

Novel Fuzzy Reinforcement Algorithm for

Mobile Robot Navigation in Automated Storage

Chadi F. Riman * and Pierre E. Abi-Char

College of Engineering and Technology, American University of the Middle East, Kuwait

Email: chadi.riman@aum.edu.kw (C.F.R.); pierre.abichar@aum.edu.kw (P.E.A-C.)

*Corresponding author

Abstract—Robots are used to move stored items in

Automated Storage (AS) to shelve and pickup items in

warehouse depicted shelves. In this situation and many others,

it is important to follow the shortest way so that the smallest

time possible is taken to achieve the task. In this research, a

Fuzzy Logic system with Q-Learning Reinforcement in order

to achieve a better overall system. While Fuzzy Logic can be

used alone for robot navigation, Reinforcement learning

helps to adjust the fuzzy rules and refine them towards two

main purposes: reach the final goal, while avoiding difficult

obstacles such as traps. This is done as an enhancement on

our previous work where Fuzzy Logic system was used alone.

Simulation results are added to support the work done. It

proved that this new system is much better than the previous

one. Highlighting key parameters or features of simulation

results show that the system achieved 33% more optimized

time in addition to avoid stalled/unsuccessful navigation in

some difficult situations, thus demonstrating the system’s

success.

Keywords—fuzzy logic, fuzzy reinforcement learning, path

planning, Q-Learning, robotics

I. INTRODUCTION

As part of the Industry 4.0 standard, Automated Storage

(AS) retrieval systems are used in many warehouses in big

companies around the world. They use robots for handling

and fetching items because they are faster, more practical,

and save human resources. The mobile robot navigation in

AS is very important. It is the base of an automated storage.

Furthermore, it is crucial in robotics to navigate through

the minimum possible path because it saves time and

money. Many shortest-path algorithms are used such as

Dijkstra, A*, BFS, and even reinforcement learning. A* is

an enhanced version of Dijkstra, using a heuristic function

H to have a better assumption for the current situation [1].

According to Permana et al. [1], A* proved better than

Dijkstra and Breadth First Search (BFS) when tested on

Maze Runner Game.

Reinforcement Learning (RL) is a way to improve

navigation by training data of a known environment. It is

mainly used in gaming and control problems.

Fuzzy logic is used for decision systems when the

outcome is uncertain. It is used in many areas such as

control, image processing, AI, and also in robotics. Fuzzy

logic better reflects real-world problems than classical

logic and fuzzy algorithms can produce accurate results

with imprecise data. However, they require validation, and

depend on human knowledge.

Fuzzy reinforcement learning can be added to fuzzy

systems in order to improve with training and time the

performance of implemented fuzzy rules. Through the

perception and interpretation of its environment, it adds

extra weight to each fuzzy rule positively acting to reach

the goal, and hinders rules that deviate from the optimum

path. The reinforcement helps the robot to adjust its

navigation in order to improve performance. RL is an

automatic modification of the robot behavior in its

navigation environment [2]. Therefore, RL is a way for

optimizing control, when the system starts from an

deficient solution which slowly improves according to the

training done to solve the navigation problem [2]. By

observing the results of every action, the agent is able to

maximize the rewards and achieve a better

performance [2].

In this work, we suggest a model to include fuzzy Q-

Learning reinforcement to our existing fuzzy model. This

reinforcement will improve the operation of our fuzzy

rules in order to better achieve reaching the goal while

avoiding obstacles, and escaping traps on the way. Our

suggested model will enhance robot’s navigation in AS

and reduce time necessary to fetch and store goods in the

storage.

The rest of this paper is arranged as follows. In Section

II, we briefly survey the relevant existing work and

compare the existing systems in terms of number of fuzzy

systems, usage of reinforcement learning and others. In

Section III, the mathematical background of Fuzzy Logic

and Fuzzy Reinforcement Learning are defined. In

Section IV, the reinforcement learning algorithm

requirements with the training/testing phases are explained.

In Section V, we show the implementation and testing of

the reinforcement model. In Section VI, we compare the

fuzzy reinforcement model with our previous work with

multi-system fuzzy model without reinforcement. In

Section VII, we compare our model with another existing

multi-system fuzzy reinforcement model. Finally in

Manuscript received November 8, 2023; revised December 17, 2023;

accepted January 3, 2024; published April 17, 2024.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

284doi: 10.18178/ijmerr.13.2.284-295

mailto:chadi.riman@aum.edu.kw
mailto:pierre.abichar@aum.edu.kw

Section VIII, we end the paper and present the potential

future work.

II. LITERATURE REVIEW

The main goal in mobile robots is to arrive at the goal

using the smallest possible track, and at the same time not

be trapped concave obstacles (called cul-de-sac), or hit

walls, or be stuck in a certain location not able to decide

on a direction. Obstacles can be either static or dynamic

such as other robots on the way. Several solutions using

fuzzy logic systems exist: from single inference systems,

or multiple systems that are run according to the current

situation. There can up to more than 3 fuzzy controllers at

the same time. A few of this use reinforcement learning in

a way to enhance the overall system’s capability, after a

training period. Although reinforcement learning enhances

these rules, however the fuzzy sets should be selected in a

wise way from the beginning in order to achieve a good

overall system. Systems not using reinforcement, were

selected because of their importance handling situations

where training is not possible or the overall environment is

not known in advance.

Several papers were studied and compared together.

Among these systems, several used one fuzzy controller

that handles all situations [2−16], others used two fuzzy

controllers [17−27], and a few used three fuzzy controllers

[28−39]. Furthermore, a few of the papers [2, 3, 17, 21, 24,

26, 29, 37, 39] used reinforcement learning in order to

improve on the fuzzy system. A list of the studied papers

is shown in Table I next, ordered by year of publication.

TABLE I. REVIEWED SYSTEMS WITH FUZZY CONTROLLERS

Reference Year

Number of

Fuzzy

Controllers

Includes

Reinforcement

[37] ≥ 2020 1 Yes

[39] ≥ 2020 3 Yes

[6, 12, 13] ≥ 2020 1 No

[38] ≥ 2020 2 No

[36] ≥ 2020 3 No

[5, 9, 10, 14−16] 2017−2019 1 No

[25] 2017−2019 2 No

[18−23, 27] 2010−2016 2 No

[21, 24] 2010−2016 2 Yes

[30] 2010−2016 3 No

[29] 2010−2016 3 Yes

[28, 31] 2010−2016 4 No

[4, 7, 8] < 2010 1 No

[2, 3] < 2010 1 Yes

[17, 26] < 2010 2 Yes

In our previous work [36], we presented a Fuzzy control

system for robotics’ movement in AS. Our system detected

neighboring obstacles using sensors, and included 3 sub-

controllers: Reach Goal, Avoid Walls, and Escape Cul-De-

Sac. The fuzzy system proved to be effective on a small

map, and for simple navigations with few obstacles on the

way. But it did not give an optimal path in several

situations.

