
Safe Reinforcement Learning Using Sequential

Constraints for Collision Avoidance

Gyuyong Hwang 1 and Gyuho Eoh 2,*

1 Department of Electronics Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea
2 Department of Mechatronics Engineering, Tech University of Korea, Siheung-si, Gyeonggi-do 15073, South Korea

Email: 1213hgy@tukorea.ac.kr (G.H.); gyuho.eoh@tukorea.ac.kr (G.E.)

*Corresponding author

Abstract—Ensuring a high level of safety is essential for

collision avoidance in real-world robotic applications.

Traditional Reinforcement Learning (RL)-based collision

avoidance methods offer adaptability but lack safety

guarantees, especially in uncertain and dynamic

environments. To address this, we propose a novel safe

reinforcement learning (SafeRL) framework called Control

Recovery and Barrier Function (CRBF), which enhances

safety by sequentially applying different control strategies

based on the robot’s proximity to obstacles. The CRBF

categorizes risk into three distinct levels and adaptively

switches between a vanilla RL-based policy, Control Barrier

Function (CBF), and a Recovery Function (RF) to prevent

collisions and recover from critical situations. In addition, we

introduce a constraint-aware training strategy that

incorporates these sequential safety mechanisms during

policy updates. We validate our method in both simulated

and real-world environments, where CRBF outperforms

conventional methods, with improvements of up to 22.5% in

collision avoidance success rates, particularly in challenging

dynamic scenarios.

Keywords—collision avoidance, safe reinforcement learning,

control barrier functions, recovery function

I. INTRODUCTION

Robots are increasingly deployed in real-world

environments, where collision avoidance is essential to

ensure both operational success and safety [1, 2]. Over the

past few decades, numerous collision avoidance

approaches have been proposed, which are broadly

categorized into trajectory-based and reactive-based

methods. Trajectory methods explore an optimal path in

advance based on global information but struggle with

unforeseen obstacles due to their reliance on pre-planned

paths [3]. In contrast, reactive methods respond to local

changes in real time, providing better adaptability in

dynamic environments [4]. For example, reactive

techniques, such as Artificial Potential Fields (APFs) [5]

and collision cone methods [6], rely on rule-based or short-

term responses. While reactive methods offer fast reaction

times, they lack long-term adaptability and often fail in

complex scenarios.

Manuscript received February 11, 2025; revised March 25, 2025;

accepted April 16, 2025; published June 17, 2025.

To address these limitations, Reinforcement Learning

(RL) has been increasingly applied to robotic

navigation [7]. RL allows agents to learn optimal

behaviors through trial-and-error interaction with the

environment, making it well suited to dynamic and

uncertain environments. However, RL methods face

significant safety challenges during training and

deployment, due to model uncertainty and the stochastic

nature of real-world environments [8–10]. Safe

Reinforcement Learning (SafeRL) has emerged to address

this issue by incorporating safety constraints into the

learning process [11]. Among these, Control Barrier

Function (CBF) are widely used to formally constrain the

system from entering unsafe states [12, 13]. However, the

CBF typically assume known dynamics and cannot ensure

recovery if the system has already violated the safety

margin [14, 15].

To overcome the above critical limitation, we propose a

novel SafeRL framework called Control Recovery and

Barrier Function (CRBF). The CRBF introduces a

sequential control strategy based on the robot’s proximity

to obstacles and classifies operational domains into three

risk areas: safe, risky, and critical. In the safe area, where

there are no nearby obstacles, the robot directly follows the

vanilla RL-based policy. In the risky area, where nearby

obstacles are detected, the robot’s actions are filtered by a

CBF to ensure safety. In the critical area, where the risk of

collision is imminent, a Recovery Function (RF) overrides

the control to guide the robot away from the danger and

back to a safe state. This hierarchical design allows our

CRBF-based SafeRL to adaptively switch control

strategies, ensuring safety even in uncertain and dynamic

environments. Unlike previous works that use a single

safety mechanism (e.g., CBF or recovery alone), our

method dynamically switches between RL, CBF, and RF

based on real-time risk assessment, enabling both

prevention and recovery in a unified control architecture.

The main contributions of this paper can be summarized

as follows:

• We propose a novel SafeRL framework called

CRBF, which sequentially combines CBF and a

RF based on the robot’s proximity to obstacles.

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

347doi: 10.18178/ijmerr.14.3.347-359

https://orcid.org/0009-0008-8102-0367
https://orcid.org/0000-0003-4931-4396

• We define three risk domains to dynamically

switch between RL, CBF, and RF policies.

• We introduce a CRBF-based training strategy that

integrates sequential constraints into policy

updates by combining raw actions, penalty

corrections, and recovery-guided adjustments.

• We demonstrate the effectiveness of our method in

both simulated and real-world environments.

The remainder of the paper is organized as follows.

Section II reviews related work relevant to our study.

Section III provides preliminary background information.

In Section IV, we formulate the problem addressed in this

paper. Section V introduces the definition of danger levels,

which represent the robot’s proximity-based risk levels.

Section VI details the proposed CRBF framework and its

control components. In Section VII, we describe the

training setup and propose a CRBF-based SafeRL training

strategy that incorporates mixed policy updates.

Section VIII presents the results of simulation experiments

comparing our method with existing collision avoidance

algorithms. Section IX provides the results of real-world

experiments conducted to validate our approach.

Section X offers a discussion of our findings and outlines

future research directions. Finally, Section XI concludes

the paper and summarizes key contributions and potential

avenues for further investigation.

II. RELATED WORKS

A. Reinforcement Learning-Based Collision Avoidance

RL-based collision avoidance allows robots to learn

navigation strategies by interacting with the environment.

It has been shown to be effective in several real-world

applications, including autonomous vehicles [16],

unmanned aerial vehicles [17], and maritime systems [18].

For example, Long et al. [19] proposed a decentralized

multi-robot control system based on deep reinforcement

learning equipped with onboard sensors and demonstrated

scalability to over a hundred robots in densely populated

environments. Liang et al. [20] focused on collision

avoidance in dense and confined spaces and successfully

transferred simulation-trained policies to previously

unseen real-world scenarios. Everett et al. [21] developed

an RL-based collision avoidance algorithm that does not

rely on predefined behavioral rules, and demonstrated

strong generalization

Meanwhile, to improve robustness under uncertainty,

Roghair et al. [22] improved collision avoidance

performance by integrating multiple algorithms to process

noisy visual inputs. Kahn et al. [8] introduced uncertainty-

aware RL by incorporating confidence estimates into the

decision-making process, enabling safer navigation in

stochastic and partially observable environments.

B. Safe Reinforcement Learning

SafeRL addresses the safety limitations of conventional

RL by incorporating constraints or risk-sensitive

mechanisms during policy learning and execution.

Lütjens et al. [23] improved safety by estimating model

uncertainty, while Srouji et al. [24] combined emergency

braking with RL to eliminate collisions during training.

Zhou et al. [25] improved robustness by decoupling safety

control from goal achievement.

Recent advances have integrated CBF into RL

frameworks to enforce formal safety guarantees. CBF

ensures safety by enforcing state constraints and have

shown strong performance in robotic systems [14],

especially when combined with RL in complex

environments [26, 27]. Cheng et al. [28] showed that CBF-

based SafeRL can maintain high safety probabilities in

continuous control tasks, and Cai et al. [29] extended the

approach to multi-agent systems. To further improve

robustness under uncertainty, Emam et al. [30] introduced

a robust CBF layer that accounts for worst-case

perturbations, and Hu et al. [16] applied Gaussian

processes to model uncertainty and enforce probabilistic

safety guarantees.

However, most of these approaches either lack recovery

mechanisms after a safety violation or are limited to

simulation environments. The proposed method introduces

a CRBF that adaptively combines RL, CBF, and a recovery

policy to enable both preventive and corrective safety

behaviors in real-world environments.

III. PRELIMINARIES

A. Reinforcement Learning

RL can be formulated by Markov Decision Processes

(MDP) ℳ as follows:

ℳ = ⟨𝑆, 𝐴, 𝑃, 𝑅, 𝛾⟩, (1)

where 𝑆 and 𝐴 are the state and action spaces, respectively.

