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Abstract—Ensuring a high level of safety is essential for 

collision avoidance in real-world robotic applications. 

Traditional Reinforcement Learning (RL)-based collision 

avoidance methods offer adaptability but lack safety 

guarantees, especially in uncertain and dynamic 

environments. To address this, we propose a novel safe 

reinforcement learning (SafeRL) framework called Control 

Recovery and Barrier Function (CRBF), which enhances 

safety by sequentially applying different control strategies 

based on the robot’s proximity to obstacles. The CRBF 

categorizes risk into three distinct levels and adaptively 

switches between a vanilla RL-based policy, Control Barrier 

Function (CBF), and a Recovery Function (RF) to prevent 

collisions and recover from critical situations. In addition, we 

introduce a constraint-aware training strategy that 

incorporates these sequential safety mechanisms during 

policy updates. We validate our method in both simulated 

and real-world environments, where CRBF outperforms 

conventional methods, with improvements of up to 22.5% in 

collision avoidance success rates, particularly in challenging 

dynamic scenarios.    

 

Keywords—collision avoidance, safe reinforcement learning, 

control barrier functions, recovery function 

 

I. INTRODUCTION 

Robots are increasingly deployed in real-world 

environments, where collision avoidance is essential to 

ensure both operational success and safety [1, 2]. Over the 

past few decades, numerous collision avoidance 

approaches have been proposed, which are broadly 

categorized into trajectory-based and reactive-based 

methods. Trajectory methods explore an optimal path in 

advance based on global information but struggle with 

unforeseen obstacles due to their reliance on pre-planned 

paths [3]. In contrast, reactive methods respond to local 

changes in real time, providing better adaptability in 

dynamic environments [4]. For example, reactive 

techniques, such as Artificial Potential Fields (APFs) [5] 

and collision cone methods [6], rely on rule-based or short-

term responses. While reactive methods offer fast reaction 

times, they lack long-term adaptability and often fail in 

complex scenarios. 
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To address these limitations, Reinforcement Learning 

(RL) has been increasingly applied to robotic 

navigation [7]. RL allows agents to learn optimal 

behaviors through trial-and-error interaction with the 

environment, making it well suited to dynamic and 

uncertain environments. However, RL methods face 

significant safety challenges during training and 

deployment, due to model uncertainty and the stochastic 

nature of real-world environments [8–10]. Safe 

Reinforcement Learning (SafeRL) has emerged to address 

this issue by incorporating safety constraints into the 

learning process [11]. Among these, Control Barrier 

Function (CBF) are widely used to formally constrain the 

system from entering unsafe states [12, 13]. However, the 

CBF typically assume known dynamics and cannot ensure 

recovery if the system has already violated the safety 

margin [14, 15]. 

To overcome the above critical limitation, we propose a 

novel SafeRL framework called Control Recovery and 

Barrier Function (CRBF). The CRBF introduces a 

sequential control strategy based on the robot’s proximity 

to obstacles and classifies operational domains into three 

risk areas: safe, risky, and critical. In the safe area, where 

there are no nearby obstacles, the robot directly follows the 

vanilla RL-based policy. In the risky area, where nearby 

obstacles are detected, the robot’s actions are filtered by a 

CBF to ensure safety. In the critical area, where the risk of 

collision is imminent, a Recovery Function (RF) overrides 

the control to guide the robot away from the danger and 

back to a safe state. This hierarchical design allows our 

CRBF-based SafeRL to adaptively switch control 

strategies, ensuring safety even in uncertain and dynamic 

environments. Unlike previous works that use a single 

safety mechanism (e.g., CBF or recovery alone), our 

method dynamically switches between RL, CBF, and RF 

based on real-time risk assessment, enabling both 

prevention and recovery in a unified control architecture. 

The main contributions of this paper can be summarized 

as follows: 

• We propose a novel SafeRL framework called 

CRBF, which sequentially combines CBF and a 

RF based on the robot’s proximity to obstacles. 
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• We define three risk domains to dynamically 

switch between RL, CBF, and RF policies. 

• We introduce a CRBF-based training strategy that 

integrates sequential constraints into policy 

updates by combining raw actions, penalty 

corrections, and recovery-guided adjustments. 

• We demonstrate the effectiveness of our method in 

both simulated and real-world environments.  

The remainder of the paper is organized as follows. 

Section II reviews related work relevant to our study. 

Section III provides preliminary background information. 

In Section IV, we formulate the problem addressed in this 

paper. Section V introduces the definition of danger levels, 

which represent the robot’s proximity-based risk levels. 

Section VI details the proposed CRBF framework and its 

control components. In Section VII, we describe the 

training setup and propose a CRBF-based SafeRL training 

strategy that incorporates mixed policy updates. 

Section VIII presents the results of simulation experiments 

comparing our method with existing collision avoidance 

algorithms. Section IX provides the results of real-world 

experiments conducted to validate our approach. 

Section X offers a discussion of our findings and outlines 

future research directions. Finally, Section XI concludes 

the paper and summarizes key contributions and potential 

avenues for further investigation. 

II. RELATED WORKS 

A. Reinforcement Learning-Based Collision Avoidance 

RL-based collision avoidance allows robots to learn 

navigation strategies by interacting with the environment. 

It has been shown to be effective in several real-world 

applications, including autonomous vehicles [16], 

unmanned aerial vehicles [17], and maritime systems [18]. 

For example, Long et al. [19] proposed a decentralized 

multi-robot control system based on deep reinforcement 

learning equipped with onboard sensors and demonstrated 

scalability to over a hundred robots in densely populated 

environments. Liang et al. [20] focused on collision 

avoidance in dense and confined spaces and successfully 

transferred simulation-trained policies to previously 

unseen real-world scenarios. Everett et al. [21] developed 

an RL-based collision avoidance algorithm that does not 

rely on predefined behavioral rules, and demonstrated 

strong generalization 

Meanwhile, to improve robustness under uncertainty, 

Roghair et al. [22] improved collision avoidance 

performance by integrating multiple algorithms to process 

noisy visual inputs. Kahn et al. [8] introduced uncertainty-

aware RL by incorporating confidence estimates into the 

decision-making process, enabling safer navigation in 

stochastic and partially observable environments. 

B. Safe Reinforcement Learning 

SafeRL addresses the safety limitations of conventional 

RL by incorporating constraints or risk-sensitive 

mechanisms during policy learning and execution.  

Lütjens et al. [23] improved safety by estimating model 

uncertainty, while Srouji et al. [24] combined emergency 

braking with RL to eliminate collisions during training. 

Zhou et al. [25] improved robustness by decoupling safety 

control from goal achievement. 

Recent advances have integrated CBF into RL 

frameworks to enforce formal safety guarantees. CBF 

ensures safety by enforcing state constraints and have 

shown strong performance in robotic systems [14], 

especially when combined with RL in complex 

environments [26, 27]. Cheng et al. [28] showed that CBF-

based SafeRL can maintain high safety probabilities in 

continuous control tasks, and Cai et al. [29] extended the 

approach to multi-agent systems. To further improve 

robustness under uncertainty, Emam et al. [30] introduced 

a robust CBF layer that accounts for worst-case 

perturbations, and Hu et al. [16] applied Gaussian 

processes to model uncertainty and enforce probabilistic 

safety guarantees. 

