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Abstract—The purpose of this study is to present an 

automatic measurement and classification system using a 

back-lighting source for a robotic arm with four Degrees of 

Freedom (DOF), employing machine vision technology. The 

objects utilized in this study are bolts and nuts, placed 

randomly within the workspace of the robotic arm. During 

operation, image data from a Metal-Oxide-Semiconductor 

(CMOS) camera is transmitted to a personal computer to 

calculate the geometric parameters of the objects, including 

shape, angle, and position, which are then sent to the 

controller of the robotic arm. The robotic arm subsequently 

picks up the objects from the workspace and places them into 

target zones. With the proposed system, the world 

coordinates of components are accurately determined and 

utilized for the manipulation of the robotic arm. The research 

results demonstrate that the automatic classification system 

can detect and identify the shape and orientation of objects 

correctly. This system proves to be effective and easy to use.  

 

Keywords—robotic arm, automatic optical inspection, image 

measurement, classification 

 

I. INTRODUCTION 

The use of advanced machine vision systems is 

increasingly prevalent across various manufacturing and 

quality control processes. Machine vision facilitates the 

acquisition of quicker, more accurate, and repeatable 

results in both mass-produced and custom product 

manufacturing. Basic machine vision systems typically 

consist of one or more cameras directed at the area of 

interest, a frame grabber for capturing and transmitting 

images, a computer and display for running the machine 

vision software application and manipulating captured 

images, and appropriate illumination focused on the area 

of interest. 

Many applications of machine vision involve inspecting 

components [1, 2] and surfaces for defects that affect 

quality [3]. Additionally, machine vision has been 

employed to varying degrees to assist in manipulating 

manufacturing equipment for specific tasks. For example, 
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a workpiece held in a robot manipulator can be guided to 

a target using a machine vision feedback procedure. The 

robot is programmed with a general set of movement 

instructions. 

As machine vision is considered an essential sensing 

function for robots, a range of special-purpose and general-

purpose image processing hardware has been developed to 

enhance visual sensing performance. Typical image 

processing systems are designed to deliver high-resolution 

and high-speed homogeneous processing across the entire 

screen. 

There is a wealth of research applying machine vision 

to robotic arms. For instance, Inoue et al. [4] introduced a 

high-performance robot vision system capable of real-time 

tracking of moving objects. In the study by  

Blasco et al. [5], two vision systems mounted on the 

machine were utilized. One system detected weeds and 

transmitted their coordinates to the robot arm control, 

while the other corrected inertial perturbations affecting 

the position of the end-effector. The primary vision system 

successfully located 84% of weeds and 99% of lettuces. 

Shafik et al. [6] proposed an innovative 3D piezoelectric 

ultrasonic actuator using a flexural vibration ring 

transducer for machine vision and robot guidance 

applications. Homayounzadeh and Keshmiri [7] developed 

an observer-based impedance controller for a robot arm 

during constrained motion. This controller required 

measurements of link position and interaction force. In the 

research by Ngo et al. [8], a machine vision system was 

constructed to measure three-dimensional objects. Image 

data from a double Complementary Metal-Oxide-

Semiconductor (CMOS) was transmitted to a computer for 

parameter calculation. With the proposed system, the size 

of parts is determined quickly and accurately. Moreover, 

the system is simple, inexpensive, and easy to use. Nerakae 

et al. [9] proposed a flexible automatic assembly system 

for a SCARA robot arm. This research developed the 

primary prototype of a flexible automatic pick-and-place 

assembly system integrating machine vision with the robot 

arm. Currently, Hsu et al. [10] developed a vision-based 
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measurement and classification system for a robotic arm 

under controlled lighting conditions. This study utilized a 

single CMOS camera mounted on top of the workspace of 

the robot arm. The experimental objects included bolts, 

nuts, and washers. To determine the position of the target 

subjects, the research employed the second transformation 

method and linear regression. 

Within a machine vision system, calibration work is 

crucial as its performance relies on the accuracy of the 

calibration process. Li et al. [11] investigated a relationship 

model for camera calibration, considering both geometric 

parameters and lens distortion effects of the camera. The 

study results demonstrated that the proposed algorithm 

could effectively avoid local optima and accurately 

complete visual identification tasks. 