The state transition probability 𝑃(𝑠′|𝑠, 𝑎) → ℝ is

described by the state 𝑠 ∈ S and the action 𝑎 ∈ A. The

𝑅(𝑠, 𝑎) is the reward function and γ ∈ [0, 1] is the

discount factor. The goal of RL is to compute the optimal

policy π∗ by maximizing the expected cumulative rewards

under the policy π as follows:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋∈𝛱

𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
∞
𝑡=0], (2)

where 𝑠𝑡 ∼ 𝑃(⋅ |𝑠𝑡−1, 𝑎𝑡−1) is the state transition, 𝑎𝑡 ∼
𝜋(⋅ |𝑠𝑡) is selected according to the policy 𝜋 . Bellman

equation for state-action value function Qπ(𝑠, 𝑎) is used to

evaluate the policy:

Qπ(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +

γ𝔼s′∼P(⋅|𝑠, 𝑎) [𝔼𝑎′∼π(⋅|𝑠′)[Q
π(𝑠′, 𝑎′)]]. (3)

Finally, the goal of RL is to compute the optimal policy

𝜋∗ from the optimal state-action value function 𝑄∗(𝑠, 𝑎) as

follows:

𝜋∗(𝑎|𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄∗ (𝑠, 𝑎)

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

(𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎)). (4)

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

348

B. Recovery Policy

A recovery policy is a specialized policy designed to

ensure safety by guiding the agent away from unsafe or

high-risk states [31]. When the agent is in a state where it

is likely to violate constraints, the policy guides the agent

back to the safe set to ensure safety during learning and

execution. Recovery policy is operated by the belowed

processes. First, the safety of a state-action pair (𝑠, 𝑎) is

evaluated using the safety critic 𝑄risk
𝜋 (𝑠, 𝑎) , which

estimates the probability of future constraint violations

under the current policy π:

𝑄risk
𝜋 (𝑠, 𝑎) = Eπ[∑ γrisk

𝑡 𝐶(𝑠𝑡 , 𝑎𝑡)
∞
t=0], (5)

where 𝐶(𝑠𝑡 , 𝑎𝑡) is the constraint cost function and 𝛾risk
𝑡 is

the discount factor for the constraint cost. Second, we

define the safe set (𝑇safe
𝜋) and recovery set (𝑇recovery

𝜋) as

follows:

𝑇safe
𝜋 = {(𝑠, 𝑎) | 𝑄risk

𝜋 (𝑠, 𝑎) ≤ 𝜀𝑟𝑖𝑠𝑘}, (6)

𝑇recovery
𝜋 = S × A ∖ 𝑇safe

𝜋 (7)

where 𝜀𝑟𝑖𝑠𝑘 ∈ [0,1] is a risk threshold. The sets Tsafe
π and

𝑇recovery
𝜋 refer to the state and action pair for safe and

recovery, respectively, when the policy π is followed. The

goal of the recovery policy is to create a policy where all

state-action pairs are within the safe set, but to create a

policy that recovers even if an agent is outside the safe set.

Third, the agent uses a composite policy that combines the

task policy 𝜋task and the recovery policy 𝜋recovery .

Depending on the safety of the current state-action pair, the

policy switches as follows:

𝑎 = {
𝑎task 𝑖𝑓 (𝑠, 𝑎task) ∈ 𝑇safe

𝜋

𝑎recovery 𝑖𝑓 (𝑠, 𝑎task) ∉ 𝑇safe
𝜋 , (8)

where 𝑎task ∼ 𝜋task(𝑎|𝑠) and 𝑎recovery ∼ 𝜋recovery(𝑎|𝑠)

are the actions suggested by the task and recovery policy,

respectively. If the agent is in the safe set, the task policy

operates normally. On the contrary, if the agent is in the

recovery set, the recovery policy takes over to guide the

agent back to the safe set. Finally, the recovery policy

𝜋recovery is trained to minimize the safety critic 𝑄risk
𝜋 (𝑠, 𝑎),

ensuring that the agent transitions back into the safe set:

𝜋recovery = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋

𝔼(𝑠,𝑎)∈ 𝑇recovery𝜋 [𝑄risk
𝜋 (𝑠, 𝑎)]. (9)

C. Control Barrier Functions

The recovery policy is a behavioral policy to achieve

safety, and it does not guarantee safety. Therefore, it is

necessary to mathematically define the safety constraints,

which is called the Control Barrier Function (CBF). The

CBF uses constraints to ensure the safety of the control

system [12, 24], and how to design the control barriers

depends on the system and the environment. To explain

CBF, we first define a dynamic system as follows:

𝑠̇ = 𝑓(𝑠) + 𝑔(𝑠)𝑢(𝑠), (10)

where 𝑠 ∈ ℝn and 𝑢(𝑠) ∈ U ⊆ ℝm are state and control

input, respectively. The function 𝑓(𝑠) represents the

intrinsic or natural behavior of the system when there is no

external control input, and 𝑔(𝑠) describes how the control

input 𝑢(𝑠) affects the state of the system. The functions

𝑓(𝑠) and 𝑔(𝑠) are locally Lipschitz.

A safe set is a subset of the state space of a system in

which the system is guaranteed to operate safely. The safe

set 𝐶 is defined as follows:

𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) ≥ 0}, (11)

where ℎ:ℝn → ℝ is a continuously differentiable scalar

function defining the safe set 𝐶.

Using the definition of the safe set 𝐶 , we define the

boundary, the interior, and the exterior of the safe set as

follows:

∂𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) = 0}, (12)

Int(𝐶) = {𝑠 ∈ ℝn: ℎ(𝑠) > 0}, (13)

ℝn ∖ 𝐶 = {𝑠 ∈ ℝn: ℎ(𝑠) < 0}. (14)

To ensure safety, the state 𝑠 should remain in the safe

set 𝐶 for all the time. This is referred to as forward

invariance [32], which can be expressed as:

𝑠(0) ∈ 𝐶 ⇒ 𝑠(𝑡) ∈ 𝐶, ∀𝑡 ≥ 0. (15)

Proposition 1 (Safety via CBF): If the control input

satisfies the CBF condition ℎ̇(𝑠, 𝑢) + 𝛼(ℎ(𝑠)) ≥ 0, then

the safe set 𝐶 is forward invariant. That is, the robot state

remains in the safe set 𝐶 for all 𝑡 ≥ 0 if it starts in 𝐶.

The proposition 1 can be enforced by designing a

control input 𝑢 that satisfies the CBF condition:

sup
𝑢∈U

[𝐿𝑓ℎ(𝑠) + 𝐿𝑔ℎ(𝑠)𝑢] ≥ −α(ℎ(𝑠)), (16)

where, 𝐿𝑓ℎ(𝑠) and 𝐿𝑔ℎ(𝑠) are the effect of the system’s

natural dynamics on ℎ(𝑠) and the effect of the control

input 𝑢 on ℎ(𝑠), respectively. The function α(ℎ(𝑠)) is a

𝐾
∞

 function that adjusts the rate α at which the system

approaches the safe set. Our main objective is finding

appropriate control input 𝑢 by maintaining CBF condition

Eq. (16).

IV. PROBLEM FORMULATION

The objective of the proposed method is to enable the

robot to reach a goal safely and efficiently without

collision. To achieve this objective, we first modify the

standard MDP formulation in Eq. (1). Specifically, we

introduce a constraint cost function 𝐶(𝑠) → {0,1} that

indicates whether a state is safe; a risk discount factor

𝛾risk ∈ [0, 1] according to the constraint, and the negative

reward Rrisk(𝑠, 𝑎) ∈ (−∞, 0). The modified MDP ℳ′ is

defined as follows:

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

349

ℳ′ = ⟨S, A, P, R, γ, C, γrisk, Rrisk⟩, (17)

and the state of the robot 𝑠 is defined as follows:

𝑠 = [𝑑𝑔𝑜𝑎𝑙 , 𝜃𝑔𝑜𝑎𝑙 , 𝒪], (18)

where 𝑑𝑔𝑜𝑎𝑙 is the Euclidean distance from the center of

the robot to the goal, and 𝜃𝑔𝑜𝑎𝑙 is the angle to the goal with

respect to the robot’s orientation. The array 𝒪 contains the

distances and angles to neighboring obstacles:

𝒪 = {𝑑𝑖
𝑜𝑏𝑠, 𝜃𝑖

𝑜𝑏𝑠|𝑖 = 1,2,⋯ , 𝑛}, (19)

where 𝑑𝑖
𝑜𝑏𝑠 and 𝜃𝑖

𝑜𝑏𝑠 are the Euclidean distance and angle

to the 𝑖-th obstacle, respectively. The time step 𝑡 is omitted

because the robot determines its action based solely on the

current state. Our objective is to find an appropriate input

𝑢(𝑠) in Eq. (10) to ensure safety in the modified MDP.

V. THE DEFINITIONS OF DANGER LEVELS

We define the robot’s danger levels according to

collision probability as follows:

• Safe level (𝒮): The robot is not in danger of collision

and there are no obstacles around it. At the safe level,

the robot can move freely.