Comparing the existing systems with reinforcement

learning, in Table II a list of the explained fuzzy with

reinforcement learning systems is shown with indication

whether they are using single, dual, or triple fuzzy

controllers, including a short description of each of the

controllers.

TABLE II. FUZZY SYSTEMS WITH REINFORCEMENT LEARNING

Reference
First

Controller

Second

Controller

Third

Controller

[2]
Target locate and

safe move − −

[3]

Path navigation

and obstacle

avoidance
− −

[17]
Follow Target and

Avoid Obstacles

Escape concave

trap −

[21] Goal seeking Wall following −

[24, 26] Goal seeking
Obstacle

avoidance −

[29] Goal seeking Wall following
Obstacle

avoidance

[37] Obstacle avoidance − −

[39] Goal seeking
Obstacle

avoidance

Wall

following

The reviewed systems using dual fuzzy controllers are

listed in Table III. Table III is divided into 3 columns, the

first showing the work reference, the second listing the

name of the first used controller, and the third showing the

name of the second used controller.

TABLE III. SYSTEMS WITH DUAL FUZZY CONTROLLERS

Reference First Controller Second Controller

[17]

Follow Target

and Avoid

Obstacles
Escape concave trap

[18] Angular velocity Linear velocity

[19−26]
Goal reaching /

seeking Obstacle avoidance

[21] Goal seeking Wall following

[22] Orientation Obstacle avoidance

[27]
Obstacle

avoidance Join Virtual Target

Furthermore, the checked systems using three or more

controllers are shown in Table IV. Table IV has similar

divisions to Table I, with an extra column showing the

name of the third used controller. The last column shows

the name of the fourth controller, if it exists.

TABLE IV. SYSTEMS WITH TRIPLE OR MORE FUZZY CONTROLLERS

Reference
First

Controller

Second

Controller

Third

Controller

Fourth

Controller

[28] Reach target
Avoid

obstacle

Escape

trap: right

wall follow

Escape trap:

left wall

follow

[29] Goal seeking
Wall

following

Obstacle

avoidance
−

[30]
Linear

velocity

Angular

velocity

Obstacle

avoidance
−

[31] Go to target
Avoid

obstacle

Wall

follow
Wander

[36] Reach Goal
Avoid

Walls

Escape

Cul-De-Sac
−

[39] Goal seeking
Obstacle

avoidance

Wall

following
−

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

285

III. MATHEMATICAL BACKGROUND

A. Fuzzy Logic Definition

Fuzzy logic is a mathematical model built on the notion

of “degree of membership” rather on the usual true/false (1

or 0) binary logic on which modern computers are based.

A fuzzy model or set is a computational way to show fuzzy

or vague data. It is similar to how human minds work.

Fuzzy logic is in a way how thinking works. It has a degree

of truth going from 0 to 1 as a mathematical model of

vagueness [32]. Fuzzy Systems are composed of three

parts [33]: Fuzzification, Fuzzy Rules Evaluation (or

Inference Mechanism), and Defuzzification. A basic fuzzy

system is shown in Fig. 1.

Fig. 1. Basic fuzzy system.

The inference mechanism contains a number of If-Then

rules which applies a fuzzy logic quantification of the

description of how to achieve a good output. These If-Then

rules are aggregated together for each output variable, as

shown in Fig. 2.

Fig. 2. Fuzzy rules aggregation.

B. Reinforcement Learning Definition

Reinforcement Learning contains an environment and

its agent working within that environment to achieve some

goals such as reach a target for a robot. The agent reads the

environment, and executes an action. The state the

environment then goes to a new state, and the agent gets a

reward that is an indicator on the correctness of the

followed action. The agent’s goal is to get the most

possible rewards during an experiment. An experiment

starts from a certain zero stage, and keeps changing until

the agent reaches a final stage [34]. The Reinforcement

Learning is based on the Markov Decision Process.

An infinite horizon, discounted Markov Decision

Process (MDP) is defined by M = (S, A, P, r, ɣ, µ) [35]:

where

• S: a state space.

• A: a discrete action space.

• P: a transition function S × A → ∆(S)

• r: reward function S × A → [0, 1]

• ɣ: discount factor ∈ [0,1]

• µ: initial state distribution ∈ ∆(S)

Q-Learning is a reinforcement learning technique to

learn the value of an action at in a particular state St. It is

used for solving MDP that models realistic problems. It

forecasts the overall future discounted reward that will be

received from current action at. It has three functions: an

evaluation function, a reinforcement function and an

update function. The update function is based on the

equation: [32]

Q(st,at) Q(st,at) + α[rt + ɣ.maxaQ(st+1,at) – Q(st,at)] (1)

where alpha α ∈ [0,1] is a small learning rate constant.

Gamma ɣ is the discount rate applied to the maximum Q-

value of next state maxaQ(st+1,at). rt is the immediate

reward. The Q-function has a Q-table, where each cell

corresponds to a state-action value pair value. This Q-table

contains the result of the learning reinforcement after

several episodes.

C. Fuzzy Reinforcement Learning

A Fuzzy Reinforcement Learning applies the training

reward as a factor to be multiplied by the fuzzy rules

contributing to the decision made by the agent. Initially the

factor is filled with an initial training iteration (explained

in next section), which applies a direct reward

reinforcement. The reward can slightly increase or

decrease the factor after each cell movement action

made by the agent during the training period. After

finishing the training period, each fuzzy rule will end up

with a fixed multiplying factor M that affects its

contribution to the end result. M is the accumulation of all

the rewards for rules applied for a particular action in a

specific situation. This relies on the Q-table which contains

the state/action/reward combinations. The state being the

position and the direction.