However, most of these approaches either lack recovery 

mechanisms after a safety violation or are limited to 

simulation environments. The proposed method introduces 

a CRBF that adaptively combines RL, CBF, and a recovery 

policy to enable both preventive and corrective safety 

behaviors in real-world environments. 

III. PRELIMINARIES 

A. Reinforcement Learning 

RL can be formulated by Markov Decision Processes 

(MDP) ℳ as follows: 

 

ℳ = ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩,                        (1) 

 

where 𝑆 and 𝐴 are the state and action spaces, respectively. 

The state transition probability 𝑃(𝑠′|𝑠, 𝑎) → ℝ  is 

described by the state 𝑠 ∈ S and the action 𝑎 ∈ A. The 

𝑅(𝑠, 𝑎)  is the reward function and γ ∈ [0, 1]  is the 

discount factor. The goal of RL is to compute the optimal 

policy π∗ by maximizing the expected cumulative rewards 

under the policy π as follows: 

 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋∈𝛱

𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
∞
𝑡=0 ],           (2) 

 

where 𝑠𝑡 ∼ 𝑃(⋅ |𝑠𝑡−1, 𝑎𝑡−1)  is the state transition, 𝑎𝑡 ∼
𝜋(⋅ |𝑠𝑡)  is selected according to the policy 𝜋 . Bellman 

equation for state-action value function Qπ(𝑠, 𝑎) is used to 

evaluate the policy: 

 

Qπ(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 

γ𝔼s′∼P(⋅|𝑠, 𝑎) [𝔼𝑎′∼π(⋅|𝑠′)[Q
π(𝑠′, 𝑎′)]].        (3) 

 

Finally, the goal of RL is to compute the optimal policy 

𝜋∗ from the optimal state-action value function 𝑄∗(𝑠, 𝑎) as 

follows: 

 

𝜋∗(𝑎|𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄∗ (𝑠, 𝑎) 

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

(𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎)).      (4) 
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B. Recovery Policy 

A recovery policy is a specialized policy designed to 

ensure safety by guiding the agent away from unsafe or 

high-risk states [31]. When the agent is in a state where it 

is likely to violate constraints, the policy guides the agent 

back to the safe set to ensure safety during learning and 

execution. Recovery policy is operated by the belowed 

processes. First, the safety of a state-action pair (𝑠, 𝑎) is 

evaluated using the safety critic 𝑄risk
𝜋 (𝑠, 𝑎) , which 

estimates the probability of future constraint violations 

under the current policy π: 

 

𝑄risk
𝜋 (𝑠, 𝑎) = Eπ[∑ γrisk

𝑡 𝐶(𝑠𝑡 , 𝑎𝑡)
∞
t=0 ],          (5) 

 

where 𝐶(𝑠𝑡 , 𝑎𝑡) is the constraint cost function and 𝛾risk
𝑡  is 

the discount factor for the constraint cost. Second, we 

define the safe set (𝑇safe
𝜋 ) and recovery set (𝑇recovery

𝜋 ) as 

follows: 

 

𝑇safe
𝜋 = {(𝑠, 𝑎) | 𝑄risk

𝜋 (𝑠, 𝑎)  ≤ 𝜀𝑟𝑖𝑠𝑘},         (6) 

 

𝑇recovery
𝜋 = S × A ∖ 𝑇safe

𝜋                       (7) 

 

where 𝜀𝑟𝑖𝑠𝑘 ∈ [0,1] is a risk threshold. The sets Tsafe
π  and 

𝑇recovery
𝜋  refer to the state and action pair for safe and 

recovery, respectively, when the policy π is followed. The 

goal of the recovery policy is to create a policy where all 

state-action pairs are within the safe set, but to create a 

policy that recovers even if an agent is outside the safe set. 

Third, the agent uses a composite policy that combines the 

task policy 𝜋task  and the recovery policy 𝜋recovery . 

Depending on the safety of the current state-action pair, the 

policy switches as follows: 

 

𝑎 = {
𝑎task        𝑖𝑓   (𝑠, 𝑎task) ∈ 𝑇safe

𝜋

𝑎recovery 𝑖𝑓  (𝑠, 𝑎task) ∉ 𝑇safe
𝜋 ,               (8) 

 

where 𝑎task ∼ 𝜋task(𝑎|𝑠)  and 𝑎recovery ∼ 𝜋recovery(𝑎|𝑠) 

are the actions suggested by the task and recovery policy, 

respectively. If the agent is in the safe set, the task policy 

operates normally. On the contrary, if the agent is in the 

recovery set, the recovery policy takes over to guide the 

agent back to the safe set. Finally, the recovery policy 

𝜋recovery is trained to minimize the safety critic 𝑄risk
𝜋 (𝑠, 𝑎), 

ensuring that the agent transitions back into the safe set: 

 

𝜋recovery = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋

𝔼(𝑠,𝑎)∈ 𝑇recovery𝜋 [𝑄risk
𝜋 (𝑠, 𝑎)].     (9) 

C. Control Barrier Functions 

The recovery policy is a behavioral policy to achieve 

safety, and it does not guarantee safety. Therefore, it is 

necessary to mathematically define the safety constraints, 

which is called the Control Barrier Function (CBF). The 

CBF uses constraints to ensure the safety of the control 

system [12, 24], and how to design the control barriers 

depends on the system and the environment. To explain 

CBF, we first define a dynamic system as follows: 

 

𝑠̇ = 𝑓(𝑠) + 𝑔(𝑠)𝑢(𝑠),                    (10) 

 

where 𝑠 ∈ ℝn  and 𝑢(𝑠) ∈ U ⊆ ℝm  are state and control 

input, respectively. The function 𝑓(𝑠)  represents the 

intrinsic or natural behavior of the system when there is no 

external control input, and 𝑔(𝑠) describes how the control 

input 𝑢(𝑠) affects the state of the system. The functions 

𝑓(𝑠) and 𝑔(𝑠) are locally Lipschitz. 

A safe set is a subset of the state space of a system in 

which the system is guaranteed to operate safely. The safe 

set 𝐶 is defined as follows: 

 

𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) ≥ 0},                 (11) 

 

where ℎ:ℝn → ℝ  is a continuously differentiable scalar 

function defining the safe set 𝐶.  

Using the definition of the safe set 𝐶 , we define the 

boundary, the interior, and the exterior of the safe set as 

follows: 

 

∂𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) = 0},                (12) 

 

Int(𝐶) = {𝑠 ∈ ℝn: ℎ(𝑠) > 0},                (13) 

 

ℝn ∖ 𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) < 0}.                (14) 

 

To ensure safety, the state 𝑠 should remain in the safe 

set 𝐶  for all the time. This is referred to as forward 

invariance [32], which can be expressed as: 

 

𝑠(0) ∈ 𝐶 ⇒  𝑠(𝑡) ∈ 𝐶,  ∀𝑡 ≥ 0.           (15) 

 

Proposition 1 (Safety via CBF): If the control input 

satisfies the CBF condition ℎ̇(𝑠, 𝑢) + 𝛼(ℎ(𝑠)) ≥ 0, then 

the safe set 𝐶 is forward invariant. That is, the robot state 

remains in the safe set 𝐶 for all 𝑡 ≥ 0 if it starts in 𝐶. 