• Risk level (ℛ): There is at least one obstacle near the

robot with a potential collision. The robot should take

a constrained action to avoid the collision at the risk

level.

• Critical level (𝒞): The distance between the robot and

the obstacles is too close; the risk of collision is very

high. At the critical level, the robot must take an action

aimed exclusively at avoiding collisions.

To define the boundaries of the danger level, we set

separate thresholds to distinguish between risk and critical

levels: 𝑑ℛ and 𝑑𝒞. First, the threshold 𝑑ℛ is used to define

the constraint triggers of the CBF. We vary 𝑑ℛ depending

on the size and number of obstacles, the width of the

environment, and the size of the robot, as constraint ranges

can have a significant impact on performance. Especially

in uncertain or dynamic environments, it is important to

choose the appropriate range for constraints in CBF [33].

Second, the threshold 𝑑𝒞 should be as small as possible to

avoid the obstacle as follows:

𝑑𝒞 = (𝑑−𝑣 + 𝑑𝜔 + 𝑟), (20)

𝑑−𝑣 =
𝑣𝑚𝑎𝑥
2

2𝑎𝑑𝑒𝑐𝑒𝑙
, (21)

𝑑𝜔 =
𝜔𝑚𝑎𝑥⋅𝑑𝑤ℎ𝑒𝑒𝑙𝑠

2
⋅ T𝑠, (22)

where 𝑑−𝑣 is the maximum braking distance based on

linear velocity 𝑣𝑚𝑎𝑥 , and 𝑑𝜔 is the maximum turning

distance based on angular velocity. We define 𝑎𝑑𝑒𝑐𝑒𝑙 to be

the deceleration of the robot, and 𝑑𝑤ℎ𝑒𝑒𝑙𝑠 to be the distance

between the two wheels. The 𝑇𝑠 is the sampling time of the

time step, and 𝑟 is robot’s radius.

The criteria for determining whether each danger level

has been reached can be defined as determine functions

using 𝑑ℛ and 𝑑𝒞, as follows:

𝐷ℛ(𝑠) = max
𝑗∈1,2,…,𝑛

(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠), (23)

𝐷𝒞(s) = max
𝑗∈1,2,…,𝑛

(𝑑𝒞 − 𝑑𝑗
𝑜𝑏𝑠). (24)

where 𝑛 is the number of obstacles. If the function is

greater than or equal to zero, the corresponding danger

level is considered to have been reached.

We introduce the danger level sets 𝒮𝑠𝑒𝑡 , ℛset , 𝒞set ,
which represent the sets of states corresponding to the safe,

risky, and critical levels, respectively. The overall danger

level set can be expressed as follows:

𝒮𝑠𝑒𝑡 = {𝑠 ∈ ℝ𝑛+2|𝐷ℛ(𝑠) < 0} (25)

ℛset = {𝑠 ∈ ℝ𝑛+2|𝐷ℛ(𝑠) ≥ 0} ∩
{𝑠 ∈ ℝ𝑛+2|𝐷𝒞(𝑠) < 0} (26)

𝒞set = {𝑠 ∈ ℝ𝑛+2|𝐷𝒞(𝑠) ≥ 0} (27)

where 𝒮𝑠𝑒𝑡 is the set of states in which the robot maintains

a safe distance from the obstacle. Similarly, ℛset is the set

states when the robot is at a risk level, and 𝒞set is the set

states when the robot is at a critical level. The reason why

the dimension of the state is ℝ𝑛+2 is that the number of

obstacles, the distance to the goal, and the angle are added

as in Eqs. (18) and (19).

The desired controller using the danger level sets is as

follows:

𝑢(𝑠) = 𝑢𝒮𝕝𝒮𝑠𝑒𝑡(s) + 𝑢ℛ ⋅ 𝕝ℛ𝑠𝑒𝑡(𝑠) + 𝑢𝒞 ⋅ 𝕝𝒞𝑠𝑒𝑡(𝑠) (28)

where 𝑢𝒮, 𝑢ℛ, and 𝑢𝒞 represent the control inputs for the

safe, risky, and critical levels, respectively. The 𝕝𝒮𝑠𝑒𝑡(s),
𝕝ℛ𝑠𝑒𝑡(𝑠) , and 𝕝𝒞𝑠𝑒𝑡(𝑠) are indicator functions that

determine whether the robot’s state 𝑠 belongs to each set

of danger levels. The indicator function returns 1 if the

robot is at that danger level and 0 otherwise. For example,

if the robot is in the safe state 𝒮𝑠𝑒𝑡, 𝑢𝒮 is applied as the

control input.

VI. CONTROL RECOVERY AND BARRIER FUNCTION

A. Control Barrier Function

If the robot’s state belongs to ℛ𝑠𝑒𝑡, the CBF is used to

constrain the robot’s control input. The CBF uses an action

filter that eliminates unsafe actions from the candidate set

and forms a filtered array of safe actions, denoted as

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. The primary objective of the action filter is to

evaluate the safety of each action defined during training

and exclude those that violate the safety constraints.

Algorithm 1 shows the pseudo-code of the action filter.

First, we heuristically set the scaling factor 𝜆𝑓 and

threshold factor 𝒯 to avoid filtering out safe actions by

considering the robot’s size, speed, and 𝑑ℛ (lines 1–2).

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

350

First, we generate the transition and rotation velocities 𝑣ℛ

and 𝜔ℛ, then we generate 𝛰ℛ which contains information

about the obstacles contained in ℛ𝑠𝑒𝑡 . The robot

accumulates the calculated 𝑣 and 𝜔 for relative distances

and angles where obstacles are detected (lines 5–8). The

accumulated 𝑣ℛ and 𝜔ℛ are multiplied by the scaling

factor 𝜆𝑓 and added to the 𝑣𝑘 and 𝜔𝑘 of the predefined

action to generate 𝑣𝑎𝑑𝑗 and 𝜔𝑎𝑑𝑗 (lines 10–11). In lines

12–16, the threshold 𝒯 is multiplied by 𝑣𝑎𝑑𝑗 and 𝜔𝑎𝑑𝑗 and

compared with the values in the actions to determine

whether each action is safe. By repeating the process for

predefined actions (lines 9–17), the action filter returns the

set of safe actions, 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. The set 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 has an array

with the values indicate 1 for safe actions and 0 for risky

actions, respectively.

Algorithm 1. Action Filter

1: Set 𝜆𝑓 ∈ (0, 1] ▷ Scaling factor control adjustment

2: Set τ ∈ (0, 1] ▷ Scaling factor control adjustment

3: Initialize 𝜈ℛ ⟵ 0, 𝜔ℛ ⟵ 0

4: Initialize 𝛰ℛ ⟵ {(𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠)|𝑠 ∈ ℛ𝑠𝑒𝑡}

5: 𝐟𝐨𝐫 each (dj
obs, θj

obs) ∈ Oℛ do

6: Calcuate 𝜈ℛ ⟵ 𝜈ℛ − 𝑐𝑜𝑠(𝜃)(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠)

7: Calcuate 𝜔ℛ ⟵𝜔ℛ − 𝑠𝑖𝑛(𝜃)(𝑑ℛ − 𝑑𝑗
𝑜𝑏𝑠)

8: end for

9: 𝐟𝐨𝐫 each 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑘 = (𝜈𝑘 , 𝜔𝑘) in the defined action do

10: Calcuate 𝜈𝑎𝑑𝑗 ⟵ 𝜈𝑘 + 𝜆𝑓 ∙ 𝜈ℛ

11: Calcuate 𝜔𝑎𝑑𝑗 ⟵𝜔𝑘 + 𝜆𝑓 ∙ 𝜔ℛ

12: if |𝜈𝑎𝑑𝑗| < τ ∙ |𝜈𝑘| or |𝜔𝑎𝑑𝑗| < τ ∙ |𝜔𝑘| 𝐭𝐡𝐞𝐧

13: Mark 𝑎𝑘 as risky (𝑎𝑘 ⟵ 0)
14: else
15: Mark 𝑎𝑘 as safe (𝑎𝑘 ⟵ 1)
16: end if
17: end for
18: return Set of safe actions 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = [𝑎1, 𝑎2, ⋯ , 𝑎𝐾]

After the action filter eliminates unsafe actions, the

remaining process in the CBF module involves weighting

each candidate action by its selection probability, denoted

as 𝑝𝑟𝑒𝑑𝑖, and multiplying it by the filtered action vector

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 . Here, the probability 𝑝𝑟𝑒𝑑𝑖 is associated with

each candidate action generated during the selection of the

RL-based action 𝑎𝑁𝑁. The final action is selected as the

one with the highest weighted value, denoted 𝑎𝐶𝐵𝐹 ,

corresponding to the control input 𝑢ℛ. Meanwhile, the RL-

based action 𝑎𝑁𝑁 corresponds to the control input 𝑢𝒮.