(1+M1)/2 × Action 1

(1+M2)/2 × Action 2

…

 (1+Mi)/2 × Action i (2)

IV. SUGGESTED FUZZY REINFORCEMENT MODEL

A. Model Assumptions/Requirements

Path planning solution can be thought of as a connected

graph (undirected) G = (N, E, L), N being the number of

vertices, E the edges, and L the actual length between 2

nodes. As an example, in Fig. 3, the starting point is a red

circle, the target node is a violet circle, and the obstacles

are noted as green squares. The assumptions/requirements

are the following:

• Only one robot can fit on every block.

• All mobile robots move at the same speed of 1m/s

(assumed).

• Every square is 1 meter wide by length. One second

is needed by the robot to move for one square.

• A robot can move on straight lines only, that are

marked with numbers as in Fig. 3. Check Fig. 4 for

the movement directions.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

286

• Mobile robots direction is not considered. The

robot can move in any direction.

• The main robot has a knowledge of the

environment with the obstacle locations, which is

needed to apply learning reinforcement technique.

Fig. 3. Environment grid used.

Fig. 4. Robot’s movement directions.

B. Initial Fuzzy Model before Reinforcement

The proposed initial Fuzzy model is a single fuzzy

system to reach goal while avoiding obstacle. It guides the

robot to its goal, avoiding obstacles on the way until

success or getting stuck in a specific position. The current

and target positions are both taken into consideration. The

system has two axes x and y. The inputs are called delta(x)

and delta(y), where:

delta(x)= DisX = current(x) – goal(x)

delta(y)= DisY = current(y) – goal(y)

There is also the distance from the robot to its

surrounding obstacles.

Obstacle(x) – current(x) = ObX

Obstacle(y) – current(y) = ObY

For each loop run, the controller calculates the above

values, then runs the fuzzy model three parts: fuzzification

part, checking inference rules, and then the defuzzification

part. The defuzzification is implemented using Center of

Gravity method. The output is the new motion by the robot.

The action is validated and then, if no issues will occur,

meaning that it will not hit a wall, then it is followed. The

controller stops when the robot arrives to the goal or get

stuck in a position where it cannot decide on a move.

The inputs distances DisX and DisY have a fuzzy set

containing 3 membership values: Negative, Zero, and

Positive. The Zero is a singleton value that is on the goal.

The Negative is on a shape showing how distant is the

target is in the reverse direction of the robot. The Positive

is on a shape showing how distant is the target from robot

but on the same direction. Fig. 5 displays the explained

fuzzy set.

Fig. 5. Robot’s movement directions.

A fuzzy set defined inputs ObX and ObY, having 3

membership values Negative/Zero/Positive. All values are

singletons: −1, 0, +1. Negative means that the obstacle is

one step behind the robot. Positive means that the obstacle

is one step in front of the robot. Zero means that the obstacle

is on the same level as the robot, obviously in only of the

X/Y axes. Fig. 6 displays the explained fuzzy set.

Fig. 6. Fuzzy set for inputs ObX and ObY (distance from robot to wall in

X or Y).

Fig. 7. Robot’s movement directions.

The system outputs are MovX/MovY. MovX/Y is the

decided motion in X/Y direction. These outputs are outlined

with a fuzzy set having 3 memberships: Forward, Zero, and

Backward. Forward is a move on the robot’s direction.

Backward is a move in reverse to the robot’s direction. Zero

is no move at all in any direction. It is a singleton of value

1. Fig. 7 reveals the output movement’s set in X and Y ways.

C. Q-Learning Reinforcement Training Phase

For every scenario, there should be a training phase. In

the scenario, the target position is fixed along with all

obstacles. The training phase consists of testing all the

current possible positions for the robot along with all

possible actions. The possible positions along the X axis

are from 0 to 15, and for y axis from 0 to 10. The possible

actions for each position are just 4:

• Move forward along the X axis.

• Move backward along the X axis.

• Move forward along the Y axis.

• Move backward along the Y axis.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

287

The Q-Table will be of 3 dimensions. It consists of all

the x positions, the y positions, and the possible moves (left,

up, right, down). The value for each cell will contain the

reward to be applied. On the first iteration of the training

phase, an immediate reward rt is considered. The

reinforcement factor M is equal on the first iteration to this

rt, which can have one of the following values:

−1.0 if a collision occurs

−0.5 if distance to target increases (3)

+0.5 if distance to target decreases

+1.0 if target is reached

where the distance to the target is given by the formula:

distance = √∆𝑥2 + ∆𝑦2 (4)

A sample of possible Q-Table values is shown in the

table below:

TABLE V. Q-TABLE SAMPLE DATA (PARTIAL) FOR INITIAL

ITERATION

X Y Movement
rt Reward for

Reinforcement (M)

0 0 2 (X Forward) +0.5

10 5 3 (Y Backward) −0.5

7 3 1 (Y Forward +1.0

3 6 0 (X Backward) −1.0

As shown in Eq. (2), the reinforcement M is direction

dependent. Supposing that there are 4 actions: X

forward/backward, Y forward/backward, then the

corresponding reinforcement reward is applied to the

movement in the specific direction. After that, the highest

action is followed. As an example, if going X forward gets

0.75 and going Y forward gets 0.50, and the others get zero,

then the X forward motion of a full step will be applied.

After the initial iteration training phase, the Q-Table is

filled with the above-mentioned values and ready to be

used for the real-time testing. It is worth mentioning that if

only one training iteration is done, the possible situations

are only the 4 above in table V (namely M =1 or −1 or 0.5

or −0.5) because the training phase was not deep enough.

In these cases, reinforcement will be one of 4 values
(𝟏+𝐌)

𝟐

= either 1 or 0 or 0.75 or 0.25.

In order to avoid having a dummy Q-Table with no real

use except for very primitive scenarios, the learning depth

(iterations) should be increased. Several iterations are run

to update the table. If a cell A is adjacent to another cell B

with high update function value Q (greater than 0.5) in one

of its 4 direction actions, the cell A action leading to cell

B will get a new update function equal to (Q–0.01).

For the further iterations, taking into consideration the

Eq. (1), with alpha α = 0, gamma ɣ = 0.99, the immediate

reward rt = 0, then the Eq. (1) will be reduced to:

Q(st,at) Q(st,at) + α[rt + ɣ.maxaQ(st+1,at) – Q(st,at)]

Q(st,at) Q(st,at) + 1[0 + 0.99.maxaQ(st+1,at) – Q(st,at)]

Q(st,at) Q(st,at) + 0 + 0.99.maxaQ(st+1,at) – Q(st,at)]

 Q(st,at) 0.99.maxaQ(st+1,at) (5)

If the start and goal are near and the obstacles are few,

a small number of iterations is required. However, if the

distance becomes larger, and the obstacles are many, then

a higher depth (iterations) is required. In the next section,

several trials will be done to show the difference in the

performance according to the training depth.

