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Abstract—Robots are used to move stored items in 

Automated Storage (AS) to shelve and pickup items in 

warehouse depicted shelves. In this situation and many others, 

it is important to follow the shortest way so that the smallest 

time possible is taken to achieve the task. In this research, a 

Fuzzy Logic system with Q-Learning Reinforcement in order 

to achieve a better overall system. While Fuzzy Logic can be 

used alone for robot navigation, Reinforcement learning 

helps to adjust the fuzzy rules and refine them towards two 

main purposes: reach the final goal, while avoiding difficult 

obstacles such as traps. This is done as an enhancement on 

our previous work where Fuzzy Logic system was used alone. 

Simulation results are added to support the work done. It 

proved that this new system is much better than the previous 

one. Highlighting key parameters or features of simulation 

results show that the system achieved 33% more optimized 

time in addition to avoid stalled/unsuccessful navigation in 

some difficult situations, thus demonstrating the system’s 

success. 

 

Keywords—fuzzy logic, fuzzy reinforcement learning, path 

planning, Q-Learning, robotics 

 

I. INTRODUCTION 

As part of the Industry 4.0 standard, Automated Storage 

(AS) retrieval systems are used in many warehouses in big 

companies around the world. They use robots for handling 

and fetching items because they are faster, more practical, 

and save human resources. The mobile robot navigation in 

AS is very important. It is the base of an automated storage. 

Furthermore, it is crucial in robotics to navigate through 

the minimum possible path because it saves time and 

money. Many shortest-path algorithms are used such as 

Dijkstra, A*, BFS, and even reinforcement learning. A* is 

an enhanced version of Dijkstra, using a heuristic function 

H to have a better assumption for the current situation [1]. 

According to Permana et al. [1], A* proved better than 

Dijkstra and Breadth First Search (BFS) when tested on 

Maze Runner Game. 

Reinforcement Learning (RL) is a way to improve 

navigation by training data of a known environment. It is 

mainly used in gaming and control problems. 

Fuzzy logic is used for decision systems when the 

outcome is uncertain. It is used in many areas such as 

control, image processing, AI, and also in robotics. Fuzzy 

logic better reflects real-world problems than classical 

logic and fuzzy algorithms can produce accurate results 

with imprecise data. However, they require validation, and 

depend on human knowledge. 

Fuzzy reinforcement learning can be added to fuzzy 

systems in order to improve with training and time the 

performance of implemented fuzzy rules. Through the 

perception and interpretation of its environment, it adds 

extra weight to each fuzzy rule positively acting to reach 

the goal, and hinders rules that deviate from the optimum 

path. The reinforcement helps the robot to adjust its 

navigation in order to improve performance. RL is an 

automatic modification of the robot behavior in its 

navigation environment [2]. Therefore, RL is a way for 

optimizing control, when the system starts from an 

deficient solution which slowly improves according to the 

training done to solve the navigation problem [2]. By 

observing the results of every action, the agent is able to 

maximize the rewards and achieve a better 

performance [2].  

In this work, we suggest a model to include fuzzy Q-

Learning reinforcement to our existing fuzzy model. This 

reinforcement will improve the operation of our fuzzy 

rules in order to better achieve reaching the goal while 

avoiding obstacles, and escaping traps on the way. Our 

suggested model will enhance robot’s navigation in AS 

and reduce time necessary to fetch and store goods in the 

storage. 

The rest of this paper is arranged as follows. In Section 

II, we briefly survey the relevant existing work and 

compare the existing systems in terms of number of fuzzy 

systems, usage of reinforcement learning and others. In 

Section III, the mathematical background of Fuzzy Logic 

and Fuzzy Reinforcement Learning are defined. In 

Section IV, the reinforcement learning algorithm 

requirements with the training/testing phases are explained. 

In Section V, we show the implementation and testing of 

the reinforcement model. In Section VI, we compare the 

fuzzy reinforcement model with our previous work with 

multi-system fuzzy model without reinforcement. In 

Section VII, we compare our model with another existing 

multi-system fuzzy reinforcement model. Finally in 
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Section VIII, we end the paper and present the potential 

future work. 

II. LITERATURE REVIEW 

The main goal in mobile robots is to arrive at the goal 

using the smallest possible track, and at the same time not 

be trapped concave obstacles (called cul-de-sac), or hit 

walls, or be stuck in a certain location not able to decide 

on a direction. Obstacles can be either static or dynamic 

such as other robots on the way. Several solutions using 

fuzzy logic systems exist: from single inference systems, 

or multiple systems that are run according to the current 

situation. There can up to more than 3 fuzzy controllers at 

the same time. A few of this use reinforcement learning in 

a way to enhance the overall system’s capability, after a 

training period. Although reinforcement learning enhances 

these rules, however the fuzzy sets should be selected in a 

wise way from the beginning in order to achieve a good 

overall system. Systems not using reinforcement, were 

selected because of their importance handling situations 

where training is not possible or the overall environment is 

not known in advance. 

Several papers were studied and compared together. 

Among these systems, several used one fuzzy controller 

that handles all situations [2−16], others used two fuzzy 

controllers [17−27], and a few used three fuzzy controllers 

[28−39]. Furthermore, a few of the papers [2, 3, 17, 21, 24, 

26, 29, 37, 39] used reinforcement learning in order to 

improve on the fuzzy system. A list of the studied papers 

is shown in Table I next, ordered by year of publication. 

TABLE I.  REVIEWED SYSTEMS WITH FUZZY CONTROLLERS 

Reference Year 

Number of  

Fuzzy 

Controllers 

Includes 

Reinforcement 

[37] ≥ 2020 1 Yes 

[39] ≥ 2020 3 Yes 

[6, 12, 13] ≥ 2020 1 No 

[38] ≥ 2020 2 No 

[36] ≥ 2020 3 No 

[5, 9, 10, 14−16] 2017−2019 1 No 

[25] 2017−2019 2 No 

[18−23, 27] 2010−2016 2 No 

[21, 24] 2010−2016 2 Yes 

[30] 2010−2016 3 No 

[29] 2010−2016 3 Yes 

[28, 31] 2010−2016 4 No 

[4, 7, 8] < 2010 1 No 

[2, 3] < 2010 1 Yes 

[17, 26] < 2010 2 Yes 

 

In our previous work [36], we presented a Fuzzy control 

system for robotics’ movement in AS. Our system detected 

neighboring obstacles using sensors, and included 3 sub-

controllers: Reach Goal, Avoid Walls, and Escape Cul-De-

Sac. The fuzzy system proved to be effective on a small 

map, and for simple navigations with few obstacles on the 

way. But it did not give an optimal path in several 

situations. 