B. Recovery Function

The CBF is generally sufficient to ensure safety in

mostly static environments. However, the CBF may fail if

the sampling time 𝑇𝑠 is too long or if obstacles move too

quickly. In such cases, the CBF requires a wider constraint

to maintain safety. While increasing this range can

improve safety, it also makes the robot overly conservative,

leading to a decrease in task efficiency due to its reluctance

to take necessary risks.

To address this problem, we introduce a Recovery

Function (RF) to improve the robot’s safety, especially in

high-risk situations. When the robot enters the critical

danger level 𝐶, the RF takes over control and generates a

new control input to guide the robot towards safety.

Specifically, the RF computes a recovery action 𝑎𝑅𝐹 ,

consisting of linear and angular velocity commands,

designed to move the robot away from imminent danger.

Unlike the CBF, which aims to maintain safety, the RF

actively seeks to recover the robot to a safe state.

Accordingly, the reference set used in the calculation of

the RF is ℛ𝑠𝑒𝑡, not 𝒞set, because the objective of the RF is

not only to leave the critical area, but to return the robot

completely to the safe area 𝑆.

The pseudo-code of the recovery function is described

in Algorithm 2. The goal of RF is to compute 𝑣 and 𝜔 for

s to be directed to 𝒮. First, we set a scaling factor 𝜆𝑟 to

account for the limitations of the robot’s control input (line

1). We initialize 𝑣𝒞 and 𝜔𝒞 to zero, respectively (lines 2–

3) and accumulate the computed 𝑣 and 𝜔 for all detected

obstacles (lines 4–7). Up to this point, it is almost identical

to the action filter, with one caveat: the goal of RF is to

recover to a safe state, which means that the information

about obstacles used to compute 𝑣 and 𝜔 also includes

obstacles within the range of 𝑠 ∈ ℛ𝑠𝑒𝑡 . Finally, the

recovery control 𝑢𝒞, whose components are 𝑣𝒞 and 𝜔𝒞, is

returned in line 8. For convenience, we call 𝑢𝒞 as the

action 𝑎𝑅𝐹.

Algorithm 2. Recovery Function

1: Set 𝜆𝑓 ∈ (0, 1] ▷ Scaling factor control adjustment

2: Initialize 𝜈𝐶 ⟵ 0, 𝜔𝐶 ⟵ 0

3: Initialize 𝛰ℛ ⟵ {(𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠)|𝑠 ∈ ℛ𝑠𝑒𝑡}

4: 𝐟𝐨𝐫 each (𝑑𝑗
𝑜𝑏𝑠, 𝜃𝑗

𝑜𝑏𝑠) ∈ 𝛰ℛ do

5: Calcuate 𝜈𝐶 ⟵ 𝜈𝐶 − 𝑐𝑜𝑠(𝜃)(𝑑𝐶 − 𝑑𝑗
𝑜𝑏𝑠)

6: Calcuate 𝜔𝐶 ⟵𝜔𝐶 − 𝑠𝑖𝑛(𝜃)(𝑑𝐶 − 𝑑𝑗
𝑜𝑏𝑠)

7: end for

8: return 𝑢𝐶 = 𝜆𝑟 ∙ [
𝜈𝐶
𝜔𝐶

]

C. CRBF-Based SafeRL Controller

When an unsafe situation occurs, i.e., risky and critical,

the CBF or RF selects an appropriate action to ensure

safety. The CRBF framework enhances safety by

integrating both CBF and RF mechanisms. The core

function of the CRBF is to select the most appropriate

action based on the current danger level, from among up

to three candidate actions generated by the neural network

and the CRBF modules.

Fig. 1 illustrates the possible correspondence between

danger levels and selected actions in CRBF. The risky and

critical areas, shown semi-transparently in Fig. 1, are the

obstacle detection regions defined by Eqs. (23) and (24),

respectively. When the robot’s current danger level is

𝒮(safe), the controller directly predicts and executes an

action using the standard reinforcement learning policy.

When the danger level is ℛ (risky), the robot filters out

unsafe actions using the action filter and executes one of

the remaining valid actions. In cases like the Risky*

example in Fig. 1, if no valid actions remain after filtering,

the robot will stop and wait until the obstacle is no longer

present. If the danger level is 𝒞 (critical), the controller

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

351

generates and executes a recovery action designed to guide

the robot back to the safe area 𝒮 . In the Critical* case

shown in Fig. 1, if there are several obstacles in the critical

and risky areas, the recovery action is calculated taking

into account the obstacles in the adjacent area, ensuring a

safe return to 𝒮.

The pipeline of a CRBF-based controller is shown in

Fig. 2. The first stage is learning by the neural network.

Given a state, the neural network generates actions 𝑎𝑁𝑁

like a vanilla RL, and in the process, passes 𝑝𝑟𝑒𝑑𝑖 , the

probability that each action used will be executed, to the

CBF. The second stage is the CRBF. The CRBF is divided

into the CBF and the RF. To avoid reducing computational

efficiency by calculating actions that will never be used,

the CRBF determines whether to use the CBF or the RF

based on the danger level. Therefore, the CRBF will have

zero to two actions. For simplicity, we will say that the

CRBF always calculates both actions. When all actions are

computed, the action selector chooses one of up to three

actions that matches the current danger level, which is

called 𝑎𝑏𝑒𝑠𝑡. The action 𝑎𝑏𝑒𝑠𝑡 is passed to the environment

to execute the action, and in the next state, we go back to

the beginning of this paragraph and repeat the process. The

behavior of the action selector is exactly the same as in

Eq. (28); the action 𝑎𝑏𝑒𝑠𝑡 is equal to the result of 𝑢(𝑠).

Fig. 1. Examples of actions in each situation when the robot used a

CRBF-based SafeRL controller. These are the general responses of the

controller in safe, risky, and critical situations, respectively. In a risky*

situation, the robot stops until the obstacle is removed because the actions

are constrained for all directions.

Fig. 2. CRBF-based SafeRL control pipeline. Neural network and CRBF generate state dependent actions. The actions in a CRBF come from two

sources: one from the CBF and one from the CRF. The action selector selects one of the generated actions based on the danger level. The selected action

is used as the control input.

The control inputs 𝑢𝒮 , 𝑢ℛ , and 𝑢𝒞 correspond to

intermediate decisions made by the RL policy, the CBF-

based controller, and the recovery function, respectively.

Each control input ultimately produces a velocity

command pair consisting of translational velocity 𝑣 and

rotational velocity 𝜔. These values are applied directly to

the robot’s differential drive system. In the safe area, 𝑢𝒮 is

mapped from the RL policy output to (𝑣𝒮, 𝜔𝒮). In the risky

area, the CBF modifies this to ensure safety, producing (𝑣ℛ,

𝜔ℛ). In the critical area, the recovery function generates

emergency velocities (𝑣𝒞 , 𝜔𝒞) to move the robot away

from obstacles. A control switching mechanism then

selects the appropriate (𝑣, 𝜔) based on the current danger

level, as shown in Algorithm 2.

Meanwhile, the training strategy in the right part of

Fig. 2 is a simplified representation of the policy update

part, which uses different policy update methods

depending on the danger level. A detailed description of

the policy update is continued in the next section.

VII. CRBF-BASED SAFERL TRAINING STRATEGY

There have already been several attempts to learn

SafeRL, including SafeRL using CBF [31, 34]. However,

we could not use the traditional method because we apply

two constraints, CBF and RF, sequentially. To the best of

our knowledge, there are few SafeRL training methods that

use sequential constraints from a collision avoidance

perspective to update policies. In this section, we describe

the CRBF-based SafeRL training strategy.

A. Rewards and Penalties

Table I shows the rewards and penalties used for

training. We call the reward received at the end of a single

step 𝑅𝑠𝑡𝑒𝑝 . We generate two penalties in addition to the

Safe Risky Risky*

Critical Critical*

Possible action

Constrained action

Selected action

𝑎𝐶𝐵𝐹

𝑎𝑁𝑁

𝑎𝑅𝐹

𝑎𝑅𝐹

Tra
in

in
g
 Stra

te
g
y

CRBF

Neural
Network

CBF CRF

Action Filter
(Algorithm 1)

Choose

Recovery Function
(Algorithm 2)

Get

Environment

Set danger level

Action
Selector

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

352

reward: 𝑃𝐶𝐵𝐹 and 𝑃𝑅𝐹. The penalty 𝑃𝐶𝐵𝐹 is used when 𝑎𝑁𝑁

is filtered by the control barrier, and the penalty 𝑃𝑅𝐹 is

given when the robot’s danger level is 𝒞.