D. Fuzzy Reinforcement Model’s Algorithm

In real-time scenarios, every movement is decided by a

set of fuzzy rules. To apply Q-Learning reinforcement

learning, the current location/direction and the decided

movement for the robot is checked against the Q-Table.

The M value of the reinforcement amount is used as in

Eq. (2) for all possible actions for the next movement. The

fuzzy rules are assessed after adding the reinforcement

factor. After the defuzzification phase, the movement

decision (X forward/backward, Y forward/backward) will

be followed. And the same process will be repeated for

next movements until target is reached. The above is

described in the algorithm’s flowchart in Fig. 8.

Furthermore, a more detailed Algorithm 1 is depicted

next.

Algorithm 1: Fuzzy Q-Learning Reinforcement

1. Choose the Begin vertex V and the Target vertex G.

2. With present vertex i=V, Dist(i)=0, Dist is the overall moved

distance so far from the start V.

3. Calculate reinforcement reward Q-Table.

4. Repeat steps from 5 to 12 to arrive to target G.

5. Is i=G? If so, terminate loop and announce success.

6. Calculate dist. from i to G in directions x/y:

ΔX = x[G] – x[i] ΔY = y[G] – y[i]

7. Run Fuzzy Model’s Fuzzification.

8. Check Q-Table and get reinforcement Mi for all move directions.

9. Apply reinforcement (1+Mi)/2 to all possible actions.

10. Apply Inference Mechanism.

11. Run Defuzzification.

12. Go back to step 5.

13. End.

Fig. 8. Proposed fuzzy reinforcement framework’s flowchart.

Start

Check Robot Location/

Direction and Target Location

End

Apply Move on Robot

Calulate Q-Table

Run Fuzzification

Is Goal Reached?

Yes

No

Check Q-Table with decided

Move, get reinforcement M

Multiple affected action by

(1+M)/2

Inference Mechanism

Defuzzification

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

288

In Step 3 in the above Algorithm 1, the reinforcement

reward Q-Table is calculated. The calculation is done

according to the specified depth. At least one iteration is

done and applied according to Eqs. (3) and (4). Extra

iterations are done for deeper depth according to Eq. (5).

Another Algorithm 2 for calculating the Q-Table is shown

next.

Algorithm 2: Q-Table calculation

1. Define Q-Table Q(x,y,z): (x,y) position, z direction action (left, up,

right, down). Initialize all Q-Table values to zero.

2. Run the initial training phase, filling Q-Table according to

equations (3) and (4).

3. If the depth > 1, repeat steps 4 to 10 for each extra iteration. Make

iteration = 1

4. If iteration = depth, go to step 13

5. For each cell in Q(x,y,z): Q(st,at)

6. If the neighbor cell in z direction for cell (x,y) is an obstacle, then

make Q(st,at) = -1

7. Otherwise, Get maxaQ(st+1,at), the maximum of Q-value of next

state, which is the neighbor cell in z direction for cell (x,y).

8. Apply a discount rate gamma ɣ = 0.99.

9. Use equation (5) to make Q(st,at) = 0.99 maxaQ(st+1,at)

10. Update Q(x,y,z) in the Q-Table.

11. iteration = iteration + 1

12. Repeat from step 4.

13. End.

V. IMPLEMENTATION AND TESTING OF THE

REINFORCEMENT MODEL

For the suggested model, a simulation was built and run

to mimic the work in AS environment. It is based on the

assumptions made in Section IV.A. As a limitation, the

simulation is assuming no turning time for the robot, which

might be not realistic in real environment. Success was

checked with several scenarios, and compared to our

previous work in fuzzy logic system without

reinforcement [36]. The software used C# language on a

standard Windows 10 OS. The performance metrics used

to evaluate the new system were the time spent to achieve

the goal, and whether the experiment was successful or not.

The time was measured as robot movement steps assuming

that each step is 1 s. If the robot was able to reach the target

point, then the experiment is considered a success,

otherwise it is considered as a failure.

A. Fuzzy Experiment 1—Zero Obstacles

A test was done without any obstacle. One simulation

was performed with a start (1,1), and target (6,2). Results

for the test are in Fig. 9, where the red circle indicates the

source, the violet circle indicates the goal, and the red line

indicates the followed path. For the simulation, the Center

of Gravity defuzzification was implemented. The robot

modified its movement angle at location (6,1) to reach the

goal. No Reinforcement was used in this scenario. Table VI

shows location vs time for the robot over six steps.

Fig. 9. Fuzzy Experiment 1—No obstacles—No reinforcement.

TABLE VI. ROBOT’S MOVEMENTS—EXPERIMENT 1

Time Robot’s Location

0 1,1

1 2,1

2 3,1

3 4,1

4 5,1

5 6,1

6 6,2

B. Fuzzy Experiment 2—One Obstacle

Another test was done by inserting one obstacle at

location (5,1). One simulation was conducted with the

starting point (1,1) and the target is (6,2). The test outputs

are shown in Fig. 10. The green square indicates the

obstacle. The robot modified direction at position (4,1) to

avoid the obstacle, also at (4,2) to reach goal. The Fuzzy

controller was active without Reinforcement. Table VII

shows location vs time for the robot.

Fig. 10. Fuzzy Experiment 2—One obstacle—No reinforcement.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

289

TABLE VII. ROBOT’S MOVEMENTS—EXPERIMENT 2

Time Robot’s Location

0 1,1

1 2,1

2 3,1

3 4,1

4 4,2

5 5,2

6 6,2

C. Fuzzy Experiment 3—Two Obstacles

Another test was done by inserting two static obstacles

at positions (4,2) and (5,1). Three trials were performed

with the starting position (1,1) and the target is vertex (6,2).

The first test was done using Fuzzy System without

Reinforcement. The experiment failed because the robot

got stuck in location (4,1). The second test was done using

Fuzzy System with Reinforcement of depth 1. The

experiment also failed because the robot was oscillating

between location (4,1) and (3,1). The third test was done

using Fuzzy System with Reinforcement of depth 5. The

experiment was successful. The robot modified direction at

position (4,1) to avoid the obstacle, then at positions (4,0)

and (6,0) to reach target. The simulation results are shown

in Figs. 11 and 12. Table VIII shows the location vs time

for the robot, for each of the three tests.

