2 2 2 2 2

z
     

 
 
 

           
= −           

           

 (2) 

where: 

w, x, y, z are the quaternion components. 
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ϕ (roll), θ (pitch), and ψ (yaw) are the desired angles in 

radians. 

b) Inertial navigation system 

Basic INS algorithm consists of three main steps: 

Initialization, Data Collection, and Position Calculation. 

First, during the Initialization step, the system is set up 

with initial parameters, including the position (r0), 

velocity (v0) and orientation (C0). The initial position  

r0 = [x0, y0, z0]T defines the geographic coordinates, the 

initial velocity v0 = [vx0, vy0, vz0]T describes the speed at 

initialization moment, and the orientation matrix C0 or 

quaternion q0 represents the initial orientation of object. 

INS continuously collects data from inertial sensors. The 

accelerometer measures acceleration in the body frame  

ab = [ax, ay, az]T and the gyroscope measures angular 

velocity ω = [ωx, ωy, ωz]T. These data serve as the basis 

for calculating subsequent positioning parameters. 

The Position Calculation step includes orientation 

updates, acceleration transformation, and velocity and 

position computation. First, the orientation of object is 

updated based on the measured angular velocity. If 

quaternions are used, the orientation update at step k+1 is 

performed using the following formula. 

 ( )1

1

2
k k k kq q t q+ = +        (3) 

In this, matrix Ω(ωk) and quaternion multiplication ⊗ 

are defined as: 

 ( )

0

0

0

0

x y z

x z y

k

y z x

z y x

  

  


  

  

− − − 
 

−
  =
 −
 

−  

  (4) 

After updating the orientation, the measured 

acceleration in the body frame is transformed into the 

world frame using orientation matrix Ck. With  

g = [0, 0, −9.81]T  m/s2 represents the gravitational 

acceleration. The formulas for acceleration, velocity, and 

position are presented below. 

 1

1 1

k b

k k

k k k

a C a g

w v a t

r r v t



+

+ +

=  +

= +  

= +  

  (5) 

3) Object detection and intelligent position 

adjustment algorithm 

The You Only Look Once (YOLO) model is employed 

for real-time object detection [27], enabling the UAV to 

identify the target drop-off location by processing images 

captured from its onboard camera. In this study, the 

YOLOv11 [28] architecture is utilized to take advantage 

of its lightweight design, which reduces hardware 

requirements on the UAV while still ensuring real-time 

performance. YOLOv11 is the latest improved version in 

the YOLO model series, designed to enhance object 

detection performance and expand its applicability to 

various computer vision tasks. The structure of 

YOLOv11 is built upon key components, including 

Spatial Pyramid Pooling-Fast (SPPF), C2PSA 

(Convolutional Block with Parallel Spatial Attention), 

and C3K2 (Cross Stage Partial with Kernel Size 2), each 

of these components plays a critical role in optimizing the 

performance of model. Key architectural modules of 

YOLOV11 were shown in Fig. 2. 

SPPF is an optimized spatial pooling block designed to 

enhance the ability to extract spatial information from 

images of various sizes and scales with SPP [29] 

background. This block aggregates features from multiple 

spatial regions in the image into a single feature, enabling 

the model to detect objects regardless of their size or 

position. Compared to previous versions, SPPF has been 

refined to increase processing speed and reduce 

computational costs while maintaining high accuracy, 

even in real-time tasks. It is a crucial component for 

improving feature extraction efficiency in the backbone 

of YOLOv11. 

 

 

Fig. 2. Key architectural modules in YOLO11 [27]. 

C2PSA is a convolutional block combined with a 

parallel spatial attention mechanism, designed to enhance 

the ability of model to focus on important regions in an 

image. This attention mechanism allows the model to 

recognize fine details or occluded objects, improving 

accuracy in object detection and segmentation. By 

integrating spatial attention, C2PSA enables the model to 

concentrate on critical information while minimizing the 

impact of noise in the image. This is a significant 

improvement over previous versions, where the ability to 

focus on small regions was often limited. 