TABLE I. REWARDS AND PENALTIES

Symbol Description

Rstep Reward for each step

PCBF Barrier penalty

PRF Recovery penalty

B. Sequential Constraints Training Strategy

The CRBF-based SafeRL is a method for increasing

safety by selecting one of three actions based on the danger

level. One of the key features of SafeRL algorithms is that

the action predicted by the neural network differs from the

action actually taken. Accounting for this in policy updates

is an important part of SafeRL’s policy update process.

However, none of the existing work has a policy update

approach that is suitable for our proposed approach, and

we propose a policy update strategy for CRBF-based

SafeRL by combining and modifying existing approaches.

We use update policies to perform constrained actions

as follows [35]:

• Unconstrained Prediction (UP): The UP is the same

method as general reinforcement learning, where the

neural network executes the predicted action without

considering constraints.

• Constrained Prediction with Penalty (CPP): The CPP

modifies the predicted action of the neural network to

satisfy the constraints. The predicted action is used

for training, but the changed action is actually

executed to ensure a safe learning process with

penalty.

• Constrained Prediction and Correction (CPC): The

CPC closes the gap between the initial prediction and

the corrected action by learning both the predicted

and corrected actions. The CPC takes into account

the cost of violating constraints by applying penalties

to the rewards for the predicted action.

Fig. 3. History selector pipeline. The history selector chooses the policy

update method for efficient learning when updating policies. Depending

on the strategy selected, it stores the history storage. A dotted arrow

indicates when the direction changes based on the selection.

We propose a learning strategy that combines the UP,

CPP, and CPC approaches. Our learning strategy is

represented by the history selector in Fig. 3. The history

selector uses different policy update strategies when

danger levels are 𝒮 , ℛ , and 𝒞 . The first choice of the

history selector is to make a primary choice based on

danger level. Here, if the danger level is 𝒮, we use the UP

strategy; if it is ℛ, we use the CPP strategy; but if it is 𝒞,

we need to make another choice. If the danger level is 𝒞,

determine whether the neural network’s action is filtered

by a control barrier. If it is filtered, use a CPC strategy.

However, if the neural network’s action is unfiltered, use

the UP strategy as an agent would with 𝒮. The actions and

rewards selected in the history selector are combined with

the state in the history storage for use in policy updates.

VIII. SIMULATIONS

A. Simulation Environment

For the simulation, we used the Webots simulator [36]

on a computer with a Geforce RTX 3080 and Intel i7-

12700 3.6 GHz. We used TurtleBot3 Burger as a two-

wheeled robot with a 2D-LiDAR [37]. LiDAR offset

calibration was performed due to the error between the

center of the robot’s rotation axis and the center of the

LiDAR. The radius of the TurtleBot3 Burger is 105 mm,

the distance between the two wheels 0.16 m, and the

maximum transition and rotation velocities are 0.22 m/s

and 2.84 rad/s, respectively. Although our simulations are

conducted using TurtleBot3 in Webots, the CRBF

framework is modular and does not rely on platform-

specific kinematics or sensors. The policy and switching

logic of the proposed method can be applied to any

differential-drive robot, or to other robotic platforms that

provide similar low-level velocity control interfaces.

The sampling time 𝑇𝑠 is set to 0.05 seconds. In Eq. (20),

we set 𝑑𝒞 to 0.25 m. For comparison, 𝑑ℛ is set to small

(𝑑ℛ = 1.4𝑑𝒞), medium (𝑑ℛ = 1.6𝑑𝒞), and large (𝑑ℛ =

1.8𝑑𝒞). Depending on which of the three dℛ is applied, the

proposed CRBF models were divided into 𝑂𝑢𝑟𝑠𝑆, 𝑂𝑢𝑟𝑠𝑀,

and 𝑂𝑢𝑟𝑠𝐿 , and the CBF models for comparison were

divided into 𝐶𝐵𝐹𝑆 , 𝐶𝐵𝐹𝑀 , and 𝐶𝐵𝐹𝐿 . Here, S, M, and L

mean small, medium, and large, respectively. For the

traditional comparison algorithms, we used APF [6], a

widely used method, and ORCA [38]. The repulsive

threshold distance of APF and the neighborhood distance

of ORCA, which are the distances at which each algorithm

starts to detect obstacles, were set equal to the medium dℛ.

Table II shows the hyperparameters used for training.

These hyperparameters were chosen to optimize the

performance of the PPO algorithm during training.

TABLE II. HYPERPARAMETERS FOR TRAINING

Parameter Value

Batch size 5

Action bound 1.0

Max step 500

Learning rate (actor) 5e−5

Learning rate (critic) 3e−5

Discount factor 0.99

Loss cliping 0.2

Entropy loss 1.5e−3

History Selector

Constrained - learn
Predictions with
Penalty (CPP)

Constrained – learn

Predictions and
Corrections (CPC)

𝑠𝑡𝑎𝑡𝑒

 afe isky ritical

Unconstrained
Predictions (UP)

True False

𝑎𝐵𝑒𝑠𝑡, 𝑅𝑠𝑡𝑒𝑝

𝑎𝑁𝑁, (𝑅𝑠𝑡𝑒𝑝 − 𝑃𝐶𝐵𝐹)

𝑎𝑁𝑁, (𝑅𝑠𝑡𝑒𝑝 − 𝑃𝑅𝐹)

𝑎𝐵𝑒𝑠𝑡, 𝑅𝑠𝑡𝑒𝑝

𝑎𝐵𝑒𝑠𝑡

𝑎𝑁𝑁

update

H
isto

ry
 S

to
ra

g
e

𝑎𝐵𝑒𝑠𝑡 == 𝑎𝑁𝑁

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

353

The simulation environment was 3 m × 3 m with walls

of sufficient height around the perimeter, as shown in

Fig. 4. The training environment consisted of 4 circular

obstacles, two static and two dynamic. The maximum

speed of the dynamic obstacle is 0.1 m/s. The test

environment is set up as a static map with 6 circular static

obstacles; a Mix_easy map with 2 circular static and 2

circular dynamic obstacles; a Mix_hard map with 2

circular static, 2 dynamic, and 2 square dynamic obstacles;

a dynamic map with 6 circular dynamic obstacles; and a

Dynamic_fast map with 5 relatively fast circular dynamic

obstacles. All dynamic obstacles move at less than the

maximum speed of 0.1 m/s and bounce off when they

reach the goal, the wall, or other obstacles. The obstacles

in the Dynamic_fast map have a maximum speed of

0.3 m/s. The robot starts at a random position near a wall

on the map, facing a random direction. The robot’s task is

to reach the central goal while avoiding collisions. Each

model was tested 300 times for each map.

Fig. 4. Test environment for the simulation. The direction of dynamic

obstacles is indicated by the red arrow.

During training, we applied domain randomization to

achieve model generalization by randomly varying

different variables in the simulated environment. Domain

randomization is known as one of the effective approaches

in Sim2Real, a research area that aims to reduce the

difference between simulation and real environments [39].

The domain randomization is as follows:

1) We randomize the initial position and initial

orientation of the robot.

2) We randomize the speed and initial orientation

of each obstacle.

3) We apply Gaussian noise of up to 5 mm to the

LiDAR sensor.

4) We apply Gaussian noise of up to 15% to the

sampling time per time step.

B. Simulation Results

Table III shows the results of the collision avoidance

simulations. For each model, we recorded the number of

successful trials, collisions, and instances where the agent

reached the maximum allowed steps. We defined a failure

as a collision or reaching the maximum step. For the static

map, all models achieved a collision rate of 3% or less

when considering only the number of collisions, except

when exceeding the max step. Except for the dynamic_fast

map with obstacles moving at untrained speeds, all of our

models achieved a collision rate of less than 1.2%. With

the additional exception of 𝑂𝑢𝑟𝑠𝐿, which has the largest

dℛ, our models maintained a success rate of above 97% in

all cases. Meanwhile, in the dynamic_fast map, the 𝑂𝑢𝑟𝑠𝐿

model had the highest success rate.