Fig. 11. Fuzzy experiment 3—Two obstacles—No reinforcement.

Fig. 12. Fuzzy Experiment 3—Two Obstacles—Reinforce: depth 5.

TABLE VIII. ROBOT’S MOVEMENTS—EXPERIMENT 3

Time

Robot

Location

No

Reinforcement

Robot

Location

Reinforcement

depth 1

Robot

Location

Reinforcement

depth 5

0 1,1 1,1 1,1

1 2,1 2,1 2,1

2 3,1 3,1 3,1

3 4,1 4,1 4,1

4 4,1 (stuck) 3,1 4,0

5 − 4,1 (oscillates) 5,0

6 − 3,1 6,0

7 − 4,1 6,1

8 − 3,1 6,2

The calculation is described for location (4,1) which is

the main difference between failed and sccessful attempts.

With a reinforcement learning of depth 1, the movement

reinforcement is just as decribed in Eqs. (3) and (4):

• Left/Down: −0.5 (distance to target increases).

• Up/Right: −1 (collision).

The system chose Left path and went back to (3,1) which

has the values:

• Left/Down: −0.5 (distance to target increases).

• Up/Right: 0.5 (distance to target decreases).

where it chose the Right movement and got stuck

oscillating between above 2 positions. The following table

shows the reinforcement factor to each direction in the

locations (3,1) and (4,1). The chosen decisions are shown

in red.

TABLE IX. Q-TABLE EXPERIMENT 3—REINFORCEMENT DEPTH 1

X Y
Move -X

Reward

Move +Y

Reward

Move +X

Reward

Move -Y

Reward

3 1 −0.5 +0.5 +0.5 −0.5

4 1 −0.5 −1.0 −1.0 −0.5

As for a reinforcement learning of depth 5 for location

(4,1), the movement reinforcement becomes after

repeatedly applying the change 4 times (depth 2 to 5) using

Eq. (5).

Q(st,at) 0.99.maxaQ(st+1,at), becomes:

• Left: 0.94. Starting from surrounding (6,2) which

is +1, going back every step mutliplying by 0.99

 (6,1)= 0.99×1 = 0.99

 (6,0)= 0.99×0.99 = 0.98

 (5,0)= 0.99x×0.98 = 0.97

 (4,0)= 0.99×0.97 = 0.96

 (3,0)= 0.99×0.96 = 0.95

 (3,1)= 0.99×0.95 = 0.94

• Up/Right: −1 (collision).

• Down: 0.96. Same as above but stopping at (4,0)

It chose the Down movement.

The following table shows the reinforcement factor to

each direction in the locations (4,1), (4,0), (5,0), (6,0), and

(6,1). The chosen decisions are shown in red.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

290

TABLE X. Q-TABLE EXPERIMENT 3—REINFORCEMENT DEPTH 5

X Y
Move -X

Reward

Move +Y

Reward

Move +X

Reward

Move -Y

Reward

4 1 0.94 −1.0 −1.0 0.96

4 0 0.95 0.95 0.97 −1.0

5 0 0.96 −1.0 0.98 −1.0

6 0 0.97 0.99 0.97 −.0

6 1 −1.0 +1.0 0.98 0.98

D. Fuzzy Experiment 4—Cul-De-Sac

The fourth test was performed by having seven

obstacles with a shape of a Cul-De-Sac at positions (3,0),

(4,0), (5,0), (5,1), (3,2), (4,2), and (5,2). Three tests were

performed with the initial position (1,1) and the target is

vertex (6,2). The first test was done using Fuzzy System

without Reinforcement. The experiment failed because the

robot got stuck in location (4,1). The second simulation was

done using Fuzzy System with Reinforcement of depth 5.

The experiment also failed because the robot was

oscillating between location (4,1) and (3,1). The third

simulation was done using Fuzzy System with

Reinforcement of depth 10. The experiment was successful.

The robot changed direction at position (2,1) to avoid the

Cul-De-Sac, then at positions (2,3) and (6,3) to reach target.

The simulation results are shown in Figs. 13 and 14. Table

XI summarizes the location vs time for the robot, for each

of the three tests.

TABLE XI. ROBOT’S MOVEMENTS—EXPERIMENT 4

Time Robot

Location

No

Reinforcement

Robot

Location

Reinforcement

depth 5

Robot

Location

Reinforcement

depth 10

0 1,1 1,1 1,1

1 2,1 2,1 2,1

2 3,1 3,1 2,2

3 4,1 4,1 2,3

4 4,1 (stuck) 3,1 3,3

5 4,1 (oscillates) 4,3

6 3,1 5,3

7 4,1 6,3

8 3,1 6,2

Fig. 13. Fuzzy experiment 4—Cul-De-Sac—No reinforcement.

From the above results, a Q-Learning reinforcement of

depth 5 was not enough to solve the cul-de-sac problem

(Scanario 4), but it was enough to solve the previous

problem with 2 obstacles (Scenario 3). As the Cul-De-Sac

problem is more advanced than a simple wall of obstacles,

more training iterations are needed to achieve reaching the

goal. As it is seen in Fig. 14, the robot did not even enter

the cul-de-sac and avoided it at the beginning, since it had

prior knowledge due to extensive Q-Learning training.

Fig. 14. Fuzzy Experiment 4—Cul-de-sac—Reinforce: depth 10.

The calculation is described for location (4,1) for failed

attempt for reinforcement with depth 5. The movement

reinforcement is as decribed in Eqs. (3) and (4) for depth

1, and becomes after repeatedly applying the change 4

times (depth 2 to 5) using Eq. (5):

• Left: −0.5 (distance to target increases).

• Up/Right/Down: −1 (collision).

The system chose Left path because it has the highest

value and went back to (3,1) which has the values:

• Left: −0.5 (distance to target increases).

• Right: 0.5 (distance to target decreases).

• Up/Down: −1 (collision).

where it chose the Right movement because it had the

highest value and got stuck oscillating between above 2

positions. The following table shows the reinforcement

factor to each direction in the locations (3,1) and (4,1). The

chosen decisions are shown in red (Table XII).