The proposition 1 can be enforced by designing a 

control input 𝑢 that satisfies the CBF condition: 

 

sup
𝑢∈U

[𝐿𝑓ℎ(𝑠) + 𝐿𝑔ℎ(𝑠)𝑢] ≥ −α(ℎ(𝑠)),       (16) 

 

where, 𝐿𝑓ℎ(𝑠) and 𝐿𝑔ℎ(𝑠) are the effect of the system’s 

natural dynamics on ℎ(𝑠)  and the effect of the control 

input 𝑢 on ℎ(𝑠), respectively. The function α(ℎ(𝑠)) is a 

𝐾
∞

 function that adjusts the rate α at which the system 

approaches the safe set. Our main objective is finding 

appropriate control input 𝑢 by maintaining CBF condition 

Eq. (16). 

IV. PROBLEM FORMULATION 

The objective of the proposed method is to enable the 

robot to reach a goal safely and efficiently without 

collision. To achieve this objective, we first modify the 

standard MDP formulation in Eq. (1). Specifically, we 

introduce a constraint cost function 𝐶(𝑠) → {0,1}  that 

indicates whether a state is safe; a risk discount factor 

𝛾risk ∈ [0, 1] according to the constraint, and the negative 

reward Rrisk(𝑠, 𝑎) ∈ (−∞, 0). The modified MDP ℳ′ is 

defined as follows: 
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ℳ′ = ⟨S, A, P, R, γ, C, γrisk, Rrisk⟩,              (17) 

 

and the state of the robot 𝑠 is defined as follows: 

 

𝑠 = [𝑑𝑔𝑜𝑎𝑙 , 𝜃𝑔𝑜𝑎𝑙 , 𝒪],                      (18) 

 

where 𝑑𝑔𝑜𝑎𝑙 is the Euclidean distance from the center of 

the robot to the goal, and 𝜃𝑔𝑜𝑎𝑙 is the angle to the goal with 

respect to the robot’s orientation. The array 𝒪 contains the 

distances and angles to neighboring obstacles: 

 

𝒪 = {𝑑𝑖
𝑜𝑏𝑠, 𝜃𝑖

𝑜𝑏𝑠|𝑖 = 1,2,⋯ , 𝑛},              (19) 

 

where 𝑑𝑖
𝑜𝑏𝑠 and 𝜃𝑖

𝑜𝑏𝑠 are the Euclidean distance and angle 

to the 𝑖-th obstacle, respectively. The time step 𝑡 is omitted 

because the robot determines its action based solely on the 

current state. Our objective is to find an appropriate input 

𝑢(𝑠) in Eq. (10) to ensure safety in the modified MDP. 

V. THE DEFINITIONS OF DANGER LEVELS 

We define the robot’s danger levels according to 

collision probability as follows: 

• Safe level (𝒮): The robot is not in danger of collision 

and there are no obstacles around it. At the safe level, 

the robot can move freely. 

• Risk level (ℛ): There is at least one obstacle near the 

robot with a potential collision. The robot should take 

a constrained action to avoid the collision at the risk 

level. 

• Critical level (𝒞): The distance between the robot and 

the obstacles is too close; the risk of collision is very 

high. At the critical level, the robot must take an action 

aimed exclusively at avoiding collisions. 

To define the boundaries of the danger level, we set 

separate thresholds to distinguish between risk and critical 

levels: 𝑑ℛ and 𝑑𝒞. First, the threshold 𝑑ℛ  is used to define 

the constraint triggers of the CBF. We vary 𝑑ℛ  depending 

on the size and number of obstacles, the width of the 

environment, and the size of the robot, as constraint ranges 

can have a significant impact on performance. Especially 

in uncertain or dynamic environments, it is important to 

choose the appropriate range for constraints in CBF [33]. 

Second, the threshold 𝑑𝒞 should be as small as possible to 

avoid the obstacle as follows: 

 

𝑑𝒞 = (𝑑−𝑣 + 𝑑𝜔 + 𝑟),                     (20) 

 

𝑑−𝑣 =
𝑣𝑚𝑎𝑥
2

2𝑎𝑑𝑒𝑐𝑒𝑙
,                                     (21) 

 

𝑑𝜔 =
𝜔𝑚𝑎𝑥⋅𝑑𝑤ℎ𝑒𝑒𝑙𝑠

2
⋅ T𝑠,                      (22) 

 

where 𝑑−𝑣  is the maximum braking distance based on 

linear velocity 𝑣𝑚𝑎𝑥 , and 𝑑𝜔  is the maximum turning 

distance based on angular velocity. We define 𝑎𝑑𝑒𝑐𝑒𝑙 to be 

the deceleration of the robot, and 𝑑𝑤ℎ𝑒𝑒𝑙𝑠 to be the distance 

between the two wheels. The 𝑇𝑠 is the sampling time of the 

time step, and 𝑟 is robot’s radius. 

The criteria for determining whether each danger level 

has been reached can be defined as determine functions 

using 𝑑ℛ and 𝑑𝒞, as follows: 

 

𝐷ℛ(𝑠) =  max
𝑗∈1,2,…,𝑛

(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠),              (23) 

 

𝐷𝒞(s) =  max
𝑗∈1,2,…,𝑛

(𝑑𝒞 − 𝑑𝑗
𝑜𝑏𝑠).              (24) 

 

where 𝑛  is the number of obstacles. If the function is 

greater than or equal to zero, the corresponding danger 

level is considered to have been reached. 

We introduce the danger level sets 𝒮𝑠𝑒𝑡 , ℛset , 𝒞set , 
which represent the sets of states corresponding to the safe, 

risky, and critical levels, respectively. The overall danger 

level set can be expressed as follows: 

 

𝒮𝑠𝑒𝑡 = {𝑠 ∈ ℝ𝑛+2|𝐷ℛ(𝑠) < 0}                 (25) 

 

ℛset = {𝑠 ∈ ℝ𝑛+2|𝐷ℛ(𝑠) ≥ 0} ∩ 
{𝑠 ∈ ℝ𝑛+2|𝐷𝒞(𝑠) < 0}                 (26) 

 

𝒞set = {𝑠 ∈ ℝ𝑛+2|𝐷𝒞(𝑠) ≥ 0}                 (27) 

 

where 𝒮𝑠𝑒𝑡 is the set of states in which the robot maintains 

a safe distance from the obstacle. Similarly, ℛset is the set 

states when the robot is at a risk level, and 𝒞set is the set 

states when the robot is at a critical level. The reason why 

the dimension of the state is ℝ𝑛+2 is that the number of 

obstacles, the distance to the goal, and the angle are added 

as in Eqs. (18) and (19). 