TABLE III. SIMULATION RESULTS FOR COLLISION AVOIDANCE

Map Model
of

success

of

collision

Success

rate
max step

Static

𝑂𝑢𝑟𝑠𝑆 300 0 100.0 % 0

𝑂𝑢𝑟𝑠𝑀 291 0 97.0 % 9

𝑂𝑢𝑟𝑠𝐿 173 0 57.7 % 127

RF 201 0 67.0 % 99

𝐶𝐵𝐹𝑆 291 9 97.0 % 0

𝐶𝐵𝐹𝑀 245 6 81.7 % 49

𝐶𝐵𝐹𝐿 163 0 54.3 % 137

APF 300 0 100.0 % 0

ORCA 300 0 100.0 % 0

Mix_easy

𝑂𝑢𝑟𝑠𝑆 298 0 99.3 % 2

𝑂𝑢𝑟𝑠𝑀 296 0 98.7 % 4

𝑂𝑢𝑟𝑠𝐿 298 0 98.7 % 4

RF 287 1 95.7 % 12

𝐶𝐵𝐹𝑆 286 14 95.3 % 0

𝐶𝐵𝐹𝑀 285 10 95.0 % 5

𝐶𝐵𝐹𝐿 285 2 95.0 % 13

APF 299 1 99.7 % 0

ORCA 297 3 99.0 % 0

Mix_hard

𝑂𝑢𝑟𝑠𝑆 296 0 98.7 % 4

𝑂𝑢𝑟𝑠𝑀 293 1 97.7 % 6

𝑂𝑢𝑟𝑠𝐿 234 1 78.0 % 65

RF 244 3 81.3 % 53

𝐶𝐵𝐹𝑆 261 34 87.0 % 5

𝐶𝐵𝐹𝑀 239 50 79.7 % 11

𝐶𝐵𝐹𝐿 221 58 73.7 % 21

APF 298 2 99.3 % 0

ORCA 294 6 98.0 % 0

Dynamic

𝑂𝑢𝑟𝑠𝑆 298 0 99.3 % 8

𝑂𝑢𝑟𝑠𝑀 299 0 99.7 % 1

𝑂𝑢𝑟𝑠𝐿 295 0 98.3 % 5

RF 285 2 95.0 % 13

𝐶𝐵𝐹𝑆 250 50 83.3 % 0

𝐶𝐵𝐹𝑀 229 69 76.3 % 2

𝐶𝐵𝐹𝐿 233 33 77.7 % 34

APF 599 1 99.7 % 0

ORCA 288 12 96.0 % 0

Dynamic

_fast

𝑂𝑢𝑟𝑠𝑆 265 35 88.3 % 0

𝑂𝑢𝑟𝑠𝑀 282 18 94.0 % 0

𝑂𝑢𝑟𝑠𝐿 287 13 95.7 % 0

RF 224 76 76.7 % 0

𝐶𝐵𝐹𝑆 207 93 69.0 % 0

𝐶𝐵𝐹𝑀 211 89 70.3 % 0

𝐶𝐵𝐹𝐿 191 107 63.7 % 2

APF 207 93 69.0 % 0

ORCA 222 78 74.0 % 0

Fig. 5 shows the success rate for each of the collision

avoidance models. All learning-based models have a high

success rate on the mix_easy map because it is very similar

Static Mix_easy Mix_hard

Dynamic Dynamic_fast

(m)

(m
)

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

354

to the training environment. The difference in success rate

compared to traditonal collision avoidance algorithms is

most noticeable on the dynamic_fast map with obstacles

that are faster than the robot. In the dynamic_fast map, all

our models had a significantly higher success rate than the

traditional collision avoidance models. Models using RF

only achieved high success rates on the dynamic maps.

The trajectory of a robot avoiding collisions in the

dynamic_fast map is shown in Fig. 6. In the situation

shown in the trajectory, 𝐶𝐵𝐹𝑆 and APF collided with the

obstacle. In the case of 𝐶𝐵𝐹𝑆, the CBF moved the robot to

a safe place. At the same time, however, an obstacle moved

into the robot’s path, causing it to collide. The APF was

not able to handle situations where an obstacle blocked the

path and another obstacle was next to it. The other models

moved well to their goal without colliding with any

obstacles, and the model that arrived in the fastest time is

ORCA. In Fig. 6, the areas that need to detect obstacles to

set the danger level for each model are set to the same as

used in Fig. 1.

Fig. 5. Collision avoidance success rate for each collision avoidance

model in simulations.

Fig. 6. The trajectories of each model and the obstacles in the first episode of the dynamic_fast map. The yellow and red translucent areas are where

obstacles are detected to set the danger level for each model. The start and end points of the obstacles are represented by red dots, and the paths of the

obstacles are represented by red arrows.

Fig. 7. Average reward and variance per episode during the training.

To demonstrate our proposed training strategy, we

performed CRBF-based collision avoidance training using

a different strategy. We set the learning criterion to 𝑂𝑢𝑟𝑠𝑀.

Two additional models were trained: a model using the

CPC method and a model using only the UP method. Fig. 7

shows the reward history during training for these three

models. The criterion for the end of training is when the

success rate is at least 95% for the mix_easy map and 70%

for the mix_hard map. Since the generalization

performance of the UP method was too low, we set the

training termination criterion for the UP method when the

success rate is at least 95% for the mix_easy map and at

least 50% for all other maps.

The training time for our method, the CPC method, and

the UP method were 3hr 44min, 5hr 17min, and 6hr 1min,

respectively. The CPC method required 12.2% less

training time than the UP method and achieved higher

collision avoidance performance than the UP method, as

shown in Table IV. Meanwhile, the 𝑂𝑢𝑟𝑠𝑀 method

required 29.3% less training time than the CPC method,

with little performance difference in performance between

the 𝑂𝑢𝑟𝑠𝑀 and CPC methods.

From the results so far, while we observe consistent

performance gains in success rate, we acknowledge that

the current results do not include hypothesis testing or

confidence intervals. In future work, we plan to repeat the

experiments with a larger number of trials and apply

statistical validation methods such as confidence intervals

or t-tests to ensure the robustness of the results.

(m)

(m
)

 𝑆 𝑀 𝐿

 𝑆 𝑀 𝐿 APF ORCA

RF

 𝑀

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

355

TABLE IV. SIMULATION RESULTS FOR DIFFERENT TRAINING METHODS

Map Model
of

success

of

collision

Success

rate
max step

Static

Ours 291 0 97.0 % 9

CPC 288 0 96.0 % 12

UP 195 0 65.0 % 105

Mix_easy

Ours 296 0 98.7 % 4

CPC 298 0 99.3 % 2

UP 294 0 98.0 % 6

Mix_hard

Ours 293 1 97.7 % 6

CPC 293 3 97.7 % 4

UP 174 0 58.0 % 126

Dynamic

Ours 299 0 99.7 % 1

CPC 298 1 99.3 % 1

UP 222 6 74.0 % 72

Dyn_fast

Ours 282 18 94.0 % 0

CPC 275 21 91.7 % 4

UP 256 41 85.3 % 3

IX. PRACTICAL EXPERIMENTS

A. Environment

The TurtleBot3-Waffle, a robot similar to the one used

in the simulation but of a different size, was used as the

robot for the real-world experiment. Similarly, the LiDAR

offset calibration was performed due to the error between

the center of the TurtleBot3’s rotation axis and the centre

of the LiDAR. The radius of the TurtleBot3 waffle is

220 mm, the distance between the two wheels is 0.287 m,

and the maximum translational and rotational velocities

are 0.26 m/s and 1.82 rad/s, respectively. We set 𝑑𝒞 to 0.40

m in Eq. (20). To localize a robot and obstacles, we used

the Vicon robot tracking system [40], which can measure

the robot’s position with an accuracy of 2 mm. While the

physical experiments are performed in a motion capture-

based environment, the CRBF is independent of any

particular localization method and can be applied to

systems with on-board perception and sensor fusion.

We used ROS1 (Robot Operating System) to control the

robot. We set up two similar test environments, as shown

in Fig. 8. Both environments share two static obstacles in

common, one at the top and one at the bottom, but differ in

their dynamic obstacles. The first environment is a robot

map with a dynamic obstacle that continuously patrols a

path diagonally across the center from the bottom right to

the top left. The dynamic obstacle has a speed of 0.26 m/s,

the same as the robot. The second environment is a human

map with a human patrolling the same path as the obstacle

in the first environment. The human moves at a speed

similar to that of the agent robot. The robot starts at a

random location near a wall on the map, facing in a random

direction.

Fig. 8. Real-world test environment. The patrol direction of dynamic

obstacles is indicated by the red arrow.

B. Results

Fig. 9 shows the collision avoidance success rate for

each model. In the real world, the models showed

sufficient time efficiency without requiring a specified

maximum step. In the robot map, all models had a collision

avoidance success rate above 85%. In the human map, the

difference in success rates between our models and the

CBF models is more pronounced. In the case of humans,

the motion is not constant, but the proposed method has

shown an excellent ability to cope with sudden changes in

motion.