Comparing the existing systems with reinforcement 

learning, in Table II a list of the explained fuzzy with 

reinforcement learning systems is shown with indication 

whether they are using single, dual, or triple fuzzy 

controllers, including a short description of each of the 

controllers. 

TABLE II.  FUZZY SYSTEMS WITH REINFORCEMENT LEARNING 

Reference 
First 

Controller 

Second 

Controller 

Third 

Controller 

[2] 
Target locate and 

safe move − − 

[3] 

Path navigation 

and obstacle 

avoidance 
− − 

[17] 
Follow Target and 

Avoid Obstacles 

Escape concave 

trap − 

[21] Goal seeking Wall following − 

[24, 26] Goal seeking 
Obstacle 

avoidance − 

[29] Goal seeking Wall following 
Obstacle 

avoidance 

[37] Obstacle avoidance − − 

[39] Goal seeking 
Obstacle 

avoidance 

Wall 

following 

 

The reviewed systems using dual fuzzy controllers are 

listed in Table III. Table III is divided into 3 columns, the 

first showing the work reference, the second listing the 

name of the first used controller, and the third showing the 

name of the second used controller. 

TABLE III.  SYSTEMS WITH DUAL FUZZY CONTROLLERS 

Reference First Controller Second Controller 

[17] 

Follow Target 

and Avoid 

Obstacles 
Escape concave trap 

[18] Angular velocity Linear velocity 

[19−26] 
Goal reaching / 

seeking Obstacle avoidance 

[21] Goal seeking Wall following 

[22] Orientation Obstacle avoidance 

[27] 
Obstacle 

avoidance Join Virtual Target 

 

Furthermore, the checked systems using three or more 

controllers are shown in Table IV. Table IV has similar 

divisions to Table I, with an extra column showing the 

name of the third used controller. The last column shows 

the name of the fourth controller, if it exists. 

TABLE IV.  SYSTEMS WITH TRIPLE OR MORE FUZZY CONTROLLERS 

Reference 
First 

Controller 

Second 

Controller 

Third 

Controller 

Fourth 

Controller 

[28] Reach target 
Avoid 

obstacle 

Escape 

trap: right 

wall follow 

Escape trap: 

left wall 

follow 

[29] Goal seeking 
Wall 

following 

Obstacle 

avoidance 
− 

[30] 
Linear 

velocity 

Angular 

velocity 

Obstacle 

avoidance 
− 

[31] Go to target 
Avoid 

obstacle 

Wall 

follow 
Wander 

[36] Reach Goal 
Avoid 

Walls 

Escape 

Cul-De-Sac 
− 

[39] Goal seeking 
Obstacle 

avoidance 

Wall 

following 
− 
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III. MATHEMATICAL BACKGROUND 

A. Fuzzy Logic Definition 

Fuzzy logic is a mathematical model built on the notion 

of “degree of membership” rather on the usual true/false (1 

or 0) binary logic on which modern computers are based. 

A fuzzy model or set is a computational way to show fuzzy 

or vague data. It is similar to how human minds work. 

Fuzzy logic is in a way how thinking works. It has a degree 

of truth going from 0 to 1 as a mathematical model of 

vagueness [32]. Fuzzy Systems are composed of three 

parts [33]: Fuzzification, Fuzzy Rules Evaluation (or 

Inference Mechanism), and Defuzzification. A basic fuzzy 

system is shown in Fig. 1. 

 

 

Fig. 1. Basic fuzzy system. 

The inference mechanism contains a number of If-Then 

rules which applies a fuzzy logic quantification of the 

description of how to achieve a good output. These If-Then 

rules are aggregated together for each output variable, as 

shown in Fig. 2. 

 

 

Fig. 2. Fuzzy rules aggregation. 

B. Reinforcement Learning Definition 

Reinforcement Learning contains an environment and 

its agent working within that environment to achieve some 

goals such as reach a target for a robot. The agent reads the 

environment, and executes an action. The state the 

environment then goes to a new state, and the agent gets a 

reward that is an indicator on the correctness of the 

followed action. The agent’s goal is to get the most 

possible rewards during an experiment. An experiment 

starts from a certain zero stage, and keeps changing until 

the agent reaches a final stage [34]. The Reinforcement 

Learning is based on the Markov Decision Process. 

An infinite horizon, discounted Markov Decision 

Process (MDP) is defined by M = (S, A, P, r, ɣ, µ) [35]: 

where 

• S: a state space. 

• A: a discrete action space. 

• P: a transition function S × A → ∆(S) 

• r: reward function S × A → [0, 1] 

• ɣ: discount factor ∈ [0,1] 

• µ: initial state distribution ∈ ∆(S) 

Q-Learning is a reinforcement learning technique to 

learn the value of an action at in a particular state St. It is 

used for solving MDP that models realistic problems. It 

forecasts the overall future discounted reward that will be 

received from current action at. It has three functions: an 

evaluation function, a reinforcement function and an 

update function. The update function is based on the 

equation: [32] 

Q(st,at)  Q(st,at) + α[rt + ɣ.maxaQ(st+1,at) – Q(st,at)]  (1) 

where alpha α ∈ [0,1] is a small learning rate constant. 

Gamma ɣ is the discount rate applied to the maximum Q-

value of next state maxaQ(st+1,at). rt is the immediate 

reward.  The Q-function has a Q-table, where each cell 

corresponds to a state-action value pair value. This Q-table 

contains the result of the learning reinforcement after 

several episodes. 

C. Fuzzy Reinforcement Learning 

A Fuzzy Reinforcement Learning applies the training 

reward as a factor to be multiplied by the fuzzy rules 

contributing to the decision made by the agent. Initially the 

factor is filled with an initial training iteration (explained 

in next section), which applies a direct reward 

reinforcement. The reward can slightly increase or  

decrease the factor after each cell movement action 

made by the agent during the training period. After 

finishing the training period, each fuzzy rule will end up 

with a fixed multiplying factor M that affects its 

contribution to the end result. M is the accumulation of all 

the rewards for rules applied for a particular action in a 

specific situation. This relies on the Q-table which contains 

the state/action/reward combinations. The state being the 

position and the direction. 

 

(1+M1)/2 × Action 1 

(1+M2)/2 × Action 2 

… 

         (1+Mi)/2 × Action i                     (2) 

IV. SUGGESTED FUZZY REINFORCEMENT MODEL 

A. Model Assumptions/Requirements 

Path planning solution can be thought of as a connected 

graph (undirected) G = (N, E, L), N being the number of 

vertices, E the edges, and L the actual length between 2 

nodes. As an example, in Fig. 3, the starting point is a red 

circle, the target node is a violet circle, and the obstacles 

are noted as green squares. The assumptions/requirements 

are the following: 

• Only one robot can fit on every block. 

