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Abstract—Singularity has become a limitation to the expected 

diversification of industrial robot applications in production. 

Here, we propose a novel solution for the inverse kinematics 

of a 6-DOF manipulator that suppresses rapid joint rotation 

when passing through a singularity. The proposed method is 

based on the optimization of the inverse Jacobi cofactor 

matrix utilized in the inverse kinematics calculation. By 

optimizing only the elements related to the four and six joints 

of the cofactor matrix in the inverse matrix, we were able to 

suppress the divergence of the joint velocities and achieve 

smooth robot motion when the robot entered a singular 

posture at the wrist. The developed system application range 

and tuning gain that minimize the position and orientation 

error were also determined. Hence, the position and 

orientation errors were improved by approximately 76%, 

and rapid rotation of the joints was almost completely 

suppressed. The method did not require consideration of 

tools attached to the hand tip, and the hand tip position, 

orientation, and velocity were all maintained.   
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I. INTRODUCTION 

When George C. Devol applied for a patent for an 

industrial robot arm in 1956 and developed the world’s 

first industrial robot, “Unimate” [1], there was a demand 

for mass production of a small variety of products. Today, 

however, variable-mix, variable-volume production is 

required, and general-purpose machines that can perform 

tasks according to the situation are needed. In response, 

teaching methods for robots have shifted from playback to 

offline teaching [2, 3]. In addition, the role of industrial 

robots has diversified as smart factories have developed in 

recent years, and there are high expectations for industrial 

robots. For example, in additive manufacturing, large-

scale AM has been developed employing the flexibility 

and large workspace of industrial robots [4, 5]. In addition, 

in piping construction, a novel method was proposed to 

reproduce the positional relationship between two pipe 

flanges to be connected utilizing a large industrial robot to 
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eliminate the gap between the field’s measurement stage 

and the factory’s manufacturing stage [6]. However, with 

such a variety of roles requiring different movements, 

robots have singular postures; that is, postures in which the 

robot cannot change the posture of its hand in any direction. 

Particularly, the 6-DOF serial-link robot, which is the most 

popular industrial robot, has three singular postures within 

its range of motion [7], and approaching a singularity 

causes a sudden rotation of the robot’s joints or a robot 

motion stop, which is an obstacle to trajectory generation. 

This problem must be solved because the unintended 

timing of robot motion stoppage reduces the efficiency of 

the robot motion. 

Various methods have been explored to avoid singular 

postures. The damped least-squares method, which 

regularizes the Jacobian matrix of a robot, was proposed 

as one method [8–10]. This method reduces the effect of 

wrist singularity in nonredundant robots, but introduces 

position and posture errors. A singular posture-passing 

algorithm that stretches the Lie algebra was proposed [11]. 

However, this method cannot guarantee the posture of a 

robot at singular points and does not apply to motions in 

which the trajectory of the hand tip is important. A 

singularity-consistent method was also proposed to 

accurately track the target trajectory [12]. This method 

focuses on the inverse Jacobian matrix and sets appropriate 

joint angular velocities by extracting the relationship 

between the joint velocities that accurately realize the 

direction of the tip velocity at a singularity, thereby 

avoiding excessive joint angular velocities. However, the 

robot must reach a complete standstill in the vicinity of the 

singularity; thus, the tip velocity and continuity cannot be 

maintained. In addition, the operator must command the 

direction of rotation for each joint, which makes this 

method impractical. Similar to this method, we also sought 

a method for passing through singularities by adjusting 

det 𝑱 , which represents the size of the inverse matrix. 

However, because det 𝑱 affects the angular velocity of all 

the joints, it is impossible to maintain the hand tip velocity. 