The desired controller using the danger level sets is as 

follows: 

 

𝑢(𝑠) = 𝑢𝒮𝕝𝒮𝑠𝑒𝑡(s) + 𝑢ℛ ⋅ 𝕝ℛ𝑠𝑒𝑡(𝑠) + 𝑢𝒞 ⋅ 𝕝𝒞𝑠𝑒𝑡(𝑠)  (28) 

 

where 𝑢𝒮, 𝑢ℛ, and 𝑢𝒞 represent the control inputs for the 

safe, risky, and critical levels, respectively. The 𝕝𝒮𝑠𝑒𝑡(s), 
𝕝ℛ𝑠𝑒𝑡(𝑠) , and 𝕝𝒞𝑠𝑒𝑡(𝑠)  are indicator functions that 

determine whether the robot’s state 𝑠 belongs to each set 

of danger levels. The indicator function returns 1 if the 

robot is at that danger level and 0 otherwise.  For example, 

if the robot is in the safe state 𝒮𝑠𝑒𝑡, 𝑢𝒮 is applied as the 

control input. 

VI. CONTROL RECOVERY AND BARRIER FUNCTION 

A. Control Barrier Function 

If the robot’s state belongs to ℛ𝑠𝑒𝑡, the CBF is used to 

constrain the robot’s control input. The CBF uses an action 

filter that eliminates unsafe actions from the candidate set 

and forms a filtered array of safe actions, denoted as 

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. The primary objective of the action filter is to 

evaluate the safety of each action defined during training 

and exclude those that violate the safety constraints. 

Algorithm 1 shows the pseudo-code of the action filter. 

First, we heuristically set the scaling factor 𝜆𝑓  and 

threshold factor 𝒯  to avoid filtering out safe actions by 

considering the robot’s size, speed, and 𝑑ℛ  (lines 1–2). 
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First, we generate the transition and rotation velocities 𝑣ℛ 

and 𝜔ℛ, then we generate 𝛰ℛ which contains information 

about the obstacles contained in ℛ𝑠𝑒𝑡 . The robot 

accumulates the calculated 𝑣 and 𝜔 for relative distances 

and angles where obstacles are detected (lines 5–8). The 

accumulated 𝑣ℛ  and 𝜔ℛ  are multiplied by the scaling 

factor 𝜆𝑓  and added to the 𝑣𝑘  and 𝜔𝑘  of the predefined 

action to generate 𝑣𝑎𝑑𝑗  and 𝜔𝑎𝑑𝑗  (lines 10–11). In lines 

12–16, the threshold 𝒯 is multiplied by 𝑣𝑎𝑑𝑗 and 𝜔𝑎𝑑𝑗 and 

compared with the values in the actions to determine 

whether each action is safe. By repeating the process for 

predefined actions (lines 9–17), the action filter returns the 

set of safe actions, 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. The set 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 has an array 

with the values indicate 1 for safe actions and 0 for risky 

actions, respectively. 

  
Algorithm 1. Action Filter 

1: Set 𝜆𝑓 ∈ (0, 1] ▷ Scaling factor control adjustment 

2: Set τ ∈ (0, 1] ▷ Scaling factor control adjustment 

3: Initialize 𝜈ℛ ⟵ 0, 𝜔ℛ ⟵ 0 

4: Initialize 𝛰ℛ ⟵ {(𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠 )|𝑠 ∈ ℛ𝑠𝑒𝑡} 

5: 𝐟𝐨𝐫 each (dj
obs, θj

obs) ∈ Oℛ do 

6:       Calcuate 𝜈ℛ ⟵ 𝜈ℛ − 𝑐𝑜𝑠(𝜃)(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠) 

7: Calcuate 𝜔ℛ ⟵𝜔ℛ − 𝑠𝑖𝑛(𝜃)(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠) 

8: end for 

9: 𝐟𝐨𝐫 each 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑘 = (𝜈𝑘 , 𝜔𝑘) in the defined action do 

10:       Calcuate 𝜈𝑎𝑑𝑗 ⟵ 𝜈𝑘 + 𝜆𝑓 ∙ 𝜈ℛ 

11: Calcuate 𝜔𝑎𝑑𝑗 ⟵𝜔𝑘 + 𝜆𝑓 ∙ 𝜔ℛ 

12:       if |𝜈𝑎𝑑𝑗|  <  τ ∙ |𝜈𝑘| or |𝜔𝑎𝑑𝑗|  <  τ ∙ |𝜔𝑘| 𝐭𝐡𝐞𝐧 

13:            Mark 𝑎𝑘 as risky (𝑎𝑘 ⟵ 0) 
14:       else 
15:            Mark 𝑎𝑘 as safe (𝑎𝑘 ⟵ 1) 
16:       end if 
17: end for 
18: return Set of safe actions 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = [𝑎1, 𝑎2, ⋯ , 𝑎𝐾] 

 

After the action filter eliminates unsafe actions, the 

remaining process in the CBF module involves weighting 

each candidate action by its selection probability, denoted 

as 𝑝𝑟𝑒𝑑𝑖, and multiplying it by the filtered action vector 

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 . Here, the probability 𝑝𝑟𝑒𝑑𝑖  is associated with 

each candidate action generated during the selection of the 

RL-based action 𝑎𝑁𝑁. The final action is selected as the 

one with the highest weighted value, denoted 𝑎𝐶𝐵𝐹 , 

corresponding to the control input 𝑢ℛ. Meanwhile, the RL-

based action 𝑎𝑁𝑁 corresponds to the control input 𝑢𝒮. 

B. Recovery Function 

The CBF is generally sufficient to ensure safety in 

mostly static environments. However, the CBF may fail if 

the sampling time 𝑇𝑠 is too long or if obstacles move too 

quickly. In such cases, the CBF requires a wider constraint 

to maintain safety. While increasing this range can 

improve safety, it also makes the robot overly conservative, 

leading to a decrease in task efficiency due to its reluctance 

to take necessary risks. 

To address this problem, we introduce a Recovery 

Function (RF) to improve the robot’s safety, especially in 

high-risk situations. When the robot enters the critical 

danger level 𝐶, the RF takes over control and generates a 

new control input to guide the robot towards safety. 

Specifically, the RF computes a recovery action 𝑎𝑅𝐹 , 

consisting of linear and angular velocity commands, 

designed to move the robot away from imminent danger. 

Unlike the CBF, which aims to maintain safety, the RF 

actively seeks to recover the robot to a safe state. 

Accordingly, the reference set used in the calculation of 

the RF is ℛ𝑠𝑒𝑡, not 𝒞set, because the objective of the RF is 

not only to leave the critical area, but to return the robot 

completely to the safe area 𝑆. 

The pseudo-code of the recovery function is described 

in Algorithm 2. The goal of RF is to compute 𝑣 and 𝜔 for 

s to be directed to 𝒮. First, we set a scaling factor 𝜆𝑟  to 

account for the limitations of the robot’s control input (line 

1). We initialize 𝑣𝒞 and 𝜔𝒞 to zero, respectively (lines 2–

3) and accumulate the computed 𝑣 and 𝜔 for all detected 

obstacles (lines 4–7). Up to this point, it is almost identical 

to the action filter, with one caveat: the goal of RF is to 

recover to a safe state, which means that the information 

about obstacles used to compute 𝑣  and 𝜔  also includes 

obstacles within the range of 𝑠 ∈ ℛ𝑠𝑒𝑡 . Finally, the 

recovery control 𝑢𝒞, whose components are 𝑣𝒞 and 𝜔𝒞, is 

returned in line 8. For convenience, we call 𝑢𝒞  as the 

action 𝑎𝑅𝐹. 