• All mobile robots move at the same speed of 1m/s 

(assumed).  

• Every square is 1 meter wide by length. One second 

is needed by the robot to move for one square.  

• A robot can move on straight lines only, that are 

marked with numbers as in Fig. 3. Check Fig. 4 for 

the movement directions. 
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• Mobile robots direction is not considered. The 

robot can move in any direction. 

• The main robot has a knowledge of the 

environment with the obstacle locations, which is 

needed to apply learning reinforcement technique. 

 

 

Fig. 3. Environment grid used. 

 

Fig. 4. Robot’s movement directions. 

B. Initial Fuzzy Model before Reinforcement 

The proposed initial Fuzzy model is a single fuzzy 

system to reach goal while avoiding obstacle. It guides the 

robot to its goal, avoiding obstacles on the way until 

success or getting stuck in a specific position. The current 

and target positions are both taken into consideration. The 

system has two axes x and y. The inputs are called delta(x) 

and delta(y), where:  

delta(x)= DisX = current(x) – goal(x) 

delta(y)= DisY = current(y) – goal(y) 

 

There is also the distance from the robot to its 

surrounding obstacles. 

 

Obstacle(x) – current(x) = ObX 

Obstacle(y) – current(y) = ObY 

 

For each loop run, the controller calculates the above 

values, then runs the fuzzy model three parts: fuzzification 

part, checking inference rules, and then the defuzzification 

part. The defuzzification is implemented using Center of 

Gravity method. The output is the new motion by the robot. 

The action is validated and then, if no issues will occur, 

meaning that it will not hit a wall, then it is followed. The 

controller stops when the robot arrives to the goal or get 

stuck in a position where it cannot decide on a move.  

The inputs distances DisX and DisY have a fuzzy set 

containing 3 membership values: Negative, Zero, and 

Positive. The Zero is a singleton value that is on the goal. 

The Negative is on a shape showing how distant is the 

target is in the reverse direction of the robot. The Positive 

is on a shape showing how distant is the target from robot 

but on the same direction. Fig. 5 displays the explained 

fuzzy set. 

 

Fig. 5. Robot’s movement directions. 

A fuzzy set defined inputs ObX and ObY, having 3 

membership values Negative/Zero/Positive. All values are 

singletons: −1, 0, +1. Negative means that the obstacle is 

one step behind the robot. Positive means that the obstacle 

is one step in front of the robot. Zero means that the obstacle 

is on the same level as the robot, obviously in only of the 

X/Y axes. Fig. 6 displays the explained fuzzy set. 

 

Fig. 6. Fuzzy set for inputs ObX and ObY (distance from robot to wall in 

X or Y). 

 

Fig. 7. Robot’s movement directions. 

The system outputs are MovX/MovY. MovX/Y is the 

decided motion in X/Y direction. These outputs are outlined 

with a fuzzy set having 3 memberships: Forward, Zero, and 

Backward. Forward is a move on the robot’s direction. 

Backward is a move in reverse to the robot’s direction. Zero 

is no move at all in any direction. It is a singleton of value 

1. Fig. 7 reveals the output movement’s set in X and Y ways. 

C. Q-Learning Reinforcement Training Phase 

For every scenario, there should be a training phase. In 

the scenario, the target position is fixed along with all 

obstacles. The training phase consists of testing all the 

current possible positions for the robot along with all 

possible actions. The possible positions along the X axis 

are from 0 to 15, and for y axis from 0 to 10. The possible 

actions for each position are just 4:  

• Move forward along the X axis.  

• Move backward along the X axis. 

• Move forward along the Y axis. 

• Move backward along the Y axis. 
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The Q-Table will be of 3 dimensions. It consists of all 

the x positions, the y positions, and the possible moves (left, 

up, right, down). The value for each cell will contain the 

reward to be applied. On the first iteration of the training 

phase, an immediate reward rt is considered. The 

reinforcement factor M is equal on the first iteration to this 

rt, which can have one of the following values: 

 

−1.0 if a collision occurs 

−0.5 if distance to target increases  (3) 

+0.5 if distance to target decreases 

+1.0 if target is reached 

 

where the distance to the target is given by the formula: 

distance = √∆𝑥2 + ∆𝑦2                               (4) 

A sample of possible Q-Table values is shown in the 

table below: 

TABLE V.  Q-TABLE SAMPLE DATA (PARTIAL) FOR INITIAL 

ITERATION 

X Y Movement 
rt  Reward for 

Reinforcement (M) 

0 0 2 (X Forward) +0.5 

10 5 3 (Y Backward) −0.5 

7 3 1 (Y Forward +1.0 

3 6 0 (X Backward) −1.0 

 

As shown in Eq. (2), the reinforcement M is direction 

dependent. Supposing that there are 4 actions: X 

forward/backward, Y forward/backward, then the 

corresponding reinforcement reward is applied to the 

movement in the specific direction. After that, the highest 

action is followed. As an example, if going X forward gets 

0.75 and going Y forward gets 0.50, and the others get zero, 

then the X forward motion of a full step will be applied. 

After the initial iteration training phase, the Q-Table is 

filled with the above-mentioned values and ready to be 

used for the real-time testing. It is worth mentioning that if 

only one training iteration is done, the possible situations 

are only the 4 above in table V (namely M =1 or −1 or 0.5 

or −0.5) because the training phase was not deep enough. 

In these cases, reinforcement will be one of 4 values 
(𝟏+𝐌)

𝟐
 

= either 1 or 0 or 0.75 or 0.25. 

In order to avoid having a dummy Q-Table with no real 

use except for very primitive scenarios, the learning depth 

(iterations) should be increased. Several iterations are run 

to update the table. If a cell A is adjacent to another cell B 

with high update function value Q (greater than 0.5) in one 

of its 4 direction actions, the cell A action leading to cell 

B will get a new update function equal to (Q–0.01). 

For the further iterations, taking into consideration the 

Eq. (1), with alpha α = 0, gamma ɣ = 0.99, the immediate 

reward rt = 0, then the Eq. (1) will be reduced to:  

 

Q(st,at)  Q(st,at) + α[rt + ɣ.maxaQ(st+1,at) – Q(st,at)] 

Q(st,at)  Q(st,at) + 1[0 + 0.99.maxaQ(st+1,at) – Q(st,at)] 

Q(st,at)  Q(st,at) + 0 + 0.99.maxaQ(st+1,at) – Q(st,at)] 

 Q(st,at)  0.99.maxaQ(st+1,at)        (5) 

If the start and goal are near and the obstacles are few, 

a small number of iterations is required. However, if the 

distance becomes larger, and the obstacles are many, then 

a higher depth (iterations) is required. In the next section, 

several trials will be done to show the difference in the 

performance according to the training depth. 