Fig. 9. Collision avoidance success rate for each model in robot and

human maps.

Fig. 10 shows the trajectory when a dynamic obstacle is

implemented with a robot. Since the obstacle has the same

speed as the robot, the robot and the obstacle will always

meet around the goal if the robot goes straight to the goal.

The 𝐶𝐵𝐹𝑆 method collided just before reaching the goal.

The 𝑂𝑢𝑟𝑠𝑆 method, similar to the 𝐶𝐵𝐹𝑆 method, hit the

obstacle just before reaching the goal, but did not collide.

The 𝑂𝑢𝑟𝑠𝑀 and 𝐶𝐵𝐹𝑀 methods had a trajectory that

avoided the obstacle and went around it.

Fig. 10. The trajectories of each model in the first episode of the robot

map. The dynamic obstacle is patrolled in the direction of the red arrows.

Fig. 11 shows the trajectory of an experiment performed

on the human map. As the people appearing as obstacles

Robot Human

(m)

(m
)

(%
)

 𝑆 𝑀

 𝑆 𝑀

(m)

(m
)

 𝑆 𝑀

 𝑆 𝑀

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

356

move at a similar speed to the robot, the robot will always

encounter obstacles close to the goal if the robot goes

straight to the goal. Again, only the 𝐶𝐵𝐹𝑆 method collided

with the obstacle. Like the other models, the 𝐶𝐵𝐹𝑆 method

took actions to avoid human obstacles, but not enough.

Fig. 11. The trajectories of each model in the first episode of the human

map. The human patrolled in the direction of the arrows.

X. DISCUSSION

The proposed SafeRL framework introduces a

structured switching mechanism between RL, CBF, and

RF policies that prioritizes safety while allowing efficient

navigation to goal positions in dynamic environments.

This hybrid control strategy effectively addresses one of

the key limitations of conventional reinforcement learning,

i.e., its inability to guarantee safety during both training

and execution, without sacrificing the adaptability that

makes RL attractive in dynamic and uncertain scenarios.

By preserving the reactive and flexible nature of RL while

embedding formal safety and recovery layers, the

proposed method provides a balanced solution that

improves both safety and task performance in real-world

applications.

Although our framework integrates RL with CBF and

RF modules to achieve both motion planning and safety, a

full control-theoretic proof that formally guarantees

convergence to the goal while maintaining safety is

beyond the scope of this paper. However, the use of CBF

ensures forward invariance of the defined safe set under

certain conditions, and the recovery mechanism provides a

fallback when standard control fails to maintain safety. We

believe that these components provide the basis for future

theoretical analysis.

While the proposed CRBF framework shows promising

empirical performance in both simulation and real-world

experiments, we acknowledge that formal guarantees of

safety and task efficiency under model uncertainty are not

yet established. Although random noise has been

introduced into the sensor observations and dynamics to

partially account for perception and control errors in

simulation experiments, it is limited in assessing the

robustness of the method under real-world uncertainty.

The current method relies on a deterministic perception

and control pipeline, which may limit its performance

under severe sensor noise, dynamic uncertainties, or

adversarial disturbances. As future work, we plan to

extend the framework by incorporating robust control

techniques or probabilistic safety verification, e.g. using

Gaussian processes or reachability analysis, to provide

formal guarantees in stochastic environments.

Furthermore, our current evaluation focuses on standard

SafeRL and classical baselines, but our framework differs

from recent hybrid methods by introducing a danger-aware

hierarchical controller that dynamically switches between

RL, CBF, and RF policies. Future work will extend this

comparison to include more recent methods such as

RecoveryRL [41] and robust CBF-RL [42].

XI. CONCLUSION

This paper proposes a CRBF-based SafeRL model for

collision avoidance and presents a training method. The

CRBF improves the model’s collision avoidance

performance over traditional methods by enforcing

sequential constraints as elements of SafeRL. In addition,

our proposed CRBF training method showed faster

training times and higher generalization performance than

existing methods. The proposed CRBF does not explicitly

account for uncertainty or dynamics in the environment.

However, the experiments showed that adding RF with

sequential constraints reduces conflicts due to uncertainty

that may occur when using CBF alone. In future work, we

will develop a crash-resistant SafeRL algorithm that

incorporates uncertainty in the environment.

NOMENCLATURE

Symbol Description

𝑠 State of the robot

𝑎 Action taken by the robot

π Policy function

r(s, a) Reward function

γ Discount factor

P(s’|s, a) State transition probability

Q(s, a) State-action value function

𝒮 State space

𝒜 Action space

𝑢 Control input

𝑢𝒮, 𝑢ℛ, 𝑢𝒞 Control input in the safe, risky, and critical areas

𝑣, 𝜔 Translational and rotational velocities

𝑑𝑖
𝑜𝑏𝑠 Euclidean distance to the 𝑖-th obstacle

𝜃𝑖
𝑜𝑏𝑠 Angle to the 𝑖-th obstacle

𝑑𝑔𝑜𝑎𝑙 Distance to the goal

𝜃𝑔𝑜𝑎𝑙 Angle to the goal

𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 Set of safe actions filtered by CBF

𝒮𝑠𝑒𝑡, ℛset, 𝒞set State set of safe, risk, and critical level

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, Gyuyong Hwang and Gyuho Eoh;

methodology, Gyuyong Hwang; validation, Gyuyong

Hwang; writing—original draft preparation, Gyuyong

Hwang; writing—review and editing, Gyuho Eoh; project

administration, Gyuho Eoh; funding acquisition, Gyuho

Eoh. All authors have read and agreed to the published

version of the manuscript.

(m)

(m
)

 𝑆 𝑀

 𝑆 𝑀

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

357

FUNDING

This research was supported by a grant (D2403003)

from Gyeonggi Technology Development Program funded

by Gyeonggi Province. This work was also supported by

the GRRC program of Gyeonggi province [GRRC

TUKorea2023-B03, Development of an intelligent

inspection system and an autonomous navigation system

for the transportation of multi-material parts].

REFERENCES

[1] C. H. R. Everett, “Survey of collision avoidance and ranging

sensors for mobile robots,” Robotics and Autonomous Systems, vol.

5, no. 1, pp. 5–67, May 1989. https://doi.org/10.1016/0921-

8890(89)90041-9

[2] S. Haddadi, A. De Luca, and A. Albu-Schaffer, “Robot collisions:

A survey on detection, isolation, and identification,” IEEE

Transactions on Robotics, vol. 33, no. 6, pp. 1292–1312, Dec. 2017.

https://doi.org/10.1109/TRO.2017.2723903

[3] C. W. Kim and J. M. A. Tanchoco, “Conflict-free shortest time

bidirectional AGV routing,” International Journal of Production

Research, vol. 29, no. 12, pp. 2377–2391, Dec. 1991.

https://doi.org/10.1080/00207549108948090

[4] G. Leitmann and J. Skowronski, “Avoidance control,” Journal of

Optimization Theory and Applications, vol. 23, no. 4, pp. 581–591,

Dec. 1977. https://doi.org/10.1007/BF00933298

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and

mobile robots,” The International Journal of Robotics Research,

vol. 5, no. 1, pp. 90–98, Mar. 1986.

https://doi.org/10.1177/027836498600500106

[6] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic

environment: A collision cone approach,” IEEE Transactions on

Systems, Man, and Cybernetics: Part A: Systems and Humans, vol.

28, no. 5, pp. 562–574, 1998. https://doi.org/10.1109/3468.709600

[7] R. S. Sutton and A. Barto, Reinforcement Learning: An

Introduction, Cambridge, Ma; London: The Mit Press, 2018.

https://doi.org/10.1017/S0263574799271172

[8] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine,

“Uncertainty-aware reinforcement learning for collision avoidance,”

arXiv preprint, arXiv:1702.01182, 2017.

https://doi.org/10.48550/arXiv.1702.01182

[9] W. R. Clements, B.-M. Robaglia, B. Van Delft, R. B. Slaoui, and S.

Toth, “Estimating risk and uncertainty in deep reinforcement

learning”, in Proc. ICML Workshop Uncertainty Robustness Deep

Learning, 2020. https://doi.org/10.48550/arXiv.1905.09638

[10] B. Charpentier, R. Senanayake, M. Kochenderfer, and S.

Gunnemann, “Disentangling epistemic and aleatoric uncertainty in

reinforcement learning”, arXiv preprint, arXiv:2206.01558, 2022.

https://doi.org/10.48550/arXiv.2206.01558

[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and

U. Topcu, “Safe reinforcement learning via shielding,” in Proc. the

AAAI Conference on Artificial Intelligence, Apr. 2018, vol. 32, no.