Recently, a novel method was proposed that considers 
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tools attached to the hand of the robot [13]. This method 

extends a nonredundant robot with multiple virtual joints 

that close the kinematic loop to achieve precise tool 

contact positions on the workpiece surface. Furthermore, a 

method was proposed for passing through a singularity by 

attaching a welding tool with a bent axis to increase 

redundancy [14]. Although these tooling methods can 

maintain a robot’s hand posture, they are limited by the 

tools and situations in which they can be utilized. A 

method that modifies the original path design and does not 

calculate the inverse kinematics was also proposed, but it 

has only been put to practical application on two axes [15]. 

A method using Monte Carlo Method was also proposed 

to map and define the vicinity of the singularity [16–18]. 

This method can select a path that is closest to the 

command path without calculating inverse kinematics. 

However, this method requires sufficient real data, and it 

introduces a small amount of position error. 

Therefore, here, utilizing the 6-DOF manipulator 

SRA166-01 from Nachi Corporation, the goal was to allow 

the robot to pass through singularities while maintaining 

the posture and velocity of the end-effector. However, 

wrist singularity can occur anywhere in the working 

envelope, and staying within reach of the arm and away 

from the overhead position avoids overhead and elbow 

singularities of the robot arm [14, 19]. Therefore, we 

focused on wrist singularity. The proposed method is 

based on the optimization of the inverse Jacobi cofactor 

matrix utilized in inverse kinematics calculations. By 

optimizing only the elements related to four and six joints 

in the cofactor matrix related to the inverse matrix, the 

divergence of the joint velocities when the robot enters the 

singular wrist posture is suppressed, and the robot attempts 

to pass the singularity while maintaining hand posture and 

velocity. 

II. EXPERIMENTAL EQUIPMENT 

A 6-DOF industrial robot, SRA166-01 (manufactured 

by NACHI), was utilized for the analysis. The main body 

mass, payload, and positioning accuracy of the robot were 

960 kg, 166 kg, and 0.10 mm, respectively. Fig. 1 presents 

an overview of the robot. The position of the end effector 

is represented by three-dimensional coordinates [X, Y, Z], 

and its orientation is represented by a roll-pitch-yaw [r, p, 

y].  

 

Fig. 1. Robot model. 

III. EXPERIMENTAL THEORY 

A. Singularity 

The forward kinematics are defined in Eq. (1), which 

determines the position and orientation of the end effector 

given the joint displacement. where 𝜽 =
[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6]

T is the displacement of the joint and 

𝒑 = [𝑋, 𝑌, 𝑍, 𝑟, 𝑝, 𝑦]T is the position and orientation of the 

end-effector. 

𝒑 = 𝑓(𝜽) (1) 

The Jacobian 𝑱(𝜽) is defined in Eq. (2). Given the joint 

speed, we determined the velocity of the end effector. 

𝒑̇ =
𝜕𝑓

𝜕𝜃1
𝜃1̇ +

𝜕𝑓

𝜕𝜃2
𝜃2̇ +⋯+

𝜕𝑓

𝜕𝜃6
𝜃6̇ = 𝑱(𝜽)𝜽̇ (2) 

Inverse kinematics is the problem of determining the 

displacement of joints, given the position and orientation 

of the end effector. It plays an important role in controlling 

end effectors. Inverse kinematics is difficult to solve for a 

general vertically articulated 6-DOF manipulator because 

it is a nonlinear system of equations involving inverse 

trigonometric functions. Therefore, the problem of 

determining the joint speed, given the end-effector speed 

defined by Eq. (3) was adopted as a control. 

𝜽̇ = 𝑱(𝜽)−1𝒑̇ (3) 

To get the inverse of the Jacobian, the Jacobian must 

have full rank, that is, det 𝑱(𝜽) ≠ 0. In contrast, when the 

Jacobian is singular, which means det 𝑱(𝜽) = 0, there is 

no inverse kinematics for velocity. This is called 

singularity. Fig. 2 illustrates three types of singularities for 

the analysis target, as presented in Fig. 1.  

 

Fig. 2. Three types of singularity (a) Shoulder singularity (b) Elbow 

singularity (c) Wrist singularity. 