D. Fuzzy Reinforcement Model’s Algorithm 

In real-time scenarios, every movement is decided by a 

set of fuzzy rules. To apply Q-Learning reinforcement 

learning, the current location/direction and the decided 

movement for the robot is checked against the Q-Table. 

The M value of the reinforcement amount is used as in 

Eq. (2) for all possible actions for the next movement. The 

fuzzy rules are assessed after adding the reinforcement 

factor. After the defuzzification phase, the movement 

decision (X forward/backward, Y forward/backward) will 

be followed. And the same process will be repeated for 

next movements until target is reached. The above is 

described in the algorithm’s flowchart in Fig. 8. 

Furthermore, a more detailed Algorithm 1 is depicted 

next. 

 
Algorithm 1: Fuzzy Q-Learning Reinforcement 

1. Choose the Begin vertex V and the Target vertex G. 

2. With present vertex i=V, Dist(i)=0, Dist is the overall moved 

distance so far from the start V. 

3. Calculate reinforcement reward Q-Table. 

4. Repeat steps from 5 to 12 to arrive to target G. 

5. Is i=G? If so, terminate loop and announce success. 

6. Calculate dist. from i to  G in directions x/y:  

ΔX = x[G] – x[i]  ΔY = y[G] – y[i] 

7. Run Fuzzy Model’s Fuzzification. 

8. Check Q-Table and get reinforcement Mi for all move directions. 

9. Apply reinforcement (1+Mi)/2 to all possible actions.  

10. Apply Inference Mechanism. 

11. Run Defuzzification. 

12. Go back to step 5. 

13. End. 

 

 
Fig. 8. Proposed fuzzy reinforcement framework’s flowchart. 

Start

Check Robot Location/

Direction and Target Location

End

Apply Move on Robot

Calulate Q-Table

Run Fuzzification

Is Goal Reached?

Yes

No

Check Q-Table with decided 

Move, get reinforcement M

Multiple affected action by 

(1+M)/2

Inference Mechanism

Defuzzification
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In Step 3 in the above Algorithm 1, the reinforcement 

reward Q-Table is calculated. The calculation is done 

according to the specified depth. At least one iteration is 

done and applied according to Eqs. (3) and (4). Extra 

iterations are done for deeper depth according to Eq. (5). 

Another Algorithm 2 for calculating the Q-Table is shown 

next. 

 

Algorithm 2: Q-Table calculation 

1. Define Q-Table Q(x,y,z): (x,y) position, z direction action (left, up, 

right, down). Initialize all Q-Table values to zero. 

2. Run the initial training phase, filling Q-Table according to 

equations (3) and (4). 

3. If the depth > 1, repeat steps 4 to 10 for each extra iteration. Make 

iteration = 1 

4. If iteration = depth, go to step 13  

5. For each cell in Q(x,y,z): Q(st,at) 

6. If the neighbor cell in z direction for cell (x,y) is an obstacle, then 

make Q(st,at) = -1 

7. Otherwise, Get maxaQ(st+1,at), the maximum of Q-value of next 

state, which is the neighbor cell in z direction for cell (x,y). 

8. Apply a discount rate gamma ɣ = 0.99. 

9. Use equation (5) to make Q(st,at) = 0.99 maxaQ(st+1,at)  

10. Update Q(x,y,z) in the Q-Table. 

11. iteration = iteration + 1 

12. Repeat from step 4. 

13. End. 

V. IMPLEMENTATION AND TESTING OF THE 

REINFORCEMENT MODEL 

For the suggested model, a simulation was built and run 

to mimic the work in AS environment. It is based on the 

assumptions made in Section IV.A. As a limitation, the 

simulation is assuming no turning time for the robot, which 

might be not realistic in real environment. Success was 

checked with several scenarios, and compared to our 

previous work in fuzzy logic system without 

reinforcement [36]. The software used C# language on a 

standard Windows 10 OS. The performance metrics used 

to evaluate the new system were the time spent to achieve 

the goal, and whether the experiment was successful or not. 

The time was measured as robot movement steps assuming 

that each step is 1 s. If the robot was able to reach the target 

point, then the experiment is considered a success, 

otherwise it is considered as a failure. 

A. Fuzzy Experiment 1—Zero Obstacles 

A test was done without any obstacle. One simulation 

was performed with a start (1,1), and target (6,2). Results 

for the test are in Fig. 9, where the red circle indicates the 

source, the violet circle indicates the goal, and the red line 

indicates the followed path. For the simulation, the Center 

of Gravity defuzzification was implemented. The robot 

modified its movement angle at location (6,1) to reach the 

goal. No Reinforcement was used in this scenario. Table VI 

shows location vs time for the robot over six steps. 

 

 

Fig. 9. Fuzzy Experiment 1—No obstacles—No reinforcement.  

TABLE VI.  ROBOT’S MOVEMENTS—EXPERIMENT 1 

Time Robot’s Location 

0 1,1 

1 2,1 

2 3,1 

3 4,1 

4 5,1 

5 6,1 

6 6,2 

B. Fuzzy Experiment 2—One Obstacle 

Another test was done by inserting one obstacle at 

location (5,1). One simulation was conducted with the 

starting point (1,1) and the target is (6,2). The test outputs 

are shown in Fig. 10. The green square indicates the 

obstacle. The robot modified direction at position (4,1) to 

avoid the obstacle, also at (4,2) to reach goal. The Fuzzy 

controller was active without Reinforcement. Table VII 

shows location vs time for the robot. 

 

 
Fig. 10. Fuzzy Experiment 2—One obstacle—No reinforcement. 
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TABLE VII.  ROBOT’S MOVEMENTS—EXPERIMENT 2 

Time Robot’s Location 

0 1,1 

1 2,1 

2 3,1 

3 4,1 

4 4,2 

5 5,2 

6 6,2 

 

C. Fuzzy Experiment 3—Two Obstacles 

Another test was done by inserting two static obstacles 

at positions (4,2) and (5,1). Three trials were performed 

with the starting position (1,1) and the target is vertex (6,2). 

The first test was done using Fuzzy System without 

Reinforcement. The experiment failed because the robot 

got stuck in location (4,1). The second test was done using 

Fuzzy System with Reinforcement of depth 1. The 

experiment also failed because the robot was oscillating 

between location (4,1) and (3,1). The third test was done 

using Fuzzy System with Reinforcement of depth 5. The 

experiment was successful. The robot modified direction at 

position (4,1) to avoid the obstacle, then at positions (4,0) 

and (6,0) to reach target. The simulation results are shown 

in Figs. 11 and 12. Table VIII shows the location vs time 

for the robot, for each of the three tests. 

 

 

Fig. 11. Fuzzy experiment 3—Two obstacles—No reinforcement. 