 
Algorithm 2. Recovery Function 

1: Set 𝜆𝑓 ∈ (0, 1] ▷ Scaling factor control adjustment 

2: Initialize 𝜈𝐶 ⟵ 0, 𝜔𝐶 ⟵ 0 

3: Initialize 𝛰ℛ ⟵ {(𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠 )|𝑠 ∈ ℛ𝑠𝑒𝑡} 

4: 𝐟𝐨𝐫 each (𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠) ∈ 𝛰ℛ do 

5:       Calcuate 𝜈𝐶 ⟵ 𝜈𝐶 − 𝑐𝑜𝑠(𝜃)(𝑑𝐶 − 𝑑𝑗
𝑜𝑏𝑠) 

6: Calcuate 𝜔𝐶 ⟵𝜔𝐶 − 𝑠𝑖𝑛(𝜃)(𝑑𝐶 − 𝑑𝑗
𝑜𝑏𝑠) 

7: end for 

8: return 𝑢𝐶 = 𝜆𝑟 ∙ [
𝜈𝐶
𝜔𝐶

] 

 

C. CRBF-Based SafeRL Controller 

When an unsafe situation occurs, i.e., risky and critical, 

the CBF or RF selects an appropriate action to ensure 

safety. The CRBF framework enhances safety by 

integrating both CBF and RF mechanisms. The core 

function of the CRBF is to select the most appropriate 

action based on the current danger level, from among up 

to three candidate actions generated by the neural network 

and the CRBF modules. 

Fig. 1 illustrates the possible correspondence between 

danger levels and selected actions in CRBF. The risky and 

critical areas, shown semi-transparently in Fig. 1, are the 

obstacle detection regions defined by Eqs. (23) and (24), 

respectively. When the robot’s current danger level is 

𝒮(safe), the controller directly predicts and executes an 

action using the standard reinforcement learning policy. 

When the danger level is ℛ (risky), the robot filters out 

unsafe actions using the action filter and executes one of 

the remaining valid actions. In cases like the Risky* 

example in Fig. 1, if no valid actions remain after filtering, 

the robot will stop and wait until the obstacle is no longer 

present. If the danger level is 𝒞  (critical), the controller 
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generates and executes a recovery action designed to guide 

the robot back to the safe area 𝒮 . In the Critical* case 

shown in Fig. 1, if there are several obstacles in the critical 

and risky areas, the recovery action is calculated taking 

into account the obstacles in the adjacent area, ensuring a 

safe return to 𝒮. 

The pipeline of a CRBF-based controller is shown in 

Fig. 2. The first stage is learning by the neural network. 

Given a state, the neural network generates actions 𝑎𝑁𝑁 

like a vanilla RL, and in the process, passes 𝑝𝑟𝑒𝑑𝑖 , the 

probability that each action used will be executed, to the 

CBF. The second stage is the CRBF. The CRBF is divided 

into the CBF and the RF. To avoid reducing computational 

efficiency by calculating actions that will never be used, 

the CRBF determines whether to use the CBF or the RF 

based on the danger level. Therefore, the CRBF will have 

zero to two actions. For simplicity, we will say that the 

CRBF always calculates both actions. When all actions are 

computed, the action selector chooses one of up to three 

actions that matches the current danger level, which is 

called 𝑎𝑏𝑒𝑠𝑡. The action 𝑎𝑏𝑒𝑠𝑡 is passed to the environment 

to execute the action, and in the next state, we go back to 

the beginning of this paragraph and repeat the process. The 

behavior of the action selector is exactly the same as in 

Eq. (28); the action 𝑎𝑏𝑒𝑠𝑡 is equal to the result of 𝑢(𝑠). 
 

 
Fig. 1. Examples of actions in each situation when the robot used a 

CRBF-based SafeRL controller. These are the general responses of the 

controller in safe, risky, and critical situations, respectively. In a risky* 

situation, the robot stops until the obstacle is removed because the actions 

are constrained for all directions. 

 

 
Fig. 2. CRBF-based SafeRL control pipeline. Neural network and CRBF generate state dependent actions. The actions in a CRBF come from two 

sources: one from the CBF and one from the CRF. The action selector selects one of the generated actions based on the danger level. The selected action 

is used as the control input. 

 

The control inputs 𝑢𝒮 , 𝑢ℛ , and 𝑢𝒞 correspond to 

intermediate decisions made by the RL policy, the CBF-

based controller, and the recovery function, respectively. 

Each control input ultimately produces a velocity 

command pair consisting of translational velocity 𝑣 and 

rotational velocity 𝜔. These values are applied directly to 

the robot’s differential drive system. In the safe area, 𝑢𝒮 is 

mapped from the RL policy output to (𝑣𝒮, 𝜔𝒮). In the risky 

area, the CBF modifies this to ensure safety, producing (𝑣ℛ, 

𝜔ℛ). In the critical area, the recovery function generates 

emergency velocities (𝑣𝒞 , 𝜔𝒞 ) to move the robot away 

from obstacles. A control switching mechanism then 

selects the appropriate (𝑣, 𝜔) based on the current danger 

level, as shown in Algorithm 2. 

Meanwhile, the training strategy in the right part of 

Fig. 2 is a simplified representation of the policy update 

part, which uses different policy update methods 

depending on the danger level. A detailed description of 

the policy update is continued in the next section. 

VII. CRBF-BASED SAFERL TRAINING STRATEGY 

There have already been several attempts to learn 

SafeRL, including SafeRL using CBF [31, 34].  However, 

we could not use the traditional method because we apply 

two constraints, CBF and RF, sequentially. To the best of 

our knowledge, there are few SafeRL training methods that 

use sequential constraints from a collision avoidance 

perspective to update policies. In this section, we describe 

the CRBF-based SafeRL training strategy. 

A. Rewards and Penalties 

Table I shows the rewards and penalties used for 

training. We call the reward received at the end of a single 

step 𝑅𝑠𝑡𝑒𝑝 . We generate two penalties in addition to the 
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reward: 𝑃𝐶𝐵𝐹 and 𝑃𝑅𝐹. The penalty 𝑃𝐶𝐵𝐹 is used when 𝑎𝑁𝑁 

is filtered by the control barrier, and the penalty 𝑃𝑅𝐹  is 

given when the robot’s danger level is 𝒞. 

TABLE I. REWARDS AND PENALTIES 

Symbol Description 

Rstep Reward for each step 

PCBF Barrier penalty 

PRF Recovery penalty 

B. Sequential Constraints Training Strategy 

The CRBF-based SafeRL is a method for increasing 

safety by selecting one of three actions based on the danger 

level. One of the key features of SafeRL algorithms is that 

the action predicted by the neural network differs from the 

action actually taken. Accounting for this in policy updates 

is an important part of SafeRL’s policy update process. 

However, none of the existing work has a policy update 

approach that is suitable for our proposed approach, and 

we propose a policy update strategy for CRBF-based 

SafeRL by combining and modifying existing approaches.  