B. Inverse Kinematics and Solution Types 

There are eight solution types of inverse kinematics in 

the manipulator, as illustrated in Fig. 1, which are 

classified as NONFLIP and FLIP according to the wrist 

configuration, as depicted in Fig. 3. These are classified 

depending on the positive or negative Joint 5 angle, with 

NONFLIP defined as a pose where 𝜃5 > 0°, and FLIP as 

a posture where 𝜃5 < 0°.  
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: 

(a) NONFLIP  and (b) FLIP 

Fig. 3. Two types of inverse kinematics solutions classified by Joint 5 

angle. 

C. Inverse Jacobian Control 

The inverse kinematics of a 6-DOF manipulator are 

difficult to solve analytically. Obtaining a solution for 

manipulators with numerous offset links is often 

impossible. Therefore, the end effector was controlled by 

an inverse Jacobian. Eq. (4) is a control based on the 

Newton–Raphson method, where the inverse kinematic 

solution is the converged value obtained by iterative 

calculations. where 𝒑𝑑  denotes the command 

position/orientation of the end effector. 

𝜽𝑖+1 = 𝜽𝑖 + 𝑱(𝜽𝑖)
−1 ∙ (𝒑𝑑 − 𝒑) (𝑖 = 1, 2, 3,⋯) (4) 

The inverse Jacobian can be expanded as expressed in 

Eq. (5) utilizing the determinant det 𝑱 and cofactor matrix 

adj 𝑱. 

𝑱−1 =
1

det 𝑱
(adj 𝑱) (5) 

The 1 det 𝑱⁄  is a scalar representing the relationship 

between the magnitude and direction of the joint speeds. 

The adj 𝑱  represents the relationship between the joint 

speeds that realize the direction of the end-effector speeds. 

At the singularity, the joint speed diverged because 

det 𝑱 = 0 . Tsumaki et al. proposed passing through a 

singularity by changing 1 det 𝑱⁄  to an arbitrary scalar 

value [12]. Because the cofactor matrix is not changed in 

this method, the joint angles change according to the scalar 

value while maintaining the ratio of the speeds of each 

joint angle. This implies that the end effector deviates from 

the command trajectory at the singularity and slowly 

changes its position and orientation. This study proposes 

an algorithm to pass through singularities by appropriately 

fitting the cofactor matrix to maintain the velocity 

accuracy of the end effector.  

IV. EXPERIMENTAL METHOD 

Continuous motion is important in novel fields, such as 

additive manufacturing, where industrial robots are 

expected to be applied. Therefore, we consider moving the 

robot in a straight line without changing its hand posture. 

As illustrated in Fig. 4, the end-effector position was 

commanded by linear interpolation from A [1,690, −200, 

2,020 mm] to B [1,690, 1,000, 2,020 mm]. The end-

effector orientation was always in the Y–Z plane, that was, 

[𝑟, 𝑝, 𝑦] = [−180°, − 90°, 0°] . This path was a 

trapezoidal velocity trajectory with a maximum velocity of 

500 mm/s and maximum acceleration of 2,000 mm/s. The 

wrist singularity is S [1,690, 0, 2,030 mm], and the end 

effector passes through the vicinity of the singularity. 

Because the robot moves only in the Y-axis direction, the 

angle of joint 5 is the smallest at Y=0 and is closest to the 

singularity. 

 

 

Fig. 4. Linear trajectory of end-effector passing through vicinity of wrist 

singularity. 

Fig. 5 demonstrates the inverse kinematics solution for 

the end-effector trajectory A→B. Joints 4 and 6 angles in 

NONFLIP and FLIP are presented in Fig. 5. The robot 

typically attempts to maintain its wrist form, as illustrated 

in Fig. 3. Therefore, Joints 4 and 6 turned 180° near the 

singularity. 