 

 

Fig. 12. Fuzzy Experiment 3—Two Obstacles—Reinforce: depth 5. 

 

TABLE VIII.  ROBOT’S MOVEMENTS—EXPERIMENT 3 

Time 

Robot 

Location 

No  

Reinforcement 

Robot 

Location 

Reinforcement  

depth 1 

Robot 

Location 

Reinforcement  

depth 5 

0 1,1 1,1 1,1 

1 2,1 2,1 2,1 

2 3,1 3,1 3,1 

3 4,1 4,1 4,1 

4 4,1 (stuck) 3,1 4,0 

5 − 4,1 (oscillates) 5,0 

6 − 3,1 6,0 

7 − 4,1 6,1 

8 − 3,1 6,2 

 

The calculation is described for location (4,1) which is 

the main difference between failed and sccessful attempts. 

With a reinforcement learning of depth 1, the movement 

reinforcement is just as decribed in Eqs. (3) and (4): 

• Left/Down: −0.5 (distance to target increases). 

• Up/Right: −1 (collision).  

The system chose Left path and went back to (3,1) which 

has the values: 

• Left/Down: −0.5 (distance to target increases). 

• Up/Right: 0.5 (distance to target decreases). 

 

where it chose the Right movement and got stuck 

oscillating between above 2 positions. The following table 

shows the reinforcement factor to each direction in the 

locations (3,1) and (4,1). The chosen decisions are shown 

in red. 

TABLE IX.  Q-TABLE EXPERIMENT 3—REINFORCEMENT DEPTH 1 

X Y 
Move -X  

Reward 

Move +Y 

Reward 

Move +X 

Reward 

Move -Y 

Reward 

3 1 −0.5 +0.5 +0.5 −0.5 

4 1 −0.5 −1.0 −1.0 −0.5 

 

As for a reinforcement learning of depth 5 for location 

(4,1), the movement reinforcement becomes after 

repeatedly applying the change 4 times (depth 2 to 5) using 

Eq. (5). 

 

Q(st,at)  0.99.maxaQ(st+1,at), becomes: 

• Left: 0.94. Starting from surrounding (6,2) which 

is +1, going back every step mutliplying by 0.99 

 (6,1)= 0.99×1 = 0.99 

 (6,0)= 0.99×0.99 = 0.98 

 (5,0)= 0.99x×0.98 = 0.97 

 (4,0)= 0.99×0.97 = 0.96 

 (3,0)= 0.99×0.96 = 0.95 

 (3,1)= 0.99×0.95 = 0.94 

• Up/Right: −1 (collision).  

• Down: 0.96. Same as above but stopping at (4,0) 

It chose the Down movement. 

The following table shows the reinforcement factor to 

each direction in the locations (4,1), (4,0), (5,0), (6,0), and 

(6,1). The chosen decisions are shown in red. 
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TABLE X.  Q-TABLE EXPERIMENT 3—REINFORCEMENT DEPTH 5 

X Y 
Move -X  

Reward 

Move +Y 

Reward 

Move +X 

Reward 

Move -Y 

Reward 

4 1 0.94 −1.0 −1.0 0.96 

4 0 0.95 0.95 0.97 −1.0 

5 0 0.96 −1.0 0.98 −1.0 

6 0 0.97 0.99 0.97 −.0 

6 1 −1.0 +1.0 0.98 0.98 

D. Fuzzy Experiment 4—Cul-De-Sac 

The fourth test was performed by having seven 

obstacles with a shape of a Cul-De-Sac at positions (3,0), 

(4,0), (5,0), (5,1), (3,2), (4,2), and (5,2). Three tests were 

performed with the initial position (1,1) and the target is 

vertex (6,2). The first test was done using Fuzzy System 

without Reinforcement. The experiment failed because the 

robot got stuck in location (4,1). The second simulation was 

done using Fuzzy System with Reinforcement of depth 5. 

The experiment also failed because the robot was 

oscillating between location (4,1) and (3,1). The third 

simulation was done using Fuzzy System with 

Reinforcement of depth 10. The experiment was successful. 

The robot changed direction at position (2,1) to avoid the 

Cul-De-Sac, then at positions (2,3) and (6,3) to reach target. 

The simulation results are shown in Figs. 13 and 14. Table 

XI summarizes the location vs time for the robot, for each 

of the three tests. 

TABLE XI.  ROBOT’S MOVEMENTS—EXPERIMENT 4 

Time Robot 

Location 

No  

Reinforcement 

Robot 

Location 

Reinforcement  

depth 5 

Robot 

Location 

Reinforcement  

depth 10 

0 1,1 1,1 1,1 

1 2,1 2,1 2,1 

2 3,1 3,1 2,2 

3 4,1 4,1 2,3 

4 4,1 (stuck) 3,1 3,3 

5  4,1 (oscillates) 4,3 

6  3,1 5,3 

7  4,1 6,3 

8  3,1 6,2 

 

 

 

Fig. 13. Fuzzy experiment 4—Cul-De-Sac—No reinforcement. 

From the above results, a Q-Learning reinforcement of 

depth 5 was not enough to solve the cul-de-sac problem 

(Scanario 4), but it was enough to solve the previous 

problem with 2 obstacles (Scenario 3). As the Cul-De-Sac 

problem is more advanced than a simple wall of obstacles, 

more training iterations are needed to achieve reaching the 

goal. As it is seen in Fig. 14, the robot did not even enter 

the cul-de-sac and avoided it at the beginning, since it had 

prior knowledge due to extensive Q-Learning training. 
 

 

Fig. 14. Fuzzy Experiment 4—Cul-de-sac—Reinforce: depth 10. 

The calculation is described for location (4,1) for failed 

attempt for reinforcement with depth 5. The movement 

reinforcement is as decribed in Eqs. (3) and (4) for depth 

1, and becomes after repeatedly applying the change 4 

times (depth 2 to 5) using Eq. (5): 

• Left: −0.5 (distance to target increases). 

• Up/Right/Down: −1 (collision).  

The system chose Left path because it has the highest 

value and went back to (3,1) which has the values: 

• Left: −0.5 (distance to target increases). 

• Right: 0.5 (distance to target decreases). 

• Up/Down: −1 (collision).  

where it chose the Right movement because it had the 

highest value and got stuck oscillating between above 2 

positions. The following table shows the reinforcement 

factor to each direction in the locations (3,1) and (4,1). The 

chosen decisions are shown in red (Table XII). 

TABLE XII.  Q-TABLE EXPERIMENT 4 – REINFORCEMENT DEPTH 5 

X Y 
Move−X  

Reward 

Move +Y 

Reward 

Move +X 

Reward 

Move−Y 

Reward 

3 1 −0.5 −1.0 +0.5 −1.0 

4 1 −0.5 −1.0 −1.0 −1.0 

 

As for a reinforcement learning of depth 10, the 

movement changes course at location (2,1). The 

reinforcement at this location becomes after the initial 

depth 1 and after repeatedly applying the change 9 times 

(depth 2 to 10) using Eq. (5).  