In another research, You and Zheng [12] introduced a 

two-vanishing point calibration method for a roadside 

camera, which proved to be accurate and practical. To 

enhance the accuracy of the calibration results, they also 

incorporated multiple observations of vanishing points and 

presented another dynamic calibration method suitable for 

outdoor environments. Ivo et al. [13] introduced a novel 

structured light pattern for a 3-D structured light scanner, 

aimed at obtaining accurate anthropometric body segment 

parameters rapidly and reliably. This technique enabled the 

acquisition of volumetric parameters for both artificial 

objects and human body segments through 3-D scanning. In 

the study conducted by Pachón-Suescún et al. [14], they 

presented a machine vision algorithm designed to identify 

objects within a workspace and determine their polar 

coordinates relative to the observer. This algorithm can be 

applied with either a fixed camera or a mobile agent. The 

proposed algorithm underwent evaluation in two scenarios, 

involving the determination of the positions of six objects. 

Experimental results were compared with the actual 

positions of each object. 

To date, there has been considerable research focused on 

calibration work for machine vision systems. In their study, 

Shin and Mun [15] proposed a new calibration method for a 

multi-camera setup using a wand dance procedure. With this 

method, calibration for the 3-D frame parameters was first 

estimated using the Direct Linear Transformation (DLT) 

method. Subsequently, the parameters estimated in the 

initial step were iteratively improved through nonlinear 

optimization using the wand dance procedure. The proposed 

method was validated by comparing the Root Mean Square 

(RMS) error and the mean difference between the proposed 

method, the DLT method, and the wand method.  

In the research by Tapas [16], a machine vision system 

was utilized to recognize and sort objects, specifically bolts 

and nuts. Images of the objects were acquired using a web 

camera and processed through MATLAB for sorting. The 

study demonstrated that the system accurately detected 

moving objects on the belt conveyor and sorted them as 

required. Similarly, in the research by Murali et al. [17], a 

machine vision system was developed for the identification 

and counting of mechanical components, particularly nuts 

and bolts, using Matlab. The study reported a success rate of 

over 90%, which could be further improved to 95% by 

employing an additional spotlight on the object and camera. 

In another study, Yang et al. [18] proposed a method for 

detecting missing bolts using machine vision and deep 

learning. Three deep learning network models, namely 

YOLOv4, YOLOv5s, and YOLOXs, were employed for 

comparison, with YOLOv5s selected as the bolt target 

detection model. The study also introduced a missing bolt 

detection method based on perspective transformation and 

Intersection Over Union (IOU). Results showed that the 

proposed method accurately identified bolt targets with a 

confidence level exceeding 80% and detected missing bolts 

under various conditions such as different image distances, 

perspective angles, light intensities, and image resolutions.  

In a separate research effort, Mushtaq, Faisel et al. [19] 

presented a deep learning and image processing-based 

approach for identifying mechanical fastening elements in 

aerospace assembly lines. The study utilized the YOLO-V5 

algorithm to classify components based on their head and 

lateral shape while employing image processing techniques 

to estimate the spatial dimensions of assembly line 

components, including thread pitch. 

Building upon previous research, this study primarily 

focuses on applying image processing and machine vision 

techniques under a back-lighting source. The goal is to 

achieve automatic measurement and classification of bolts 

and nuts for a robotic arm equipped with four degrees of 

freedom. 

II. EXPERIMENTAL SYSTEM 

A.  Architecture of the Proposed System 

The architecture of the system is divided into two parts. 

The first part is the image measurement system and 

hardware equipment. This includes a CMOS camera with 

a resolution of 640450 pixels, which is connected to a 

computer via a USB port. This computer is set up with 

image processing and machine vision software. The 

specifications of the camera are shown in Table I. The 

back-lighting source is mounted under the work-space 

workspace zone of the system. A four-axis robotic arm 

with an electric gripper is used for the classification 

process. 