C3K2 is a new enhancement of the Cross Stage Partial 

(CSP) architecture, utilizing a smaller kernel size (kernel 

size = 2). This modification not only reduces the number 

of parameters and increases processing speed but also 

improves feature extraction capabilities. C3K2 enables 

the model to maintain high performance in object 

detection tasks, even for objects with complex shapes or 

those appearing at various scales. C3K2 is integrated 

throughout the components of YOLOv11, from the 

backbone to the neck and head, ensuring comprehensive 

optimization. 

Thanks to these improvements, YOLOv11 supports a 

wide range of important computer vision tasks, including 

object detection, object segmentation, image 

classification, pose estimation, oriented object detection, 

and object tracking. The model is also optimized for 
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applications across various scales, from edge devices 

with limited resources to high-performance computing 

systems, due to its balance between speed and accuracy. 

These advancements make YOLOv11 one of the leading 

models in the field of real-time computer vision. 

The YOLO model is pre-trained on a custom dataset 

tailored to the delivery environment (e.g., rooftops, 

lawns, or predefined markers). This model is loaded into 

the onboard system of UAV to perform real-time 

inference during flight. The UAV captures frames from 

its onboard camera and resizes each frame to match the 

input dimensions required by the YOLO model (640×640 

pixels). This ensures compatibility with the model and 

optimizes detection performance. The YOLO model 

processes resized frame to detect objects and generate 

bounding boxes. Bounding box coordinates: (x1, y1, x2, 

y2), where (x1, y1) and (x2, y2) represent the top-left and 

bottom-right corners of the bounding box. Euclidean 

Distance was denoted as distance. Based on the position 

of the selected target relative to image center, the 

algorithm outputs directional indicators (a, b) to guide the 

UAV movement.  

Horizontal Direction: 

 

1

1

0

x x

x x

x x

if distance Threshold

a if distance Threshold

if distance Threshold

−  −


= 
 

         (6) 

Vertical Direction: 

 

1

1

0

y y

y y

y y

if distance Threshold

b if distance Threshold

if distance Threshold

−  −


= 




           (7) 

Once the target is detected, the UAV adjusts its 

position to align with the target drop-off location. The 

Intelligent Position Adjustment Algorithm ensures 

precise movement by dynamically controlling the 

velocity of UAV in response to the target position. The 

directional indicators (a, b) from the object detection 

module. The UAV continuously adjusts its position until 

the target is centered in the camera view. The adjustment 

logic is as follows: 

• If a = −1: Move left by sending a velocity 

command for moving left. 

• If a = 1: Move right by sending a velocity 

command for moving right. 

• If b = −1: Move forward by sending a velocity 

command moving forward. 

• If b = 1: Move backward by sending a velocity 

command for moving backward. 

• If a = 0: The target is centered, and no further 

adjustment is needed. 

The integration of object detection and position 

adjustment ensures seamless operation during the UAV 

delivery process. First, the UAV captures a frame using 

its onboard camera and detects the target drop-off 

location using the YOLO model. Based on the detected 

target position relative to the image center, directional 

indicators (a, b) are generated to guide the movement of 

UAV. Using these indicators, the UAV dynamically 

adjusts its position by sending velocity commands to 

align itself with the target. This adjustment process is 

repeated iteratively until target is centered in the view of 

camera. Once the target is accurately centered, the UAV 

confirms the drop-off location and releases the package, 

completing the delivery process with precision.  

4) Landmark search 

In practice, GPS can sometimes experience significant 

inaccuracies. This can result in the landmark being out of 

the view of UAV camera after the UAV navigates to the 

delivery location based on GPS coordinates. To address 

this issue, an efficient search method is proposed, where 

the UAV automatically flies along an Archimedean spiral 

trajectory to expand the search area. The equation for the 

Archimedean spiral trajectory is described by Eq. (8), 

where r is the spiral radius, φ is the rotation angle, and a, 

b are parameters that control the spacing between spiral 

loops.  UAV follows this trajectory, gradually expanding 

the search range while ensuring uniform scanning of the 

surrounding area, increasing the likelihood of detecting 

the landmark and reducing search time. This method is 

particularly suitable for scenarios requiring precise 

localization in open spaces or complex environments. 