Q(st,at)  0.99.maxaQ(st+1,at), becomes: 

• Left/Right/Down: 0.92. Starting from surrounding 

(6,2) which is +1, going back every step 

mutliplying by 0.99 

 (6,3)= 0.99×1 = 0.99 

 (5,3)= 0.99×0.99 = 0.98 

 (4,3)= 0.99×0.98 = 0.97 

 (3,3)= 0.99×0.97 = 0.96 

 (2,3)= 0.99×0.96 = 0.95 

 (2,2)= 0.99×0.95 = 0.94 

 (2,1)= 0.99×0.94 = 0.93 

 (2,0) or (1,1) or (3,1)= 0.99×0.93 = 0.92 

• Up: 0.94. Same as above but stopping at (2,2) 
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It chose the Up movement, because it is larger than 0.92. 

The following table shows the reinforcement factor to 

each direction in the locations (2,1), (2,2), (2,3), (3,3), 

(4,3), (5,3), and (6,3). The chosen decisions are shown in 

red (Table XIII). 

TABLE XIII.  Q-TABLE EXPERIMENT 4 – REINFORCEMENT DEPTH 10 

X Y 
Move−X 

Reward 

Move +Y 

Reward 

Move +X 

Reward 

Move−Y 

Reward 

2 1 0.92 0.94 0.92 0.92 

2 2 0.93 0.95 −1.0 0.93 

2 3 0.94 0.94 0.96 0.94 

3 3 0.95 0.95 0.97 −1.0 

4 3 0.96 0.96 0.98 −1.0 

5 3 0.97 0.97 0.99 −1.0 

6 3 0.98 0.98 0.98 +1.0 

E. Comparison of the 4 Experiments 

The testing done in the 4 experiments are shown and 

compared in Table XIV. The criteria that are used include 

the obstacles’ count, the perfect time to arrive to the goal, 

the real time to arrive to the goal using the fuzzy system, 

and the run fuzzy system: with or without reinforcement, 

with the depth for the reinforcement model. Not all the 

experiments were successful with all fuzzy modes. In the 

first and second scenarios, the fuzzy model was used 

without reinforcement because they were both simple. The 

fuzzy controller was able to detect and follow the path 

without any issue. However, in Scenarios 3 and 4, the fuzzy 

model failed, and got stuck in one location. Reinforcement 

was applied using the Q-Learning table in both. A depth of 

5 was sufficient to make the scenario 3 succeed because of 

its simplicity. But this depth was not enough for scenario 4 

because of its complex nature, that is the cul-de-sac is not 

as simple as straight obstacles. Reinforcement with Q-

Learning table of depth 10 achieved the navigation towards 

the target. In all successful cases, the actual time was 

optimal, equal to the ideal time. The in advance learning of 

the environment helped achieving an optimal time in 

Scenarios 3 and 4, whereby the simplicity of Scenarios 1 

and 2 did not need any extra effort to have an optimal actual 

trial time. 

F. Implementation on an Actual Robot in AS Environment 

The testing done was so far in a simulation environment. 

The implementation of the new system on an actual robot 

in AS environment will include several challenges. One of 

them is the size of the robot is bigger than a dot like in the 

software. Another issue will be changing direction of the 

robot before moving. Furthermore, we cannot ignore the 

skidding effect and we need a correction measure all the 

way, such as beacons on every step. These things are left 

for a future work to be done in real implementation. 

 

 

 

 

TABLE XIV.  THE 4 EXPERIMENTS’ COMPARISON 

Scenario 
Obstacles’ 

Count 

Perfect 

Time 

Real 

Time 
Fuzzy System 

Experiment 1: 

No Obstacles 0 6 6 
No 

Reinforcement 

Experiment 2: 

1 Obstacle 1 6 6 
No 

Reinforcement 

Experiment 3: 

2 Obstacles 2 8 
∞ 

failed 

No 

Reinforcement 

Experiment 3: 

2 Obstacles 2 8 
8 Reinforcement 

depth 5 

Experiment 4: 

Cul-De-Sac 7 8 
∞ 

failed 

No 

Reinforcement 

Experiment 4: 

Cul-De-Sac 7 8 
∞ 

failed 

Reinforcement 

depth 5 

Experiment 4: 

Cul-De-Sac 7 8 8 
Reinforcement 

depth 10 

 

VI. CLASSICAL FUZZY VS FUZZY WITH REINFORCEMENT 

The Fuzzy Model presented in our previous work [36], 

included 3 fuzzy sub controllers working together: Reach 

Goal, Avoid Obstacle, and Escape Cul-De-Sac. It proved 

effective on a small map, and for simple navigations with 

few obstacles on the way. Due to knowing only locations 

of the adjacent obstacles, it can be used in unknown 

environments. In this section, we will compare the 

previous system with the suggested Fuzzy Reinforcement 

model (learning depth = 10), using simulation on 2 

scenarios applied to both systems. 

The fundamental difference between the work in [36] 

and the current work is the use of reinforcement learning 

with a training phase for the known environment. The 

system in [36] is able to detect the path, but not always as 

efficient as wanted, with the system not able in difficult 

scenarios to find a proper solution. The new system is 

always able to find the most efficient solution. 

In the first scenario, the robot is moving in a small 

hallway surrounded with straight walls, with 90 degrees 

turns. Both systems managed well the situation and 

followed the same track. In order to have a fair comparison, 

the turning time/steps are ignored for the previous system. 

Therefore, the efficiency of both systems is the same. In 

Fig. 15, the followed path for both systems in scenario 1 is 

shown. As seen in the picture, 13 steps were needed which 

is the optimum path. 

In the second scenario, the robot is moving in an open 

room with a concave obstacle (cul-de-sac) on its way. Both 

systems managed successfully the situation, but they 

followed different tracks. The efficiency of the Fuzzy Q-

Learning Reinforcement system is much better because the 

robot avoided entering the cul-de-sac. The previous system 

had to enter the cul-de-sac and then leave it in search for 

another alternative. In Fig. 16, the followed paths for both 

systems in scenario 2 are shown. As seen in the picture, 8 

steps were needed for the Fuzzy Q-Learning 

Reinforcement system which is the optimum path. The 

previous system needed at least 12 steps excluding the 

turning time/steps.  
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(a) 

 

 
(b) 

Fig. 15. Path following comparison of previous system (above) and new 

system (below) (a) Fuzzy alone, (b) Fuzzy with Reinforcement 

The results of applying both scenarios are compared for 

the two models in Table XV. As seen in the table, both 

systems have equal achievement with optimal time in 

Scenario 1. In Scenario 2, only the Fuzzy Reinforcement 

model achieved the optimal value, which is 33% less time 

than the previous fuzzy model. 