TABLE I. SPECIFICATION OF CAMERA 

Name Specification 

Image resolution 640450 Pixel 

Video resolution 720 Pixel 

Connection COM USB 

Type of product Webcam 

Manufacturer OEM 

Sound Yes 

Model High Resolution 

Other description 

- Autofocus with 720p recording mode, 

30 fps. 

- 2.0 Megapixel image capture Right 

light technology. 

The rotation angle is 360. 

 

In addition, the experimental system includes a work-

space workspace zone and five target zones for the 

classification process. The objects used for testing include 

bolts with a size of 10 mm in diameter and 60 mm in length 

(D10  L60 mm), bolts with a size of D8  L60 mm, bolts 
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with a size of D8  L40 mm, and nuts, respectively, as 

shown in Fig. 1. All objects are randomly placed in the 

workspace. 

The system operates in the following steps: First, the 

camera image captures images of the objects in the 

working area. Next, the system finds and identifies the 

objects in the image images and proceeds to classify them 

while determining the image coordinates. If no objects are 

detected, the system continues to wait for image for images 

from the camera. In the next subsequent step, the system 

calculates and determines the world coordinate 

coordinates of the object objects from the image 

coordinates and it sends this information to the robot arm 

for the classification process. This working process is 

performed continuously until there are no objects in the 

system's workspace. Throughout the operation, the camera 

must remain fixed in place. If the camera is re-positioned, 

the system will need to be re-calibrated. The block diagram 

of the system is shown in Fig. 2. 

 

 

Fig. 1. Experiment diagram. 

 

Fig. 2. The block diagram of the proposed system. 

B. Measurement and Classification Process 

In this study, a back-lighting source is utilized. The 

controlled light source facilitates the adjustment of the 

binarization threshold for the object images, making it 

easier to account for variations in ambient light conditions 

during the measurement process. This method enhances 

the clarity of the object boundaries. 

To classify all objects, parameters such as area, perimeter, 

and compactness are calculated. Based on the value of 

compactness, the bolt with dimensions D1060 mm has the 

largest compactness, followed by the bolt with dimensions 

D860 mm and then D840 mm. The nut with dimensions 

D8 mm has the smallest compactness. 

All nuts are non-directional, so it’s not necessary to 

identify their angle. However, for bolts, it’s important to 

determine their angle and head. To identify the angle of 

bolts, the boundary rectangular method is used. With this 

method, first, the four vertices of the rectangle surrounding 

the bolt are determined, named ABCD. Next, the 

coordinates of these vertices are used to define the sides of 

the rectangle. For bolts, the edge passing through the top 

of the bolt head is smaller than the longitudinal edge of the 

bolt body; let this edge be named AB. Let point E be the 

midpoint of edge AB, and G be the centroid of the bolt. 

Next, the system determines the head of the bolt by 

comparing the Y-direction coordinates of points E and G. 

If YE > YG, the bolt head will be in the second quadrant 

of the circle, as illustrated in Fig. 3. If YE < YG, then the 

bolt head will be in the third quadrant of the circle, as 

shown in Fig. 4. If YE = YG, the bolt will be horizontal, 

and the bolt head will depend on the coordinates of point 

E compared to point G, as depicted in Fig. 5. The angle of 

the bolt is also determined by the angle between the line 

passing through point E and point G with the horizontal 

axis. The positive direction of the angle is clockwise. 

 

 

Fig. 3. The Y coordinate of point E is higher than point G. 

 

Fig. 4. The Y coordinate of point E is lower than point G. 
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Fig. 5. The Y coordinate of the point E is equal to the point G. 

III. ROBOTIC ARM DESIGN 

The robotic arm used in this study is self-made. The 

kinematic diagram of the robotic arm is presented in   Fig. 

6, and the relationship between each joint can be analyzed 

using Denavit-Hartenberg (D-H) parameters, as shown in 

Table II. 

The operating system of the robotic arm uses a Cartesian 

coordinate system, where the coordinate values {X, Y, Z, 

C} are input respectively. Point-to-point movement is 

employed for manipulation, with the C-axis representing 

the electric gripper. 