Here, a represents the starting radius, and b determines 

the distance between two consecutive spiral loops. In this 

algorithm, parameter a was set by 0. In the Cartesian 

coordinate system, (x, y) was defined by Eq. (9). 

 

 R a b = +                               (8) 
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Currently, the three common image formats returned 

by cameras are rectangular, square, and circular (fisheye). 

Among these, fisheye images can be converted into a 

rectangular format using transformation algorithms. 

Square images can also be considered as a special case of 

rectangular images. Therefore, to ensure compatibility 

across a wide range of devices, this algorithm is designed 

for cases where the view of camera is rectangular with 

dimensions (h, w). 

In Fig. 3, the UAV executes the search algorithm by 

flying along a spiral trajectory from start point to end 

point. The blue and orange areas represent the view of 

camera at different positions. Due to the oblique angle 

from the camera to the edges of field of view, objects 

may partially or completely obscure the landmark. To 

minimize this effect, the algorithm establishes an 

overlapping area between two fields of view with 

dimensions (h, m). The parameter m is configured based 

on the terrain of each specific area. 
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Fig. 3. Illustration of the flight trajectory of the landmark search 

algorithm. 

The stopping condition of this search algorithm is also 

a hyperparameter determined by the implementer, 

denoted as φ. In Fig. 3, it is set φ = 10π. During the flight 

along the trajectory, the UAV direction is tangential to 

the curve at any given moment. When the view of UAV 

is represented by the orange area, its flight direction is 

illustrated by the red vector u. 
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IV. EXPERIMENT 

A. Experiment Setup 

1) Enviroment 

The experiment was conducted in a rural area in 

Vietnam with open space, minimal obstacles, and suitable 

conditions for simulating the operation of the UAV 

system. The UAV was equipped with an ICM-42688-P 

sensor, which supports accurate measurements and 

ensures stability throughout the flight. A 1080p RGBD 

camera was integrated to provide high-quality images, 

enabling landmark detection in various scenarios. UAV 

has a maximum payload capacity of 4 kg, and for the 

experiment, a 3 kg package was used to ensure stability 

during operation. The package dimensions were 

30×30×30cm, and it was designed with a surface that 

provides good grip to eliminate the possibility of 

bouncing to another position when dropped from above. 

Landmark was designed as a circular shape with a radius 

of Rlandmark = 1 m, shown in Fig. 4. It featured a red outer 

ring, a white circle inside, and a red circle in the center, 

forming a simple yet easily recognizable symbol from 

above. In practice, landmarks were selected and placed in 

diverse locations, including areas with partial 

obstructions, to test the detection capability of system 

under real-world conditions. 

2) Model configuration for detection 

YOLOv11 model was used in the experiment, offering 

outstanding advantages in terms of fast processing and 

high accuracy for real-time detection. The training dataset 

consisted of 1,651 images, each containing a single 

landmark, with 10% of the images adjusted to simulate 

cases where the landmark was partially occluded by up to 

30%. The training parameters were configured as follows: 

100 epochs, batch size 16, and learning rate 0.01. 

 

 

Fig. 4. The designed landmark on the left and its real-world counterpart 

on the right. 

3) Experiment process 

The experiment was divided into two scenarios to 

evaluate the effectiveness of the UAV system under 

different operating conditions. In the first scenario, the 

GPS functioned normally, and the UAV used GPS 

coordinates to determine the drop-off location. In the 

second scenario, GPS errors were simulated by 

artificially altering the GPS coordinates to test the ability 

of system to search for and detect the landmark under 

adverse conditions. Specifically, a random nearby 

destination was assigned to the UAV. Each scenario 

included a total of 150 drop-offs, divided into three 

groups with different altitudes: 3 m, 5 m, and 10 m. The 

landmarks were placed in diverse locations, including 

areas with obstacles, to assess the detection capability in 

complex situations. The accuracy of drop-offs was 

evaluated at three levels: If the center of package landed 

within a circle with a radius of 1m, it was considered 

accurate. If the center of package landed outside this 

radius, it was considered inaccurate. 