TABLE XII. Q-TABLE EXPERIMENT 4 – REINFORCEMENT DEPTH 5

X Y
Move−X

Reward

Move +Y

Reward

Move +X

Reward

Move−Y

Reward

3 1 −0.5 −1.0 +0.5 −1.0

4 1 −0.5 −1.0 −1.0 −1.0

As for a reinforcement learning of depth 10, the

movement changes course at location (2,1). The

reinforcement at this location becomes after the initial

depth 1 and after repeatedly applying the change 9 times

(depth 2 to 10) using Eq. (5).

Q(st,at) 0.99.maxaQ(st+1,at), becomes:

• Left/Right/Down: 0.92. Starting from surrounding

(6,2) which is +1, going back every step

mutliplying by 0.99

 (6,3)= 0.99×1 = 0.99

 (5,3)= 0.99×0.99 = 0.98

 (4,3)= 0.99×0.98 = 0.97

 (3,3)= 0.99×0.97 = 0.96

 (2,3)= 0.99×0.96 = 0.95

 (2,2)= 0.99×0.95 = 0.94

 (2,1)= 0.99×0.94 = 0.93

 (2,0) or (1,1) or (3,1)= 0.99×0.93 = 0.92

• Up: 0.94. Same as above but stopping at (2,2)

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

291

It chose the Up movement, because it is larger than 0.92.

The following table shows the reinforcement factor to

each direction in the locations (2,1), (2,2), (2,3), (3,3),

(4,3), (5,3), and (6,3). The chosen decisions are shown in

red (Table XIII).

TABLE XIII. Q-TABLE EXPERIMENT 4 – REINFORCEMENT DEPTH 10

X Y
Move−X

Reward

Move +Y

Reward

Move +X

Reward

Move−Y

Reward

2 1 0.92 0.94 0.92 0.92

2 2 0.93 0.95 −1.0 0.93

2 3 0.94 0.94 0.96 0.94

3 3 0.95 0.95 0.97 −1.0

4 3 0.96 0.96 0.98 −1.0

5 3 0.97 0.97 0.99 −1.0

6 3 0.98 0.98 0.98 +1.0

E. Comparison of the 4 Experiments

The testing done in the 4 experiments are shown and

compared in Table XIV. The criteria that are used include

the obstacles’ count, the perfect time to arrive to the goal,

the real time to arrive to the goal using the fuzzy system,

and the run fuzzy system: with or without reinforcement,

with the depth for the reinforcement model. Not all the

experiments were successful with all fuzzy modes. In the

first and second scenarios, the fuzzy model was used

without reinforcement because they were both simple. The

fuzzy controller was able to detect and follow the path

without any issue. However, in Scenarios 3 and 4, the fuzzy

model failed, and got stuck in one location. Reinforcement

was applied using the Q-Learning table in both. A depth of

5 was sufficient to make the scenario 3 succeed because of

its simplicity. But this depth was not enough for scenario 4

because of its complex nature, that is the cul-de-sac is not

as simple as straight obstacles. Reinforcement with Q-

Learning table of depth 10 achieved the navigation towards

the target. In all successful cases, the actual time was

optimal, equal to the ideal time. The in advance learning of

the environment helped achieving an optimal time in

Scenarios 3 and 4, whereby the simplicity of Scenarios 1

and 2 did not need any extra effort to have an optimal actual

trial time.

F. Implementation on an Actual Robot in AS Environment

The testing done was so far in a simulation environment.

The implementation of the new system on an actual robot

in AS environment will include several challenges. One of

them is the size of the robot is bigger than a dot like in the

software. Another issue will be changing direction of the

robot before moving. Furthermore, we cannot ignore the

skidding effect and we need a correction measure all the

way, such as beacons on every step. These things are left

for a future work to be done in real implementation.

TABLE XIV. THE 4 EXPERIMENTS’ COMPARISON

Scenario
Obstacles’

Count

Perfect

Time

Real

Time
Fuzzy System

Experiment 1:

No Obstacles 0 6 6
No

Reinforcement

Experiment 2:

1 Obstacle 1 6 6
No

Reinforcement

Experiment 3:

2 Obstacles 2 8
∞

failed

No

Reinforcement

Experiment 3:

2 Obstacles 2 8
8 Reinforcement

depth 5

Experiment 4:

Cul-De-Sac 7 8
∞

failed

No

Reinforcement

Experiment 4:

Cul-De-Sac 7 8
∞

failed

Reinforcement

depth 5

Experiment 4:

Cul-De-Sac 7 8 8
Reinforcement

depth 10

VI. CLASSICAL FUZZY VS FUZZY WITH REINFORCEMENT

The Fuzzy Model presented in our previous work [36],

included 3 fuzzy sub controllers working together: Reach

Goal, Avoid Obstacle, and Escape Cul-De-Sac. It proved

effective on a small map, and for simple navigations with

few obstacles on the way. Due to knowing only locations

of the adjacent obstacles, it can be used in unknown

environments. In this section, we will compare the

previous system with the suggested Fuzzy Reinforcement

model (learning depth = 10), using simulation on 2

scenarios applied to both systems.

The fundamental difference between the work in [36]

and the current work is the use of reinforcement learning

with a training phase for the known environment. The

system in [36] is able to detect the path, but not always as

efficient as wanted, with the system not able in difficult

scenarios to find a proper solution. The new system is

always able to find the most efficient solution.

In the first scenario, the robot is moving in a small

hallway surrounded with straight walls, with 90 degrees

turns. Both systems managed well the situation and

followed the same track. In order to have a fair comparison,

the turning time/steps are ignored for the previous system.

Therefore, the efficiency of both systems is the same. In

Fig. 15, the followed path for both systems in scenario 1 is

shown. As seen in the picture, 13 steps were needed which

is the optimum path.

In the second scenario, the robot is moving in an open

room with a concave obstacle (cul-de-sac) on its way. Both

systems managed successfully the situation, but they

followed different tracks. The efficiency of the Fuzzy Q-

Learning Reinforcement system is much better because the

robot avoided entering the cul-de-sac. The previous system

had to enter the cul-de-sac and then leave it in search for

another alternative. In Fig. 16, the followed paths for both

systems in scenario 2 are shown. As seen in the picture, 8

steps were needed for the Fuzzy Q-Learning

Reinforcement system which is the optimum path. The

previous system needed at least 12 steps excluding the

turning time/steps.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

292

(a)

(b)

Fig. 15. Path following comparison of previous system (above) and new

system (below) (a) Fuzzy alone, (b) Fuzzy with Reinforcement

The results of applying both scenarios are compared for

the two models in Table XV. As seen in the table, both

systems have equal achievement with optimal time in

Scenario 1. In Scenario 2, only the Fuzzy Reinforcement

model achieved the optimal value, which is 33% less time

than the previous fuzzy model.