The robot operates based on the inverse kinematics 

problem and is integrated with a vision system. It consists 

of a robotic arm with four degrees of freedom. Each degree 

of freedom is controlled by a stepper motor and tooth belt 

transmission. The gripper operation is controlled by a 

servo motor. 

 

 

Fig. 6. Kinematics diagram of the robotic arm. 

TABLE II. D-H PARAMETERS TABLE 

Axis ai di i i 

01 0 (d1) −90° 0 

12 0 (d2) 90° 90° 
23 a3 (d3) 0 0 

34 0 d4 0 (4) 

where:  

• di represents the distance between Oi-1 and O1 along 

the Zi−1 axis. 

• ai represents the distance between two adjacent 

joints along the X-axis. 

• i represents the angle around Zi-1 to move Xi−1 to Xi 

based on the right-hand rule along the Z-axis. 

• i represents the angle around Xi to move Zi−1 to Zi 

based on the right-hand rule. 

• qi is the joint variable of the robot. 

where i = 1 to n (where n represents the number of joints). 

The transformation matrix Ai
i−1 can be defined as 

Eqs. (1)−(2): 

Ai
i-1(qi) = Rz,i Tz,di Tx,ai Rx,i  (1) 

where R represents the rotation matrix and T represents the 

translation matrix. 

Ai
i-1 =  

[
 
 
 
 𝐶𝑖

      − 𝑆𝛼𝑖
𝐶𝜃𝑖  

           𝑆𝛼𝑖
𝑆𝜃𝑖  

         𝑎𝑖𝐶𝑖
 

𝑆𝑖                    
 𝐶𝑖

𝐶𝜃𝑖
      − 𝐶𝛼𝑖

𝑆𝜃𝑖  
         𝑎𝑖 𝑆𝑖

0                 𝑆𝜃𝑖
                   𝐶𝜃𝑖  

                𝑑𝑖  

0                   0                      0                   1   ]
 
 
 

  (2) 

where:  

𝐶𝑖
 = CosI  𝐶𝜃𝑖

 = CosI  𝑆𝛼𝑖
 = SinI  𝑆𝜃𝑖

 = Sini 

By substituting the values from Table II into the 

elements of matrix Ai
i−1, we will determine the 

corresponding transformation matrices A1
0; A2

1; A3
2, and 

A3
3. Then: 

𝐴4
0  =  𝐴1

0𝐴3
2𝐴4

3 = [

𝑛𝑥           𝑠𝑥            𝑎𝑥            𝑃𝑥

𝑛𝑦           𝑠𝑦            𝑎𝑦            𝑃𝑦

 𝑛𝑧            𝑠𝑧            𝑎𝑧            𝑃𝑧 
0              0             0              1 

]  (3) 

A4
0 matrix describes the direction and position of the 

final coordinate system compared to the original fixed 

coordinate system. 

The inverse kinematics of the robotic arm involves 

determining the joint variables based on the desired end 

effector’s world coordinates obtained from the vision 

system, namely, its position and orientation in the 

operational space. 

IV. RELATIONSHIP BETWEEN IMAGE COORDINATE AND THE 

WORLD COORDINATE 

The robotic arm operates based on the world 

coordinates in space. Therefore, it is necessary to 

accurately determine the actual coordinates from the image 

coordinates. In this study, the world coordinates of objects 

will be determined using Eqs. (4) and (5), as follows: 

𝑋 =
𝑃𝑖𝑥𝑒𝑙(𝑋)50

100
   (4) 

𝑌 =
𝑃𝑖𝑥𝑒𝑙(𝑌)50

100
   (5) 

where X and Y represent the world coordinate system along 

the X and Y axes, respectively. Pixel(X) and Pixel(Y) 
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denote the coordinates of an image point in the x-direction 

and y-direction, respectively. 

V. RESULTS AND DISCUSSION 

The implementation of the proposed system proceeds as 

follows: Initially, all bolts and nuts are randomly placed in 

the workspace zone while the robot is in the home position. 