B. Detection Model Evaluation 

In this study, YOLOv11 model was trained and 

evaluated on a dataset consisting of 1,651 images, 

including real-world scenarios and simulated cases where 

landmarks were partially occluded. The detection results 

were assessed using metrics Precision (P), Recall (R), 

mAP50, and mAP50-95 as follows. 

Table I shows that the YOLOv11 model achieved high 

accuracy in detecting landmarks across various scenarios. 

A Precision of 99.4% indicates the accuracy of model in 

correctly identifying landmarks when proposed. A Recall 

of 99.6% confirms that the model almost never missed 

any landmarks in the dataset. Notably, the mAP50 value 

of 99.5% demonstrates the consistent object detection 

performance of model under standardized conditions. For 

mAP50-95, the value of 97.6% highlights the ability of 

model to maintain high effectiveness across multiple IoU 

thresholds. 

TABLE I. EVALUATION METRICS OF DETECTION MODEL 

Metrics P R mAP50 mAP50-95 

Value 0.994 0.996 0.995 0.976 

 

The confusion matrix in Fig. 5 illustrates the 

performance of model at a confidence threshold of 0.5 in 

classifying two classes: class 0 (landmark) and class 1 
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(background). The model correctly predicted 327 

instances of landmarks (True Positive—TP) and 

misclassified only 3 background instances as landmarks 

(False Positive—FP). However, there was 1 actual 

landmark that was misclassified as background (False 

Negative—FN), and there were no misclassifications 

from background to landmark (True Negative—TN is 0). 

 

 

Fig. 5. Confusion matrix of landmark detection model. 

Fig. 6 illustrates the relationship between Precision and 

the confidence threshold of the landmark detection model. 

The curve shows that model achieves high precision even 

at low confidence levels. At a confidence threshold of 

0.769, the model reaches maximum precision of 1.00, 

demonstrating its strong classification capability when 

identifying objects in the landmark class. Additionally, 

the model exhibits stable performance across the entire 

confidence range, with precision only slightly decreasing 

at confidence thresholds between 0.2 and 0.769. 

 

 

Fig. 6. Precision-confidence curve of landmark detection model. 

Fig. 7 above is the Recall-Confidence curve, 

illustrating the relationship between detection capability, 

also called recall, and confidence threshold of the model 

for the landmark class. The curve shows that the model 

achieves a high Recall value (close to 1.0) at confidence 

levels below 0.7. This indicates that the model can detect 

nearly all landmarks in the dataset when the confidence 

threshold is set as low as 0.5. 

C. Drop-Shipping Evaluation 

1) GPS-accessed case 

In the stable GPS scenario, the UAV operated with 

high accuracy when performing package drops at 

different altitudes. The results are presented in Table II. 

TABLE II. EVALUATION RESULTS OF PACKAGE DROPPING FROM 

DIFFERENT ALTITUDES IN GPS-ACCESSED CASE 

Case 3 m 5 m 10 m 

Number of Accurate Drops 50 49 46 

Number of Inaccurate Drops 0 1 4 

Average Distance to Landmark Center (m) 0.32 0.41 0.73 

 

Table II shows that at a low altitude (3 m), the UAV 

achieved the highest drop accuracy (100%) with the 

lowest average error from the landmark center (0.32 m). 

As altitude increased, the accuracy slightly decreased, 

and the average error gradually increased. The results 

from the stable GPS scenario demonstrate that the model 

and the algorithm, which combine GPS with Landmark 

Detection, have strong localization capabilities, especially 

under robust GPS conditions. The packages were 

accurately dropped into the target area with minimal error. 

This highlights the high applicability of the system in 

ideal conditions or areas with strong GPS signals. 

 

 

Fig. 7. Recall-confidence curve of landmark detection model. 

2) GPS-denined case 

In reality, GPS signals are not always stable and can 

often be affected by environmental factors, causing GPS 

coordinates to become inaccurate. This can result in the 

UAV moving to the wrong location and failing to locate 

the landmark. The proposed method allows UAV to fly 

along a spiral trajectory from the GPS-designated 

position to search for the landmark. Table III presents the 

experimental results in the case of unstable GPS with a 

parameter m = 0.25 W. The term W denotes for width of 

camera view. The results show that using search 

algorithms has almost no impact on the distance error 

during package drops compared to the stable GPS 

scenario. 