We use update policies to perform constrained actions 

as follows [35]: 

• Unconstrained Prediction (UP): The UP is the same 

method as general reinforcement learning, where the 

neural network executes the predicted action without 

considering constraints. 

• Constrained Prediction with Penalty (CPP): The CPP 

modifies the predicted action of the neural network to 

satisfy the constraints. The predicted action is used 

for training, but the changed action is actually 

executed to ensure a safe learning process with 

penalty. 

• Constrained Prediction and Correction (CPC): The 

CPC closes the gap between the initial prediction and 

the corrected action by learning both the predicted 

and corrected actions. The CPC takes into account 

the cost of violating constraints by applying penalties 

to the rewards for the predicted action. 

 

 
Fig. 3. History selector pipeline. The history selector chooses the policy 

update method for efficient learning when updating policies. Depending 

on the strategy selected, it stores the history storage. A dotted arrow 

indicates when the direction changes based on the selection. 

 

We propose a learning strategy that combines the UP, 

CPP, and CPC approaches. Our learning strategy is 

represented by the history selector in Fig. 3. The history 

selector uses different policy update strategies when 

danger levels are 𝒮 , ℛ , and 𝒞 . The first choice of the 

history selector is to make a primary choice based on 

danger level. Here, if the danger level is 𝒮, we use the UP 

strategy; if it is ℛ, we use the CPP strategy; but if it is 𝒞, 

we need to make another choice. If the danger level is 𝒞, 

determine whether the neural network’s action is filtered 

by a control barrier. If it is filtered, use a CPC strategy. 

However, if the neural network’s action is unfiltered, use 

the UP strategy as an agent would with  𝒮. The actions and 

rewards selected in the history selector are combined with 

the state in the history storage for use in policy updates. 

VIII. SIMULATIONS 

A. Simulation Environment 

For the simulation, we used the Webots simulator [36] 

on a computer with a Geforce RTX 3080 and Intel i7-

12700 3.6 GHz. We used TurtleBot3 Burger as a two-

wheeled robot with a 2D-LiDAR [37]. LiDAR offset 

calibration was performed due to the error between the 

center of the robot’s rotation axis and the center of the 

LiDAR. The radius of the TurtleBot3 Burger is 105 mm, 

the distance between the two wheels 0.16 m, and the 

maximum transition and rotation velocities are 0.22 m/s 

and 2.84 rad/s, respectively. Although our simulations are 

conducted using TurtleBot3 in Webots, the CRBF 

framework is modular and does not rely on platform-

specific kinematics or sensors. The policy and switching 

logic of the proposed method can be applied to any 

differential-drive robot, or to other robotic platforms that 

provide similar low-level velocity control interfaces. 

The sampling time 𝑇𝑠 is set to 0.05 seconds. In Eq. (20), 

we set 𝑑𝒞  to 0.25 m. For comparison, 𝑑ℛ  is set to small 

(𝑑ℛ  = 1.4𝑑𝒞 ), medium (𝑑ℛ  = 1.6𝑑𝒞 ), and large (𝑑ℛ  = 

1.8𝑑𝒞). Depending on which of the three dℛ is applied, the 

proposed CRBF models were divided into 𝑂𝑢𝑟𝑠𝑆, 𝑂𝑢𝑟𝑠𝑀, 

and 𝑂𝑢𝑟𝑠𝐿 , and the CBF models for comparison were 

divided into 𝐶𝐵𝐹𝑆 , 𝐶𝐵𝐹𝑀 , and 𝐶𝐵𝐹𝐿 . Here, S, M, and L 

mean small, medium, and large, respectively. For the 

traditional comparison algorithms, we used APF [6], a 

widely used method, and ORCA [38]. The repulsive 

threshold distance of APF and the neighborhood distance 

of ORCA, which are the distances at which each algorithm 

starts to detect obstacles, were set equal to the medium dℛ. 

Table II shows the hyperparameters used for training. 

These hyperparameters were chosen to optimize the 

performance of the PPO algorithm during training. 

TABLE II. HYPERPARAMETERS FOR TRAINING 

Parameter Value 

Batch size 5 

Action bound 1.0 

Max step 500 

Learning rate (actor) 5e−5 

Learning rate (critic) 3e−5 

Discount factor 0.99 

Loss cliping 0.2 

Entropy loss 1.5e−3 
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The simulation environment was 3 m × 3 m with walls 

of sufficient height around the perimeter, as shown in 

Fig. 4. The training environment consisted of 4 circular 

obstacles, two static and two dynamic. The maximum 

speed of the dynamic obstacle is 0.1 m/s. The test 

environment is set up as a static map with 6 circular static 

obstacles; a Mix_easy map with 2 circular static and 2 

circular dynamic obstacles; a Mix_hard map with 2 

circular static, 2 dynamic, and 2 square dynamic obstacles; 

a dynamic map with 6 circular dynamic obstacles; and a 

Dynamic_fast map with 5 relatively fast circular dynamic 

obstacles. All dynamic obstacles move at less than the 

maximum speed of 0.1 m/s and bounce off when they 

reach the goal, the wall, or other obstacles. The obstacles 

in the Dynamic_fast map have a maximum speed of 

0.3 m/s. The robot starts at a random position near a wall 

on the map, facing a random direction. The robot’s task is 

to reach the central goal while avoiding collisions. Each 

model was tested 300 times for each map. 

 

 

Fig. 4. Test environment for the simulation. The direction of dynamic 

obstacles is indicated by the red arrow. 

During training, we applied domain randomization to 

achieve model generalization by randomly varying 

different variables in the simulated environment. Domain 

randomization is known as one of the effective approaches 

in Sim2Real, a research area that aims to reduce the 

difference between simulation and real environments [39]. 

The domain randomization is as follows: 

1) We randomize the initial position and initial 

orientation of the robot. 

2) We randomize the speed and initial orientation 

of each obstacle. 

3) We apply Gaussian noise of up to 5 mm to the 

LiDAR sensor. 

4) We apply Gaussian noise of up to 15% to the 

sampling time per time step. 

B. Simulation Results 

Table III shows the results of the collision avoidance 

simulations. For each model, we recorded the number of 

successful trials, collisions, and instances where the agent 

reached the maximum allowed steps. We defined a failure 

as a collision or reaching the maximum step. For the static 

map, all models achieved a collision rate of 3% or less 

when considering only the number of collisions, except 

when exceeding the max step. Except for the dynamic_fast 

map with obstacles moving at untrained speeds, all of our 

models achieved a collision rate of less than 1.2%. With 

the additional exception of 𝑂𝑢𝑟𝑠𝐿, which has the largest 

dℛ, our models maintained a success rate of above 97% in 

all cases. Meanwhile, in the dynamic_fast map, the 𝑂𝑢𝑟𝑠𝐿 

model had the highest success rate. 