1. https://doi.org/10.1609/aaai.v32i1.11797

[12] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,

and P. Tabuada, “Control barrier functions: Theory and

applications,” in Proc. 18th European Control Conference (ECC),

Jun. 2019. https://doi.org/10.23919/ECC.2019.8796030

[13] P. Wieland and F. Allgöwer, “Constructive safety using control

barrier functions,” in Proc. IFAC, vol. 40, no. 12, pp. 462–467, Jan.

2007. https://doi.org/10.3182/20070822-3-ZA-2920.00076

[14] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier

function based quadratic programs for safety critical systems,”

IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–

3876. https://doi.org/10.1109/TAC.2016.2638961

[15] I. Tezuka and H. Nakamura, “Strict zeroing control barrier function

for continuous safety assist control,” IEEE Control Systems Letters,

vol. 6, pp. 2108–2113, 2022.

https://doi.org/10.1109/LCSYS.2021.3138526

[16] Y. Hu, J. Fu, and G. Wen, “Safe reinforcement learning for model-

reference trajectory tracking of uncertain autonomous vehicles with

model-based acceleration,” IEEE Transactions on Intelligent

Vehicles, vol. 8, no. 3, pp. 2332–2344, Mar. 2023.

https://doi.org/10.1109/TIV.2022.3233592

[17] D. Wang, T. Fan, T. Han, and J. Pan, “A two-stage reinforcement

learning approach for multi-UAV collision avoidance under

imperfect sensing,” IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 3098–3105, Apr. 2020.

https://doi.org/10.1109/LRA.2020.2974648

[18] J. Woo and N. Kim, “Collision avoidance for an unmanned surface

vehicle using deep reinforcement learning,” Ocean Engineering,

vol. 199, 107001, Mar. 2020.

https://doi.org/10.1016/j.oceaneng.2020.107001

[19] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards

optimally decentralized multi-robot collision avoidance via deep

reinforcement learning,” in Proc. IEEE International Conference

on Robotics and Automation (ICRA), May 01, 2018.

https://doi.org/10.1109/ICRA.2018.8461113

[20] J. Liang, U. Patel, A. J. Sathyamoorthy and D. Manocha, “Realtime

collision avoidance for mobile robots in dense crowds using

implicit multi-sensor fusion and deep reinforcement learning”,
arXiv preprint, arXiv:2004.03089, 2020.

https://doi.org/10.48550/arXiv.2004.03089

[21] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in

pedestrianrich environments with deep reinforcement learning,”

IEEE Access, vol. 9, pp. 10357–10377, 2021.

https://doi.org/10.1109/ACCESS.2021.3050338

[22] J. Roghair, A. Niaraki, K. Ko, and A. Jannesari, “A vision based

deep reinforcement learning algorithm for UAV obstacle

avoidance,” in Proc. of SAI Intelligent Systems Conference.

Springer, 2021, pp. 115–128. https://doi.org/10.1007/978-3-030-

82193-7_8

[23] B. Lütjens, M. Everett, and J. P. How, “Safe reinforcement learning

with model uncertainty estimates,” in Proc. IEEE Internati onal

Conference on Robotics and Automation (ICRA), May 2019, pp.

8662–8668. https://doi.org/10.1109/ICRA.2019.8793611

[24] M. Srouji, H. Thomas, Y.-H.-H. Tsai, A. Farhadi and J. Zhang,

“SAFER: Safe collision avoidance using focused and efficient

trajectory search with reinforcement learning,” in Proc.

 IEEE 19th International Conference Automation Science

Engineering (CASE), pp. 1–8, Aug. 2023.

https://doi.org/10.1109/CASE56687.2023.10260402

[25] Z.-Q. Zhou et al., “A safe reinforcement learning approach for

autonomous navigation of mobile robots in dynamic environments,”

in Proc. CAAI Transactions on Intelligence Technology, Oct. 2023,

pp. 1–16. https://doi.org/10.1049/cit2.12269

[26] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control

barrier function optimization approach,” International Journal of

Robust and Nonlinear Control, vol. 31, no. 6, pp. 1923–1940, Aug.

2020. https://doi.org/10.1002/rnc.5132

[27] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,

and P. Tabuada, “Control barrier functions: Theory and

applications,” in Proc. 18th European Control Conference (ECC),

Jun. 2019. https://doi.org/10.23919/ECC.2019.8796030

[28] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end

safe reinforcement learning through barrier functions for safety-

critical continuous control tasks,” in Proc. the AAAI Conference on

Artificial Intelligence, Jul. 2019, vol. 33, pp. 3387–3395.

https://doi.org/10.1609/aaai.v33i01.33013387

[29] Z. Cai, H. Cao, W. Lu, L. Zhang, and H. Xiong, “Safe multi-agent

reinforcement learning through decentralized multiple control

barrier functions,” arXiv preprint, arXiv:2103.12553, 2021.

https://doi.org/10.48550/arXiv.2103.12553

[30] Y. Emam, P. Glotfelter, Z. Kira, and M. Egerstedt, “Safe

reinforcement learning using robust control barrier functions,”

arXiv preprint, arXiv:2110.05415, 2021.

https://doi.org/10.48550/arXiv.2110.05415

[31] A. Anand, K. Seel, V. Gjærum, A. Håkansson, H. Robinson, and A.

Saad, “Safe learning for control using control Lyapunov functions

and control barrier functions: A review,” Procedia Computer

Science, vol. 192, pp. 3987–3997, 2021.

https://doi.org/10.1016/j.procs.2021.09.173

[32] A. D. AMES et al., “Control barrier functions: Theory and

applications,” In Proc. 18th European Control Conference (ECC),

June 2019, pp. 3420–3431.

https://doi.org/10.23919/ECC.2019.8796030

[33] W. Xiao, Calin Belta, and C. G. Cassandras, “Adaptive control

barrier functions,” IEEE Transactions on Automatic Control, vol.

67, no. 5, pp. 2267–2281, May 2022.

https://doi.org/10.1109/TAC.2021.3074895

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

358

[34] M. Guerrier, H. Fouad, and G. Beltrame, “Learning control barrier

functions and their application in reinforcement learning: A survey”,

arXiv preprint, arXiv:2404.16879, 2024.

https://doi.org/10.48550/arXiv.2404.16879

[35] T. H. Pham, G. De Magistris, and R. Tachibana, “OptLayer-

practical constrained optimization for deep reinforcement learning

in the real world,” in Proc. IEEE International Conference on

Robotics and Automation (ICRA), May 2018, pp. 6236–6243.

https://doi.org/10.1109/ICRA.2018.8460547

[36] O. Michel, “Cyberbotics Ltd. WebotsTM: Professional mobile

robot simulation,” International Journal of Advanced Robotic

Systems, vol. 1, no. 1, 5, Mar. 2004. https://doi.org/10.5772/5618

[37] R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education

platform,” in Proc. International Conference Robotics Eduation.

(RiE). Cham, Switzerland: Springer, 2020, pp. 170–181.

https://doi.org/10.1007/978-3-030-26945-6_16

[38] J. v. den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-

body collision avoidance,” in Proc. Robotics Research, Berlin,

Germany: Springer, 2011, pp. 3–19. https://doi.org/10.1007/
10.1007/978-3-642-19457-3_1

[39] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,

“Domain randomization for transferring deep neural networks from

simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst. (IROS), pp. 23–30, Sep. 2017.

https://doi.org/10.1109/IROS.2017.8202133

[40] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier,

“A study of Vicon system positioning performance,” Sensors, vol.

17, no. 7, 1591, Jul. 2017. https://doi.org/10.3390/s17071591

[41] B. Thananjeyan et al., “Recovery RL: Safe reinforcement learning

with learned recovery zones,” IEEE Robotics and Automation

Letters, vol. 6, no. 3, pp. 4915–4922, Jul. 2021.

https://doi.org/10.1109/LRA.2021.3070252

[42] S. Edvards and P. Ögren. “Using reinforcement learning to create

control barrier functions for explicit risk mitigation in adversarial

environments,” in Proc. IEEE International Conference on

Robotics and Automation (ICRA), Oct. 2021, pp. 10734–10740.

https://doi.org/10.1109/ICRA48506.2021.9561853

Copyright © 2025 by the authors. This is an open access article

distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited (CC BY 4.0).

International Journal of Mechanical Engineering and Robotics Research, Vol. 14, No. 3, 2025

359

https://creativecommons.org/licenses/by/4.0/