 
 

Fig. 5. Inverse kinematics solution of Joints 4 and 6 (a) Joint 4 angle (b) 

Joint 6 angle 

V. EXPERIMENTAL RESULT AND DISCUSSION 

A. Trajectory Tracking Error at Singularity 

Fig. 6(a) presents Joint 4 angle of the path through the 

vicinity of the wrist singularity, and Fig. 6(b) illustrates the 

Y-coordinate of the end effector. From Fig. 6, Joint 4 must 

change from −90° to 90° when passing through the vicinity 

of the wrist singularity (Y = 0 mm). In the command value, 

the change is instantaneous. However, in an actual robot, 

there is an upper limit on the servomotor of the joint, which 

causes a delay in rotation, resulting in a trajectory tracking 

error. 

 

Fig. 6. Trajectory tracking error in the vicinity of the wrist singularity 

(a) Joint 4 angle (b) Y-coordinate of end effector 
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B. Fitting Cofactor Matrix 

Fig. 7 illustrates a color map of the Jacobian cofactor 

matrix near the wrist singularity [1,690, 0, 2,020 mm]. 

Darker colors indicate larger cofactors. We focused on the 

second row in this experiment because the end effector was 

operated along the y-axis. Fig. 7 demonstrates that the 

cofactors related to the y-axis velocities of Joints 4 and 6 

were large. Therefore, the singularity was passed by 

changing the values of 𝑎42  and 𝑎62 . where 𝑎𝑖𝑗(𝑖 =

1, 2, ⋯, 6; 𝑗 = 1, 2, ⋯, 6)  denotes the i-th row and j-th 

column of the cofactor matrix.  

 

Fig. 7. Colormap of cofactor matrix at wrist singularity. 

Because the wrist singularity is 𝜃5 = 0°, 𝑎42  and 𝑎62 

are updated, as in Eq. 6 in the range |𝜃5| = 𝛩. where k is 

the tuning gain and 0 ≤ 𝑘 ≤ 1.  

{
𝑎42 ← 𝑘𝑎42
𝑎62 ← 𝑘𝑎62

(6) 

Fig. 8 illustrates the angles of Joints 4 and 6 with 𝛩 =
2.5° and 𝑘 = 0.05.  

 

 

Fig. 8. Joints 4 and 6 angles with fitting cofactor matrix  

(a) Joint 4 angle (b) Joint 6 angle. 

C. Verification of Errors 

Here, we update the cofactors by tuning gain 𝑘 in the 

vicinity of a singularity. Therefore, the ranges of 𝑘 and 𝛩 

were important for the position and orientation errors of 

the robot. Therefore, the relationship between the tuning 

gain 𝑘, the range of 𝛩 near the singularity, and the error 

was investigated. The range was set to 0.01 increments for 

0 ≤ 𝑘 ≤ 1  and 0.1 increments for 1 ≤ 𝛩 ≤ 5 [deg. ] . 

Because the error is maximized near the singular point, we 

searched for a combination of 𝑘  and 𝛩  for which the 

maximum error was the smallest. We verified the error in 

operation for all combinations of k and 𝛩, and calculated 

the combination of k and 𝛩 when the error is the smallest.  
The position and orientation error norms were calculated 

with Eq. (7). where ε represents the error and its subscript 

represents the error direction. The positioning and 

orientation error norms were defined as 𝜀𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚 and 

𝜀𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚, respectively. 

{
 

 𝜀𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚 = √𝜀𝑋
2 + 𝜀𝑌

2 + 𝜀𝑍
2

𝜀𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚 = √𝜀𝑟
2 + 𝜀𝑝

2 + 𝜀𝑦
2

(7) 

The position and orientation error norms are presented 

in Figs. 9 and 10, respectively. Both were minimized when 

𝑘 = 0.03 and 𝛩 = 4.6. The errors were 𝜀𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚 =
2.08 mm and 𝜀𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑁𝑜𝑟𝑚 = 0.532° . Without the 

system, that is, with 𝑘 = 1, the position error norm is 8.78 

mm and the orientation error norm is 2.24°; thus the errors 

are improved by 76.3% in the position error norm and 

76.2% in the orientation error norm, respectively. In 

addition, as demonstrated in Fig. 9, both the position and 

orientation errors occurred in the same manner; therefore, 

the errors were not independent of each other but rather 

interacted with each other. 