Subsequently, the back-lighting source is activated, and 

the CMOS camera captures images of all objects, which 

are then sent to the computer, as shown in Fig. 7. Image 

processing is carried out using the Python programming 

language and the Open-CV image processing library. The 

system then proceeds to classify and determine the 

parameters of all objects, including shape, angle, and 

position, as shown in Fig. 8. Finally, the measurement data 

is transmitted to the controller of the robotic arm for the 

manipulation process. 

 

 
Fig. 7. Picture of researched objects. 

 

Fig. 8. Results of recognition and classification. 

Tables III and IV display the image coordinates of bolts 

and nuts, respectively. These coordinates are then 

transformed into world coordinates for manipulation by 

the robotic arm, as illustrated in Table V. 

TABLE III. IMAGE COORDINATE OF BOLTS 

Bolt x y C (°) Orientation 

Bolt 2 71 316 −16 Counter-clockwise 

Bolt 3 404 295 −13 Counter-clockwise 

Bolt 4 222 294 −13 Counter-clockwise 

Blot 7 331 229 −91 Counter-clockwise 

Bolt 9 150 190 −17 Counter-clockwise 

Bolt 10 263 160 −63 Counter-clockwise 

Bolt 11 472 165 −12 Counter-clockwise 

Blot 16 202 75 −9 Counter-clockwise 

Bolt 17 492 69 6 Clockwise 

TABLE IV. IMAGE COORDINATE OF NUTS 

Nut x y C (°) Orientation 

Nut 1 337 324 0 Non 

Nut 5 117 256 0 Non 

Nut 6 483 130 0 Non 

Nut 8 340 159 0 Non 

Nut 12 194 143 0 Non 

Nut 13 110 109 0 Non 

Nut 14 390 86 0 Non 

Nut 15 314 82 0 Non 

TABLE V. THE WORLD COORDINATE OF ALL OBJECTS 

Object X(mm) Y(mm) C(o) Orientation 

Bolt 2 34.5 158 −16 Counter-clockwise 

Bolt 3 202 147.4 −13 Counter-clockwise 

Bolt 4 111 147 −13 Counter-clockwise 

Blot 7 165.4 114.4 −91 Counter-clockwise 

Bolt 9 75 95 −17 Counter-clockwise 

Bolt 10 131.4 80 −63 Counter-clockwise 

Bolt 11 236 82.4 −12 Counter-clockwise 

Blot 16 101 37.4 −9 Counter-clockwise 

Bolt 17 246 34.4 6 Clockwise 

Nut 1 168.4 162 0 Non 

Nut 5 58.4 128 0 Non 

Nut 6 241.4 65 0 Non 

Nut 8 170 79.4 0 Non 

Nut 12 97 71.4 0 Non 

Nut 13 55 54.4 0 Non 

Nut 14 195 43 0 Non 

Nut 15 157 41 0 Non 

The automatic operation of the robotic arm is divided 

into two phases. In the first phase, the robotic arm picks up 

three types of bolts and places them in three designated 

zones. In the second phase, it picks up two types of nuts 

and places them in two designated zones. The proposed 

system is depicted in Fig. 9. 

 

 

Fig. 9. The proposed system. 
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VI. CONCLUSIONS 

This study has successfully developed an automatic 

measurement and classification system for a robot arm 

using machine vision technology under back-lighting. The 

conclusions drawn from this work are as follows: 

• Under back-lighting conditions, the automatic 

measurement and classification system has 

successfully performed and achieved accurate 

positioning of objects. The system is capable of 

recognizing and classifying all objects, as well as 

determining the angle and head of bolts. 

• A robotic arm with four degrees of freedom was 

also successfully developed and integrated with a 

vision system, including components such as a 

CMOS camera, lighting source, and computer 

system. 

• Based on the data from the system, the robotic arm 

is controlled to pick up and place all objects into 

their designated zones accurately during the 

classification process.  

• Improving the resolution of the camera is necessary 

to enhance object location and classification 

accuracy. Additionally, the system should be tested 

in various lighting environments to ensure 

adaptability to real industrial conditions. 

• The proposed system is simple, effective, and easy 

to implement for automation processing in 

industrial manufacturing lines. 
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