Table IV provides a more detailed evaluation of the 

ability to locate landmarks as influenced by the parameter 

mmm. The results show that as the overlap level mmm 

increases from 0.25 W to 0.33 W and then 0.50 W, 

landmark detection rate improves significantly, reaching 
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94%, 98%, and 100%, respectively. This demonstrates 

that increasing the overlap level helps minimize the 

likelihood of missing landmarks, especially in areas with 

complex terrain or obstacles. 

TABLE III. EVALUATION RESULTS OF PACKAGE DROPPING FROM 

DIFFERENT ALTITUDES IN GPS-DENIED CASE 

Case 3m 5m 10m 

Number of Accurate Drops 47 46 43 

Number of Inaccurate Drops 3 4 7 

Average Distance to Landmark Center (m) 0.35 0.43 0.69 

TABLE IV. THE SUCCESS RATE OF LANDMARK DETECTION WITH 

DIFFERENT M VALUES 

M = 0.25 W M = 0.33 W M= 0.50 W 

94% 98% 100% 

 

Additionally, experiments were conducted to evaluate 

the time efficiency of the proposed method. The 

experimental results, presented in Table V, show 

significant differences between the various delivery 

scenarios. Each result is averaged over 10 measurements 

using the UAV configuration described earlier. Compared 

to the scenario where the UAV lands on the ground 

before delivering the package (11.43 s), other scenarios 

demonstrate significantly shorter delivery times. 

Specifically, direct dropping from an altitude of 10m is 

the fastest option, taking only 0.27 s, as it does not 

require the UAV to descend. The 0.27 s represents the 

time required for release mechanism to operate. In the 

scenario where the UAV descends to an altitude of 5 m 

before dropping, the total time is reduced to 6.38 s, 

saving 44% compared to the landing scenario. Similarly, 

when the UAV descends to an altitude of 3 m before 

dropping, the total time is 8.02 s, a 30% reduction 

compared to the full landing scenario. 

TABLE V. EVALUATION OF DELIVERY TIME AT DIFFERENT ALTITUDES 

Case Drop Shipping Time (s) 

Direct Drop from 10 m 0.27 

Descend to 5m before dropping 6.38 

Descend to 3m before dropping 8.02 

Descend to Ground before Delivering 11.43 

 

V. DISCUSSION 

By integrating GPS and Landmark Detection, the 

system enables the UAV to accurately determine the 

drop-off location without the need to land, thereby 

minimizing processing time and increasing operational 

efficiency. The Archimedean spiral trajectory algorithm 

allows the UAV to expand its search area when GPS is 

unstable, ensuring the ability to detect landmarks in 

complex environments. The method of dropping 

packages from above not only saves time but also 

enhances flexibility, allowing the UAV to easily access 

challenging areas without relying on terrain conditions. 

These advantages highlight the high applicability of the 

system in emergency situations, such as disaster relief 

operations. 

In this study, the YOLO model was utilized to leverage 

its lightweight architecture while maintaining efficiency 

in detection. However, the application of deep learning 

models always comes with hardware requirements, which 

can lead to high costs in practical deployment. Another 

important factor in the system is the parameter mmm, 

which represents the overlap level between camera fields 

of view during the landmark search process. This 

parameter directly affects the ability to detect landmarks, 

and the time required to complete the task. In the study, 

m was tested with fixed values such as 0.25 W, 0.33 W, 

and 0.50 W, However, to optimize the system for diverse 

real-world conditions, additional field experiments are 

needed to adjust mmm appropriately for each specific 

scenario. 

VI. CONCLUSION 

This study developed a UAV system integrating GPS 

and Landmark Detection, providing an effective solution 

for optimizing delivery in emergency situations and 

complex environments. The method combines the global 

positioning capability of GPS with the precision of 

Landmark Detection, enabling the UAV to accurately 

determine the drop-off location without the need to land, 

thereby saving time and improving operational efficiency. 

The system demonstrated high performance in real-

world experiments, even under unstable GPS conditions. 