TABLE XV.  COMPARISON OF FUZZY MODEL WITH FUZZY 

REINFORCEMENT 

Scenario 
Obstacles’ 

Count 

Ideal 

Time 
Actual Time Fuzzy System 

Scenario 1: 

Hallway with 

Obstacles 

Many 13 
13 (ignoring 

turns) 

Old Fuzzy 

model 

Scenario 1: 

Hallway with 

Obstacles 

Many 13 13 

Fuzzy with 

Reinforcement 

(Q-Learning) 

Scenario 2: 

Cul-De-Sac 

5 forming 

Cul-De-Sac 8 
12 (ignoring 

turns) 

Old Fuzzy 

model 

Scenario 2: 

Cul-De-Sac 

5 forming 

Cul-De-Sac 8 8 

Fuzzy with 

Reinforcement 

(Q-Learning) 

 

 
(a) 

 
(b) 

Fig. 16. Cul-De-Sac avoiding comparison of previous system (above) 

and new system (below). (a) Fuzzy alone, (b) Fuzzy with Reinforcement  

VII. OUR MODEL VS OTHER FUZZY WITH REINFORCEMENT 

The Fuzzy Model with Reinforcement Learning 

presented in [39], included 3 fuzzy sub controllers working 

together: Goal seeking, Obstacle avoidance, and Wall 

following. It was proven effective in several different 

scenarios: with or without obstacles, or with wall 

following. In this section, we will compare proven system 

with our Fuzzy Reinforcement model using simulation on 

a single specific scenario with obstacles applied to both 

systems. 

 

 

Fig. 17. Obstacle Avoidance: [39] (blue) vs proposed system (red) 

In this scenario, the robot is moving in a room with two 

large obstacles, and the target is behind these obstacles. In 

Fig. 17, the followed path for both systems in the scenario 

is shown: the reference [39] path in blue, and our system’s 

path in red using a training depth of 10. As seen in the 

picture, 25 steps were needed for our system, while the 

other [39] needed 20 steps if we ignore the change 

direction steps. System in Ref. [39] proved to be more 

optimum mainly because their robot was allowed to move 

in diagonals, while ours was not according to our set 

Model Assumptions/Requirements. 

VIII. CONCLUSION AND FUTURE WORK 

Fuzzy logic algorithms are widely used nowadays in 

robotics, control, artificial intelligence and many other 
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applications. Fuzzy logic is used as an enhancement to 

classical logic when ambiguities are involved. However, 

fuzzy logic needs a lot of expertise for good designs. 

A Q-learning Reinforcement model is suggested to be 

applied to a fuzzy system to take care of robotic navigation 

in an Automated Storage (AS) archiving system. 

Reinforcement learning is proposed to enhance the fuzzy 

system sets and adjust it to respond to the requirements of 

the warehouse. The model is finalized and tested in a 

simulation environment. The results showed a success 

using Q-Learning Reinforcement with large training 

iteration depth. The new model was compared to our 

previous fuzzy system without reinforcement. The 

comparison was done on a follow path scenario and escape 

from cul-de-sac obstacle scenario. Those two typical 

scenarios were tested on both systems, with the metric 

used being the time in steps and second required to finish 

the test, and the overall success. The new system showed 

better performance in some scenarios especially for 

concave obstacles, taking 8 seconds instead of 12.33% 

time saving.  

The new system includes a few limitations. The main 

one is the need to know the environment and the 

requirement of a training phase first. This is usually not an 

issue in AS, because the environment is well known, and 

the training can be done before the installation of a new 

robot. We intend in the future to build this controller on an 

actual robot in AS environment. This implementation will 

add new challenges as mentioned in Section V.F. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Chadi F. Riman and Pierre E. Abi-Char developed the 

theory by contributing to the design of this research. Both 

authors wrote the manuscript. Both authors discussed the 

results and commented on the manuscript. Chadi Riman 

performed the software simulation; Pierre AbiChar revised 

and refined the article. Both authors approved the final 

version. 

REFERENCES 

[1] S. Permana et al., “Comparative analysis of pathfinding algorithms 

a *, Dijkstra, and BFS on maze runner game,” International Journal 

Of Information System and Technology, vol. 2018. 
[2] K. C. Tan, K. K. Tan, T. H. Lee, S. Zhao, and Y. J. Chen, 

“Autonomous robot navigation based on fuzzy sensor fusion and 
reinforcement learning,” in Proc. IEEE Internatinal Symposium on 
Intelligent Control, 2002, pp. 182−187. 

[3] C. Ye, C. Yung, N. Wang, and W. Dan, “A fuzzy controller with 
supervised learning assisted reinforcement learning algorithm for 
obstacle avoidance,”, IEEE Transactions on Systems, Man, and 
Cybernetics, Part B: Cybernetics, vol. 33, 2003. 

[4] S. M. Raguraman, D. Tamilselvi, and N. Shivakumar, “Mobile 
robot navigation using Fuzzy logic controller,” in Proc. 2009 
International Conference on Control, Automation, Communication 
and Energy Conservation, 2009, pp. 1−5. 

[5] N. Kumar, M. Takács and Z. Vámossy, “Robot navigation in 
unknown environment using fuzzy logic,” in Proc. 2017 IEEE 15th 
International Symposium on Applied Machine Intelligence and 
Informatics (SAMI), 2017, pp. 000279−000284. 

[6] K. Farah and M. Y. Moghrabiah, “Multilayer decision-based fuzzy 
logic model to navigate mobile robot in unknown dynamic 
environments,” Fuzzy Information and Engineering, vol. 14, 2007. 

[7] E.T. Lee, “Applying fuzzy logic to robot navigation,”  Kybernetes, 
vol. 24, no. 6, pp. 38−43, 1995. 

[8] D. R. Parhi, “Navigation of mobile robots using a fuzzy logic 
controller,” J Intell Robot Syst., vol. 42, pp. 253–273, 2005.  

[9] M. Boujelben, D. Ayedi, C. Rekik, and N. Derbel, “Fuzzy logic 
controller for mobile robot navigation to avoid dynamic and static 
obstacles,” in Proc. 2017 14th International Multi-Conference on 
Systems, Signals and Devices (SSD), 2017, pp. 293−298. 

[10] N. H. Singh and K. Thongam, “Mobile robot navigation using fuzzy 
logic in static environments,” Procedia Computer Science, vol. 125, 
2018. 