TABLE III. SIMULATION RESULTS FOR COLLISION AVOIDANCE 

Map Model 
# of 

success 

# of 

collision 

Success 

rate 
# max step 

Static 

𝑂𝑢𝑟𝑠𝑆 300 0 100.0 % 0 

𝑂𝑢𝑟𝑠𝑀 291 0 97.0 % 9 

𝑂𝑢𝑟𝑠𝐿 173 0 57.7 % 127 

RF 201 0 67.0 % 99 

𝐶𝐵𝐹𝑆 291 9 97.0 % 0 

𝐶𝐵𝐹𝑀 245 6 81.7 % 49 

𝐶𝐵𝐹𝐿 163 0 54.3 % 137 

APF 300 0 100.0 % 0 

ORCA 300 0 100.0 % 0 

Mix_easy 

𝑂𝑢𝑟𝑠𝑆 298 0 99.3 % 2 

𝑂𝑢𝑟𝑠𝑀 296 0 98.7 % 4 

𝑂𝑢𝑟𝑠𝐿 298 0 98.7 % 4 

RF 287 1 95.7 % 12 

𝐶𝐵𝐹𝑆 286 14 95.3 % 0 

𝐶𝐵𝐹𝑀 285 10 95.0 % 5 

𝐶𝐵𝐹𝐿 285 2 95.0 % 13 

APF 299 1 99.7 % 0 

ORCA 297 3 99.0 % 0 

Mix_hard 

𝑂𝑢𝑟𝑠𝑆 296 0 98.7 % 4 

𝑂𝑢𝑟𝑠𝑀 293 1 97.7 % 6 

𝑂𝑢𝑟𝑠𝐿 234 1 78.0 % 65 

RF 244 3 81.3 % 53 

𝐶𝐵𝐹𝑆 261 34 87.0 % 5 

𝐶𝐵𝐹𝑀 239 50 79.7 % 11 

𝐶𝐵𝐹𝐿 221 58 73.7 % 21 

APF 298 2 99.3 % 0 

ORCA 294 6 98.0 % 0 

Dynamic 

𝑂𝑢𝑟𝑠𝑆 298 0 99.3 % 8 

𝑂𝑢𝑟𝑠𝑀 299 0 99.7 % 1 

𝑂𝑢𝑟𝑠𝐿 295 0 98.3 % 5 

RF 285 2 95.0 % 13 

𝐶𝐵𝐹𝑆 250 50 83.3 % 0 

𝐶𝐵𝐹𝑀 229 69 76.3 % 2 

𝐶𝐵𝐹𝐿 233 33 77.7 % 34 

APF 599 1 99.7 % 0 

ORCA 288 12 96.0 % 0 

Dynamic

_fast 

𝑂𝑢𝑟𝑠𝑆 265 35 88.3 % 0 

𝑂𝑢𝑟𝑠𝑀 282 18 94.0 % 0 

𝑂𝑢𝑟𝑠𝐿 287 13 95.7 % 0 

RF 224 76 76.7 % 0 

𝐶𝐵𝐹𝑆 207 93 69.0 % 0 

𝐶𝐵𝐹𝑀 211 89 70.3 % 0 

𝐶𝐵𝐹𝐿 191 107 63.7 % 2 

APF 207 93 69.0 % 0 

ORCA 222 78 74.0 % 0 

 

Fig. 5 shows the success rate for each of the collision 

avoidance models. All learning-based models have a high 

success rate on the mix_easy map because it is very similar 

Static Mix_easy Mix_hard

Dynamic Dynamic_fast

(m)

(m
)
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to the training environment. The difference in success rate 

compared to traditonal collision avoidance algorithms is 

most noticeable on the dynamic_fast map with obstacles 

that are faster than the robot. In the dynamic_fast map, all 

our models had a significantly higher success rate than the 

traditional collision avoidance models. Models using RF 

only achieved high success rates on the dynamic maps. 

The trajectory of a robot avoiding collisions in the 

dynamic_fast map is shown in Fig. 6. In the situation 

shown in the trajectory, 𝐶𝐵𝐹𝑆 and APF collided with the 

obstacle. In the case of 𝐶𝐵𝐹𝑆, the CBF moved the robot to 

a safe place. At the same time, however, an obstacle moved 

into the robot’s path, causing it to collide. The APF was 

not able to handle situations where an obstacle blocked the 

path and another obstacle was next to it. The other models 

moved well to their goal without colliding with any 

obstacles, and the model that arrived in the fastest time is 

ORCA. In Fig. 6, the areas that need to detect obstacles to 

set the danger level for each model are set to the same as 

used in Fig. 1. 

 

 
Fig. 5. Collision avoidance success rate for each collision avoidance 

model in simulations. 

 

 
Fig. 6. The trajectories of each model and the obstacles in the first episode of the dynamic_fast map. The yellow and red translucent areas are where 

obstacles are detected to set the danger level for each model. The start and end points of the obstacles are represented by red dots, and the paths of the 

obstacles are represented by red arrows. 

 

 
Fig. 7. Average reward and variance per episode during the training. 
 

To demonstrate our proposed training strategy, we 

performed CRBF-based collision avoidance training using 

a different strategy. We set the learning criterion to 𝑂𝑢𝑟𝑠𝑀. 

Two additional models were trained: a model using the 

CPC method and a model using only the UP method. Fig. 7 

shows the reward history during training for these three 

models. The criterion for the end of training is when the 

success rate is at least 95% for the mix_easy map and 70% 

for the mix_hard map. Since the generalization 

performance of the UP method was too low, we set the 

training termination criterion for the UP method when the 

success rate is at least 95% for the mix_easy map and at 

least 50% for all other maps. 

 

The training time for our method, the CPC method, and 

the UP method were 3hr 44min, 5hr 17min, and 6hr 1min, 

respectively. The CPC method required 12.2% less 

training time than the UP method and achieved higher 

collision avoidance performance than the UP method, as 

shown in Table IV. Meanwhile, the 𝑂𝑢𝑟𝑠𝑀  method 

required 29.3% less training time than the CPC method, 

with little performance difference in performance between 

the 𝑂𝑢𝑟𝑠𝑀 and CPC methods. 

From the results so far, while we observe consistent 

performance gains in success rate, we acknowledge that 

the current results do not include hypothesis testing or 

confidence intervals. In future work, we plan to repeat the 

experiments with a larger number of trials and apply 

statistical validation methods such as confidence intervals 

or t-tests to ensure the robustness of the results. 
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TABLE IV. SIMULATION RESULTS FOR DIFFERENT TRAINING METHODS 

Map Model 
# of 

success 

# of 

collision 

Success 

rate 
# max step 

Static 

Ours 291 0 97.0 % 9 

CPC 288 0 96.0 % 12 

UP 195 0 65.0 % 105 

Mix_easy 

Ours 296 0 98.7 % 4 

CPC 298 0 99.3 % 2 

UP 294 0 98.0 % 6 

Mix_hard 

Ours 293 1 97.7 % 6 

CPC 293 3 97.7 % 4 

UP 174 0 58.0 % 126 

Dynamic 

Ours 299 0 99.7 % 1 

CPC 298 1 99.3 % 1 

UP 222 6 74.0 % 72 

Dyn_fast 

Ours 282 18 94.0 % 0 

CPC 275 21 91.7 % 4 

UP 256 41 85.3 % 3 

IX. PRACTICAL EXPERIMENTS 

A. Environment 

The TurtleBot3-Waffle, a robot similar to the one used 

in the simulation but of a different size, was used as the 

robot for the real-world experiment. Similarly, the LiDAR 

offset calibration was performed due to the error between 

the center of the TurtleBot3’s rotation axis and the centre 

of the LiDAR. The radius of the TurtleBot3 waffle is 

220 mm, the distance between the two wheels is 0.287 m, 

and the maximum translational and rotational velocities 

are 0.26 m/s and 1.82 rad/s, respectively. We set 𝑑𝒞 to 0.40 

m in Eq. (20). To localize a robot and obstacles, we used 

the Vicon robot tracking system [40], which can measure 

the robot’s position with an accuracy of 2 mm. While the 

physical experiments are performed in a motion capture-

based environment, the CRBF is independent of any 

particular localization method and can be applied to 

systems with on-board perception and sensor fusion. 