The search algorithm based on the Archimedean spiral 

trajectory enabled the UAV to effectively expand its 

scanning range and improve landmark detection 

capability. Notably, the system achieved a 98% package 

drop accuracy at an altitude of 5m, highlighting its ability 

to maintain high precision even when operating at 

medium altitudes. The results also showed an optimal 

landmark detection rate (100%) when the overlap level  

M = 0.50 W. With its high flexibility, this solution can 

make a significant contribution to improving efficiency in 

autonomous delivery and providing support in emergency 

or disaster situations. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Cao-Ky-Long U conceptualized the research 

framework and developed the UAV integration system of 

GPS and Landmark Detection. Nguyen Khac Toan 

designed the experiments, implemented the YOLO-based 

object detection model, and analyzed the experimental 

data. Cao-Ky-Long U conducted practical trials, 

optimized the UAV navigation algorithms, and drafted 

the manuscript. Both authors reviewed, edited, and 

approved the final manuscript. 

FUNDING 

This research is funded by University of Economics 

Ho Chi Minh City—UEH University, Vietnam.  

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 4, 2025

382



REFERENCES 

[1] Z. Liu et al., “Robot learning towards smart robotic manufacturing: 

A review,” Robotics and Computer-Integrated Manufacturing, vol. 

77, 102360, 2022. doi: 10.1016/j.rcim.2022.102360 

[2] N. K. Toan et al., “Development of humanoid robot head based on 

FACS,” International Journal of Mechanical Engineering and 

Robotics Research, vol. 11, no. 5, pp. 365–372, 2022. doi: 

10.18178/ijmerr.11.5.365-372 

[3] N. Amarasingam et al., “A review of UAV platforms, sensors, and 

applications for monitoring of sugarcane crops,” Remote Sensing 

Applications: Society and Environment, vol. 26, 100712, 2022. doi: 

10.1016/j.rsase.2022.100712 

[4] V. Garg et al., “Drones in last-mile delivery: A systematic review 

on efficiency, accessibility, and sustainability,” Transportation 

Research Part D: Transport and Environment, vol. 123, 103831, 

2023. doi: 10.1016/j.trd.2023.103831 

[5] A. Li et al., “Traffic management and resource allocation for 

UAV-based parcel delivery in low-altitude urban space,” 

Transportation Research Part C: Emerging Technologies, vol. 

143, 103808, 2022. doi: 10.1016/j.trc.2022.103808 

[6] S. D. Eksioglu et al., “Designing drone delivery networks for 

vaccine supply chain: A case study of Niger,” IISE Transactions 

on Healthcare Systems Engineering, vol. 14, no. 3, pp. 193–213, 

2024. doi: 10.48550/arXiv.2208.04357 

[7] K. Messaoudi et al., “A survey of UAV-based data collection: 

Challenges, solutions and future perspectives,” Journal of Network 

and Computer Applications, vol. 216, 103670, 2023. doi: 

10.1016/j.jnca.2023.103670 

[8] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and 

mapping: Part I,” IEEE Robotics & Automation Magazine, vol. 13, 

no. 2, pp. 99–110, 2006. doi: 10.1109/MRA.2006.1638022 

[9] S. E. Reutebuch et al., “Light detection and ranging (LIDAR): an 

emerging tool for multiple resource inventory,” Journal of 

Forestry, vol. 103, no. 6, pp. 286–292, 2005. doi: 

10.1093/jof/103.6.286 

[10] J. Kwak and Y. Sung, “Autonomous UAV flight control for GPS-

based navigation,” IEEE Access, vol. 6, pp. 37947–37955, 2018. 

doi: 10.1109/ACCESS.2018.2854712 

[11] H. Eskandaripour and E. Boldsaikhan, “Last-mile drone delivery: 

Past, present, and future,” Drones, vol. 7, no. 2, 77, 2023. doi: 

10.3390/drones7020077 

[12] G. Brunner et al., “The urban last mile problem: Autonomous 

drone delivery to your balcony,” in Proc. 2019 International 

Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2019, 

pp. 1005–1012. doi: 10.48550/arXiv.1809.08022 

[13] G. Balamurugan et al., “Survey on UAV navigation in GPS denied 

environments,” in Proc. 2016 International Conference on Signal 

Processing, Communication, Power and Embedded System 

(SCOPES), IEEE, 2016, pp. 198–204. doi: 