TABLE XV. COMPARISON OF FUZZY MODEL WITH FUZZY

REINFORCEMENT

Scenario
Obstacles’

Count

Ideal

Time
Actual Time Fuzzy System

Scenario 1:

Hallway with

Obstacles

Many 13
13 (ignoring

turns)

Old Fuzzy

model

Scenario 1:

Hallway with

Obstacles

Many 13 13

Fuzzy with

Reinforcement

(Q-Learning)

Scenario 2:

Cul-De-Sac

5 forming

Cul-De-Sac 8
12 (ignoring

turns)

Old Fuzzy

model

Scenario 2:

Cul-De-Sac

5 forming

Cul-De-Sac 8 8

Fuzzy with

Reinforcement

(Q-Learning)

(a)

(b)

Fig. 16. Cul-De-Sac avoiding comparison of previous system (above)

and new system (below). (a) Fuzzy alone, (b) Fuzzy with Reinforcement

VII. OUR MODEL VS OTHER FUZZY WITH REINFORCEMENT

The Fuzzy Model with Reinforcement Learning

presented in [39], included 3 fuzzy sub controllers working

together: Goal seeking, Obstacle avoidance, and Wall

following. It was proven effective in several different

scenarios: with or without obstacles, or with wall

following. In this section, we will compare proven system

with our Fuzzy Reinforcement model using simulation on

a single specific scenario with obstacles applied to both

systems.

Fig. 17. Obstacle Avoidance: [39] (blue) vs proposed system (red)

In this scenario, the robot is moving in a room with two

large obstacles, and the target is behind these obstacles. In

Fig. 17, the followed path for both systems in the scenario

is shown: the reference [39] path in blue, and our system’s

path in red using a training depth of 10. As seen in the

picture, 25 steps were needed for our system, while the

other [39] needed 20 steps if we ignore the change

direction steps. System in Ref. [39] proved to be more

optimum mainly because their robot was allowed to move

in diagonals, while ours was not according to our set

Model Assumptions/Requirements.

VIII. CONCLUSION AND FUTURE WORK

Fuzzy logic algorithms are widely used nowadays in

robotics, control, artificial intelligence and many other

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

293

applications. Fuzzy logic is used as an enhancement to

classical logic when ambiguities are involved. However,

fuzzy logic needs a lot of expertise for good designs.

A Q-learning Reinforcement model is suggested to be

applied to a fuzzy system to take care of robotic navigation

in an Automated Storage (AS) archiving system.

Reinforcement learning is proposed to enhance the fuzzy

system sets and adjust it to respond to the requirements of

the warehouse. The model is finalized and tested in a

simulation environment. The results showed a success

using Q-Learning Reinforcement with large training

iteration depth. The new model was compared to our

previous fuzzy system without reinforcement. The

comparison was done on a follow path scenario and escape

from cul-de-sac obstacle scenario. Those two typical

scenarios were tested on both systems, with the metric

used being the time in steps and second required to finish

the test, and the overall success. The new system showed

better performance in some scenarios especially for

concave obstacles, taking 8 seconds instead of 12.33%

time saving.

The new system includes a few limitations. The main

one is the need to know the environment and the

requirement of a training phase first. This is usually not an

issue in AS, because the environment is well known, and

the training can be done before the installation of a new

robot. We intend in the future to build this controller on an

actual robot in AS environment. This implementation will

add new challenges as mentioned in Section V.F.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Chadi F. Riman and Pierre E. Abi-Char developed the

theory by contributing to the design of this research. Both

authors wrote the manuscript. Both authors discussed the

results and commented on the manuscript. Chadi Riman

performed the software simulation; Pierre AbiChar revised

and refined the article. Both authors approved the final

version.

REFERENCES

[1] S. Permana et al., “Comparative analysis of pathfinding algorithms

a *, Dijkstra, and BFS on maze runner game,” International Journal

Of Information System and Technology, vol. 2018.
[2] K. C. Tan, K. K. Tan, T. H. Lee, S. Zhao, and Y. J. Chen,

“Autonomous robot navigation based on fuzzy sensor fusion and
reinforcement learning,” in Proc. IEEE Internatinal Symposium on
Intelligent Control, 2002, pp. 182−187.

[3] C. Ye, C. Yung, N. Wang, and W. Dan, “A fuzzy controller with
supervised learning assisted reinforcement learning algorithm for
obstacle avoidance,”, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 33, 2003.

[4] S. M. Raguraman, D. Tamilselvi, and N. Shivakumar, “Mobile
robot navigation using Fuzzy logic controller,” in Proc. 2009
International Conference on Control, Automation, Communication
and Energy Conservation, 2009, pp. 1−5.

[5] N. Kumar, M. Takács and Z. Vámossy, “Robot navigation in
unknown environment using fuzzy logic,” in Proc. 2017 IEEE 15th
International Symposium on Applied Machine Intelligence and
Informatics (SAMI), 2017, pp. 000279−000284.

[6] K. Farah and M. Y. Moghrabiah, “Multilayer decision-based fuzzy
logic model to navigate mobile robot in unknown dynamic
environments,” Fuzzy Information and Engineering, vol. 14, 2007.

[7] E.T. Lee, “Applying fuzzy logic to robot navigation,” Kybernetes,
vol. 24, no. 6, pp. 38−43, 1995.

[8] D. R. Parhi, “Navigation of mobile robots using a fuzzy logic
controller,” J Intell Robot Syst., vol. 42, pp. 253–273, 2005.

[9] M. Boujelben, D. Ayedi, C. Rekik, and N. Derbel, “Fuzzy logic
controller for mobile robot navigation to avoid dynamic and static
obstacles,” in Proc. 2017 14th International Multi-Conference on
Systems, Signals and Devices (SSD), 2017, pp. 293−298.

[10] N. H. Singh and K. Thongam, “Mobile robot navigation using fuzzy
logic in static environments,” Procedia Computer Science, vol. 125,
2018.

[11] H. Batti, C. B. Jabeur, and H. Seddik, “Fuzzy logic controller for
autonomous mobile robot navigation,” in Proc. 2019 International
Conference on Control, Automation and Diagnosis (ICCAD), 2019,
pp. 1−6.