We used ROS1 (Robot Operating System) to control the 

robot. We set up two similar test environments, as shown 

in Fig. 8. Both environments share two static obstacles in 

common, one at the top and one at the bottom, but differ in 

their dynamic obstacles. The first environment is a robot 

map with a dynamic obstacle that continuously patrols a 

path diagonally across the center from the bottom right to 

the top left. The dynamic obstacle has a speed of 0.26 m/s, 

the same as the robot. The second environment is a human 

map with a human patrolling the same path as the obstacle 

in the first environment. The human moves at a speed 

similar to that of the agent robot. The robot starts at a 

random location near a wall on the map, facing in a random 

direction. 

 

 
Fig. 8. Real-world test environment. The patrol direction of dynamic 

obstacles is indicated by the red arrow. 

B. Results 

Fig. 9 shows the collision avoidance success rate for 

each model. In the real world, the models showed 

sufficient time efficiency without requiring a specified 

maximum step. In the robot map, all models had a collision 

avoidance success rate above 85%. In the human map, the 

difference in success rates between our models and the 

CBF models is more pronounced. In the case of humans, 

the motion is not constant, but the proposed method has 

shown an excellent ability to cope with sudden changes in 

motion. 

 

 
Fig. 9. Collision avoidance success rate for each model in robot and 

human maps. 

 

Fig. 10 shows the trajectory when a dynamic obstacle is 

implemented with a robot. Since the obstacle has the same 

speed as the robot, the robot and the obstacle will always 

meet around the goal if the robot goes straight to the goal. 

The 𝐶𝐵𝐹𝑆 method collided just before reaching the goal. 

The 𝑂𝑢𝑟𝑠𝑆  method, similar to the 𝐶𝐵𝐹𝑆  method, hit the 

obstacle just before reaching the goal, but did not collide. 

The 𝑂𝑢𝑟𝑠𝑀  and 𝐶𝐵𝐹𝑀  methods had a trajectory that 

avoided the obstacle and went around it. 

 

 
Fig. 10. The trajectories of each model in the first episode of the robot 

map. The dynamic obstacle is patrolled in the direction of the red arrows. 

 

Fig. 11 shows the trajectory of an experiment performed 

on the human map. As the people appearing as obstacles 
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move at a similar speed to the robot, the robot will always 

encounter obstacles close to the goal if the robot goes 

straight to the goal. Again, only the 𝐶𝐵𝐹𝑆 method collided 

with the obstacle. Like the other models, the 𝐶𝐵𝐹𝑆 method 

took actions to avoid human obstacles, but not enough. 

 

 
Fig. 11. The trajectories of each model in the first episode of the human 

map. The human patrolled in the direction of the arrows. 

X. DISCUSSION 

The proposed SafeRL framework introduces a 

structured switching mechanism between RL, CBF, and 

RF policies that prioritizes safety while allowing efficient 

navigation to goal positions in dynamic environments. 

This hybrid control strategy effectively addresses one of 

the key limitations of conventional reinforcement learning, 

i.e., its inability to guarantee safety during both training 

and execution, without sacrificing the adaptability that 

makes RL attractive in dynamic and uncertain scenarios. 

By preserving the reactive and flexible nature of RL while 

embedding formal safety and recovery layers, the 

proposed method provides a balanced solution that 

improves both safety and task performance in real-world 

applications. 

Although our framework integrates RL with CBF and 

RF modules to achieve both motion planning and safety, a 

full control-theoretic proof that formally guarantees 

convergence to the goal while maintaining safety is 

beyond the scope of this paper. However, the use of CBF 

ensures forward invariance of the defined safe set under 

certain conditions, and the recovery mechanism provides a 

fallback when standard control fails to maintain safety. We 

believe that these components provide the basis for future 

theoretical analysis. 

While the proposed CRBF framework shows promising 

empirical performance in both simulation and real-world 

experiments, we acknowledge that formal guarantees of 

safety and task efficiency under model uncertainty are not 

yet established. Although random noise has been 

introduced into the sensor observations and dynamics to 

partially account for perception and control errors in 

simulation experiments, it is limited in assessing the 

robustness of the method under real-world uncertainty. 

The current method relies on a deterministic perception 

and control pipeline, which may limit its performance 

under severe sensor noise, dynamic uncertainties, or 

adversarial disturbances. As future work, we plan to 

extend the framework by incorporating robust control 

techniques or probabilistic safety verification, e.g. using 

Gaussian processes or reachability analysis, to provide 

formal guarantees in stochastic environments. 

Furthermore, our current evaluation focuses on standard 

SafeRL and classical baselines, but our framework differs 

from recent hybrid methods by introducing a danger-aware 

hierarchical controller that dynamically switches between 

RL, CBF, and RF policies. Future work will extend this 

comparison to include more recent methods such as 

RecoveryRL [41] and robust CBF-RL [42]. 

XI. CONCLUSION 

This paper proposes a CRBF-based SafeRL model for 

collision avoidance and presents a training method. The 

CRBF improves the model’s collision avoidance 

performance over traditional methods by enforcing 

sequential constraints as elements of SafeRL. In addition, 

our proposed CRBF training method showed faster 

training times and higher generalization performance than 

existing methods. The proposed CRBF does not explicitly 

account for uncertainty or dynamics in the environment. 

However, the experiments showed that adding RF with 

sequential constraints reduces conflicts due to uncertainty 

that may occur when using CBF alone. In future work, we 

will develop a crash-resistant SafeRL algorithm that 

incorporates uncertainty in the environment. 

NOMENCLATURE 

Symbol Description 

𝑠 State of the robot 

𝑎 Action taken by the robot 

π Policy function 

r(s, a) Reward function 

γ Discount factor 

P(s’|s, a) State transition probability 

Q(s, a) State-action value function 

𝒮 State space 

𝒜 Action space 

𝑢 Control input 

𝑢𝒮, 𝑢ℛ, 𝑢𝒞 Control input in the safe, risky, and critical areas 

𝑣, 𝜔 Translational and rotational velocities 

𝑑𝑖
𝑜𝑏𝑠 Euclidean distance to the 𝑖-th obstacle 

𝜃𝑖
𝑜𝑏𝑠 Angle to the 𝑖-th obstacle 

𝑑𝑔𝑜𝑎𝑙 Distance to the goal 

𝜃𝑔𝑜𝑎𝑙 Angle to the goal 

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 Set of safe actions filtered by CBF 

𝒮𝑠𝑒𝑡, ℛset, 𝒞set State set of safe, risk, and critical level 
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