10.1109/SCOPES.2016.7955787 

[14] H. Wang et al., “Intensity-slam: Intensity assisted localization and 

mapping for large scale environment,” IEEE Robotics and 

Automation Letters, vol. 6, no. 2, pp. 1715–1721, 2021. doi: 

10.1109/LRA.2021.3059567 

[15] A. Steenbeek and F. Nex, “CNN-based dense monocular visual 

SLAM for real-time UAV exploration in emergency conditions,” 

Drones, vol. 6, no. 3, 79, 2022. doi: 10.3390/drones6030079 

[16] Y. Liu et al., “A survey on semantic communications: 

Technologies, solutions, applications and challenges,” Digital 

Communications and Networks, 2023. doi: 

10.1016/j.dcan.2023.05.010 

[17] K. Feng et al., “Packages delivery based on marker detection for 

UAVs,” in Proc. 2020 Chinese Control And Decision Conference 

(CCDC), IEEE, 2020, pp. 2094–2099. doi: 

10.1109/CCDC49329.2020.9164677 

[18] S. Wang et al., “Tolerant semantic segmentation for aerial 

logistics,” in Proc. DAGM German Conference on Pattern 

Recognition, Springer, 2021, pp. 515–529. doi: 10.1007/978-3-

030-92659-5_33 

[19] H. Wang et al., “Semantic segmentation algorithms for ground 

AGV and UAV medical transport scenes,” in Proc. 2022 16th 

ICME International Conference on Complex Medical Engineering 

(CME), IEEE, 2022, pp. 252–255. doi: 

10.1109/CME55444.2022.10063288 

[20] S. S. Kannan and B.-C. Min, “Autonomous drone delivery to your 

door and yard,” in Proc. 2022 International Conference on 

Unmanned Aircraft Systems (ICUAS), IEEE, 2022, pp. 452–461. 

doi: 10.48550/arXiv.2104.05503 

[21] P. Mittal et al., “Deep learning-based object detection in low-

altitude UAV datasets: A survey,” Image and Vision Computing, 

vol. 104, 104046, 2020. doi: 10.1016/j.imavis.2020.104046 

[22] D. Dissanayaka et al., “Review of navigation methods for uav-

based parcel delivery,” IEEE Transactions on Automation Science 

and Engineering, vol. 21, no. 1, pp. 1068–1082, 2023. doi: 

10.1109/TASE.2022.3232025 

[23] A. Dawadee et al., “A method for autonomous navigation of uavs 

using landmarks,” in Proc. the 16th Australian Aerospace 

Congress, 2015, 022015.  

[24] E. Innocenti et al., “Uavs for medicine delivery in a smart city 

using fiducial markers,” Information, vol. 13, no. 10, 501, 2022. 

doi: 10.3390/info13100501 

[25] S. Xia et al., “SSS: Towards autonomous drone delivery to your 

door over house-aware semantics,” in Proc. the 25th International 

Workshop on Mobile Computing Systems and Applications, 2024, 

pp. 33–39. 

[26] D. Wang et al., “UAV environmental perception and autonomous 

obstacle avoidance: A deep learning and depth camera combined 

solution,” Computers and Electronics in Agriculture, vol. 175, pp. 

105523, 2020. doi: 10.1016/j.compag.2020.105523 

[27] P. Jiang et al., “A review of Yolo algorithm developments,” 

Procedia Computer Science, vol. 199, pp. 1066–1073, 2022. doi: 

10.1016/j.procs.2022.01.135 

[28] R. Khanam and M. Hussain, “Yolov11: An overview of the key 

architectural enhancements,” arXiv preprint, arXiv:2410.17725, 

2024. 

[29] K. He et al., “Spatial pyramid pooling in deep convolutional 

networks for visual recognition,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 

2015. doi: 10.1109/TPAMI.2015.2389824 

 
Copyright © 2025 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited (CC BY 4.0). 

 

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 4, 2025

383

https://creativecommons.org/licenses/by/4.0/