 

Fig. 9. Influence of 𝑘 and 𝛩 on position error. 

 

 Fig. 10. Influence of 𝑘 and 𝛩 on orientation error. 

The rotation of Joints 4 and 6 when utilizing the 

optimized 𝑘 = 0.03 and 𝛩 = 4.6 are presented in Fig. 11. 

In the figure, k=1 is the Command Value (CV), and k=0.03 

is the Optimized Value (OV). Both joints exhibited almost 

no rotation.  

 

Fig. 11. Joints 4 and 6 angles with optimized cofactor matrix 

 (a) Joint 4 angle (b) Joint 6 angle. 
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Fig. 12 illustrates the orientation angles when the robot 

moved in CV and OV. 180° and −180° may be inverted in 

roll, but this is not a problem because they are the same 

wrist posture. In pitch direction, the error was improved by 

about 53%, with a maximum error of −0.517°. In the yaw 

direction, however, the error increased by about 83%, but 

the maximum error was only 0.0456°; hence, this was not 

a problem. Fig. 13 presents a three-dimensional view of 

the robot during operation. Evidently, the error near the 

singularity is significantly reduced in OV compared with 

that in CV. Because the robot moves only in the Y-axis 

direction and the X-axis and Z-axis coordinates are fixed, 

the errors in these two axes are particularly important. In 

the X-axis direction, the error was improved by 

approximately 70.0%, and the maximum error was −0.08 

mm. In the Z-axis direction, the error was improved by 

approximately 52.7%, and the maximum error was −2.04 

mm. 

 

 

 

Fig. 12. Orientation angles with optimized value.  

(a) Roll (b) Pitch (c) Yaw. 

 

Fig. 13. 3D view of robot’s experimental behavior. 

Finally, the method described in this report enables the 

robot to pass near the singularity without considering the 

tool attached to the hand, whereas previous studies [13, 14] 

that considered hand tools limited the fields of utilization 

of robots because the tool’s shape was important. In 

previous studies [8–11] that utilized mathematical 

methods, the position and posture of a robot’s hand tip 

were significantly affected by the tool’s shape, which 

caused problems in trajectory tracking. In previous studies 

[8–11] that utilized mathematical methods, the robot had 

problems with trajectory tracking owing to a large effect 

on the position and posture of the robot’s hand tip; 

however, here, the robot was able to move while 

maintaining its position and posture by optimizing the 

combination of the range near the singularity and the 

tuning gain. The singularity-consistent method [12] 

requires the robot to stop moving once at a singularity and 

the operator to command the direction of movement; 

however, this method does not require such a command, 

and the tip speed can be maintained at a constant level. 

One problem with this method is that it is time-

consuming because all combinations of the tuning gain and 

range near the singularity must be calculated before the 

operation. In the robot utilized here, the axes of Joints 4 

and 6 intersected in a straight line. Therefore, when 

maintaining a constant hand posture, as in this experiment, 

Joints 4 and 6 rotate by the same amount, and the rapid 

rotation of the joints is suppressed with almost no postural 

error. Therefore, it is necessary to determine the tuning 

gain for robots with an offset structure between Joints 4 

and 6.  

VI. CONCLUSION 

Here, we developed a method that focuses on a cofactor 

matrix to pass through a singularity that hinders the 

expected expansion of the application fields of industrial 

robots. The values for Joints 4 and 6 were large near the 

singularity, and a method for tuning that element was 

considered. Because the range in which the system is 

applied is also important, we calculated a combination of 

the tuning gain and the range in which the system is 

applied to minimize the error near the singularity. 

Consequently, the error was significantly improved. 

This method allows passing through a singularity while 

maintaining the position, attitude, and velocity without 

considering the hand tools. 

In the future, we intend to study robots with more 

complex structures and systems that can handle more 

complex movements. 
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