[11] H. Batti, C. B. Jabeur, and H. Seddik, “Fuzzy logic controller for 
autonomous mobile robot navigation,” in Proc. 2019 International 
Conference on Control, Automation and Diagnosis (ICCAD), 2019, 
pp. 1−6. 

[12] D. Babunski, J. Berisha, E. Zaev, and X. Bajrami, “Application of 
fuzzy logic and PID controller for mobile robot navigation,” in Proc. 
2020 9th Mediterranean Conference on Embedded Computing 
(MECO), 2020, pp. 1−4. 

[13] J. T. Huang and C. K. Chiu, “Adaptive fuzzy sliding mode control 
of omnidirectional mobile robots with prescribed performance,” 
Processes, vol. 9, 2021.  

[14] L. A. Dias, R. W. D. O. Silva, P. C. D. S. Emanuel, A. F. Filho, and 
R. T. Bento, “Application of the fuzzy logic for the development of 
autonomous robot with obstacles deviation,” International Journal 
of Control, Automation and Systems, vol. 16, no. 2, pp. 823–833, 
2018. 

[15] A. Pandey and D. R. Parhi, “Optimum path planning of mobile 
robot in unknown static and dynamic environments using Fuzzy-
wind driven optimization algorithm,” Defence Technology, vol. 13, 
no. 1, 2017. 

[16] A. K. Rath, D. R. Parhi, H. C. Das, M. K. Muni and P. B. Kumar, 
“Analysis and use of fuzzy intelligent technique for navigation of 
humanoid robot in obstacle prone zone,” Defence Technology, vol. 
14, no. 6, 2018. 

[17] Y. Duan and X. Hexu, “Fuzzy reinforcement learning and its 
application in robot navigation,” in Proc. 2005 International 
Conference on Machine Learning and Cybernetics, 2005, pp. 
899−904. 

[18] E. Ayari, S. Hadouaj, and K. Ghedira, “A fuzzy logic method for 
autonomous robot navigation in dynamic and uncertain 
environment composed with complex traps,” in Proc. 2010 Fifth 
International Multi-conference on Computing in the Global 
Information Technology, 2010, pp. 18−23. 

[19] Y. Najah, C. Rekik, M. Jallouli, and N. Derbel, “Optimized fuzzy 
controller for mobile robot navigation in a cluttered environment,”  
in Proc. 2010 7th International Multi- Conference on Systems, 
Signals and Devices, vol. 2, 2010. 

[20] M. Faisal et al., “Fuzzy logic navigation and obstacle avoidance by 
a mobile robot in an unknown dynamic environment,” International 
Journal of Advanced Robotic Systems, vol. 2, 2013.  

[21] C. Lakhmissi and M. Boumehraz, “Intelligent systems based on 
reinforcement learning and fuzzy logic approaches,” vol. 3, 
Application to Mobile Robotic, 2012. 

[22] J. Johnson and D. J. Godwin, “Indoor navigation of mobile robot 
using fuzzy logic controller,” in Proc. 2015 3rd International 
Conference on Signal Processing, Communication and Networking 
(ICSCN), 2015, pp. 1−7. 

[23] H. Tang et al., “Application of fuzzy logic in mobile robot 
navigation,” Fuzzy Logic-Controls, Concepts, Theories and 
Applications, pp. 1−21, 2012. 

[24] M. Nadour et al., “Mobile robot visual navigation based on fuzzy 
logic and optical flow approaches,” Int J Syst Assur Eng Manag, vol. 
10, pp. 1654–1667, 2019.  

[25] F. Fathinezhad, V. Derhami, and M. Rezaeian, “Supervised fuzzy 
reinforcement learning for robot navigation,” Applied Soft 
Computing, vol. 40, 2016, pp. 33–41. 

[26] F. Abdessemed, K. Benmahammed and E. Monacelli, “A fuzzy-
based reactive controller for a non-holonomic mobile robot,” 
Robotics and Autonomous Systems, vol. 47, no. 1, 2004. 

[27] A. Karray, M. Njah, M. Feki, and M. Jallouli, “Intelligent mobile 
manipulator navigation using hybrid adaptive-fuzzy controller,” 
Computers and Electrical Engineering, vol. 56, 2016. 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

294

https://www.emerald.com/insight/publication/issn/0368-492X


 

[28] S. A. L. E. Teleity, Z. B. Nossair, H. M. A. K. Mansour, and A. 
TagElDein, “Fuzzy logic control of an autonomous mobile robot,” 
in Proc. 2011 16th International Conference on Methods & Models 
in Automation & Robotics, 2011, pp. 188−193. 

[29] C. Lakhmissi and M. Boumehraz, “Fuzzy logic and reinforcement 
learning based approaches for mobile robot navigation in unknown 
environment,” Mediterranean Journal of Measurement and 
Control, vol. 9, pp. 109−117, 2013. 

[30] M. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel, “Fuzzy 
logic controllers design for omnidirectional mobile robot 
navigation,” Applied Soft Computing, vol. 49, 2016, pp. 901–919. 

[31] P. Nattharith and M. S. Güzel, “Machine vision and fuzzy logic-
based navigation control of a goal-oriented mobile robot,” Adaptive 
Behavior, vol. 24, no. 3, 2016. 

[32] L. Zadeh, “Fuzzy sets,” Inf. Control, 1965, vol. 8, pp. 338–353. 

[33] F. Dernoncourt, Introduction to Fuzzy Logic; Massachusetts 

Institute of Technology, Cambridge, MA, USA, 2013 
[34] A. Kwiatkowski et al., “A survey on reinforcement learning 

methods in character animation,’ Euro Graphics, vol. 41, 2022. 
[35] A. Agarwal, N. Jiang, and S. M. Kakade, “Reinforcement learning: 

Theory and algorithms,” CS Dept., UW Seattle, 2019. 
[36] C. F. Riman and P. E. A. Char, “Fuzzy logic control for mobile 

robot navigation in automated storage,” International Journal of 

Mechanical Engineering and Robotics Research, vol. 12, no. 5, pp. 
313−323, 2023. 

[37] E. Avelar, O. Castillo, and J. Soria, “Fuzzy logic controller with 

fuzzylab python library and the robot operating system for 

autonomous mobile robot navigation,” Journal of Automation, 

Mobile Robotics and Intelligent Systems, vol. 14, 2020. 

[38] M. Sabrina et al., “Real-time fuzzy-PID for mobile robot control 

and vision-based obstacle avoidance,” International Journal of 

Service Science, Management, Engineering, and Technology, vol. 

13, 2020. 

[39] L. Cherroun et al., “Mobile robot path planning based on optimized 

fuzzy logic controllers,” New Developments and Advances in Robot 

Control. Studies in Systems, Decision and Control, vol 175, 2019. 
 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

 

 

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024

295

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