[12] D. Babunski, J. Berisha, E. Zaev, and X. Bajrami, “Application of
fuzzy logic and PID controller for mobile robot navigation,” in Proc.
2020 9th Mediterranean Conference on Embedded Computing
(MECO), 2020, pp. 1−4.

[13] J. T. Huang and C. K. Chiu, “Adaptive fuzzy sliding mode control
of omnidirectional mobile robots with prescribed performance,”
Processes, vol. 9, 2021.

[14] L. A. Dias, R. W. D. O. Silva, P. C. D. S. Emanuel, A. F. Filho, and
R. T. Bento, “Application of the fuzzy logic for the development of
autonomous robot with obstacles deviation,” International Journal
of Control, Automation and Systems, vol. 16, no. 2, pp. 823–833,
2018.

[15] A. Pandey and D. R. Parhi, “Optimum path planning of mobile
robot in unknown static and dynamic environments using Fuzzy-
wind driven optimization algorithm,” Defence Technology, vol. 13,
no. 1, 2017.

[16] A. K. Rath, D. R. Parhi, H. C. Das, M. K. Muni and P. B. Kumar,
“Analysis and use of fuzzy intelligent technique for navigation of
humanoid robot in obstacle prone zone,” Defence Technology, vol.
14, no. 6, 2018.

[17] Y. Duan and X. Hexu, “Fuzzy reinforcement learning and its
application in robot navigation,” in Proc. 2005 International
Conference on Machine Learning and Cybernetics, 2005, pp.
899−904.

[18] E. Ayari, S. Hadouaj, and K. Ghedira, “A fuzzy logic method for
autonomous robot navigation in dynamic and uncertain
environment composed with complex traps,” in Proc. 2010 Fifth
International Multi-conference on Computing in the Global
Information Technology, 2010, pp. 18−23.

[19] Y. Najah, C. Rekik, M. Jallouli, and N. Derbel, “Optimized fuzzy
controller for mobile robot navigation in a cluttered environment,”
in Proc. 2010 7th International Multi- Conference on Systems,
Signals and Devices, vol. 2, 2010.

[20] M. Faisal et al., “Fuzzy logic navigation and obstacle avoidance by
a mobile robot in an unknown dynamic environment,” International
Journal of Advanced Robotic Systems, vol. 2, 2013.

[21] C. Lakhmissi and M. Boumehraz, “Intelligent systems based on
reinforcement learning and fuzzy logic approaches,” vol. 3,
Application to Mobile Robotic, 2012.

[22] J. Johnson and D. J. Godwin, “Indoor navigation of mobile robot
using fuzzy logic controller,” in Proc. 2015 3rd International
Conference on Signal Processing, Communication and Networking
(ICSCN), 2015, pp. 1−7.

[23] H. Tang et al., “Application of fuzzy logic in mobile robot
navigation,” Fuzzy Logic-Controls, Concepts, Theories and
Applications, pp. 1−21, 2012.

[24] M. Nadour et al., “Mobile robot visual navigation based on fuzzy
logic and optical flow approaches,” Int J Syst Assur Eng Manag, vol.
10, pp. 1654–1667, 2019.

[25] F. Fathinezhad, V. Derhami, and M. Rezaeian, “Supervised fuzzy
reinforcement learning for robot navigation,” Applied Soft
Computing, vol. 40, 2016, pp. 33–41.

[26] F. Abdessemed, K. Benmahammed and E. Monacelli, “A fuzzy-
based reactive controller for a non-holonomic mobile robot,”
Robotics and Autonomous Systems, vol. 47, no. 1, 2004.

[27] A. Karray, M. Njah, M. Feki, and M. Jallouli, “Intelligent mobile
manipulator navigation using hybrid adaptive-fuzzy controller,”
Computers and Electrical Engineering, vol. 56, 2016.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

294

https://www.emerald.com/insight/publication/issn/0368-492X

[28] S. A. L. E. Teleity, Z. B. Nossair, H. M. A. K. Mansour, and A.
TagElDein, “Fuzzy logic control of an autonomous mobile robot,”
in Proc. 2011 16th International Conference on Methods & Models
in Automation & Robotics, 2011, pp. 188−193.

[29] C. Lakhmissi and M. Boumehraz, “Fuzzy logic and reinforcement
learning based approaches for mobile robot navigation in unknown
environment,” Mediterranean Journal of Measurement and
Control, vol. 9, pp. 109−117, 2013.

[30] M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel, “Fuzzy
logic controllers design for omnidirectional mobile robot
navigation,” Applied Soft Computing, vol. 49, 2016, pp. 901–919.

[31] P. Nattharith and M. S. Güzel, “Machine vision and fuzzy logic-
based navigation control of a goal-oriented mobile robot,” Adaptive
Behavior, vol. 24, no. 3, 2016.

[32] L. Zadeh, “Fuzzy sets,” Inf. Control, 1965, vol. 8, pp. 338–353.

[33] F. Dernoncourt, Introduction to Fuzzy Logic; Massachusetts

Institute of Technology, Cambridge, MA, USA, 2013
[34] A. Kwiatkowski et al., “A survey on reinforcement learning

methods in character animation,’ Euro Graphics, vol. 41, 2022.
[35] A. Agarwal, N. Jiang, and S. M. Kakade, “Reinforcement learning:

Theory and algorithms,” CS Dept., UW Seattle, 2019.
[36] C. F. Riman and P. E. A. Char, “Fuzzy logic control for mobile

robot navigation in automated storage,” International Journal of

Mechanical Engineering and Robotics Research, vol. 12, no. 5, pp.
313−323, 2023.

[37] E. Avelar, O. Castillo, and J. Soria, “Fuzzy logic controller with

fuzzylab python library and the robot operating system for

autonomous mobile robot navigation,” Journal of Automation,

Mobile Robotics and Intelligent Systems, vol. 14, 2020.

[38] M. Sabrina et al., “Real-time fuzzy-PID for mobile robot control

and vision-based obstacle avoidance,” International Journal of

Service Science, Management, Engineering, and Technology, vol.

13, 2020.

[39] L. Cherroun et al., “Mobile robot path planning based on optimized

fuzzy logic controllers,” New Developments and Advances in Robot

Control. Studies in Systems, Decision and Control, vol 175, 2019.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

295

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

