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Abstract—Intelligent robotics is gaining significance in 

Maintenance, Repair, and Overhaul (MRO) hangar 

operations, where mobile robots navigate complex and 

dynamic environments for Aircraft visual inspection. 

Aircraft hangars are usually busy and changing, with objects 

of varying shapes and sizes presenting harsh obstacles and 

conditions that can lead to potential collisions and safety 

hazards. This makes Obstacle detection and avoidance 

critical for safe and efficient robot navigation tasks. 

Conventional methods have been applied with computational 

issues, while learning-based approaches are limited in 

detection accuracy. This paper proposes a vision-based 

navigation model that integrates a pre-trained Yolov5 object 

detection model into a Robot Operating System (ROS) 

navigation stack to optimise obstacle detection and avoidance 

in a complex environment. The experiment is validated and 

evaluated in ROS-Gazebo simulation and turtlebot3 waffle-

pi robot platform. The results showed that the robot can 

increasingly detect and avoid obstacles without colliding 

while navigating through different checkpoints to the target 

location.   

 

Keywords—autonomous navigation, object detection, 

obstacle avoidance, mobile robot, deep learning  

 

I. INTRODUCTION 

The application of mobile robots for visual inspection 

has been adopted in Maintenance, Repair, and Overhaul 

(MRO) hangars, where a significant level of autonomy and 

automation is required to safely navigate environments 

with irregular object structures and varying complexities. 

This implies that the mobile agents must autonomously 

observe, detect, avoid, and make control decisions from 

multisensory information to make collision-free navigation 

in unstructured and dynamic scenes. One of the critical 

navigation challenges is detecting and avoiding obstacles 

in complex and changing environments, such as busy 

hangars, where obstacles of varying shapes and sizes can 

lead to potential collisions and safety hazards. Efficient 

mobile robot navigation requires robust perception 
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capability [1], and most recent approaches use vision-based 

sensors like RGB cameras and LiDAR to gain an 

understanding of environmental features and improve 

object detection, avoidance, and navigation techniques [2]. 

Laser devices are more costly, and conventional algorithms 

that are based on this information source are usually 

complex. On the other hand, RGB cameras provide depth 

and feature-rich environmental information and are widely 

used for developing robot navigation models. However, 

extracting accurate obstacle information from these input 

devices and modelling it for a reliable and safe navigation 

experience is still widely studied. 

Over the years, conventional vision-based navigation 

systems based on the Robot Operating System (ROS) 

framework have been widely used. ROS is an open-source 

robotic platform that was first released in 2007 [3] to 

provide classical support tools, packages, and libraries 

ready-to-use [4, 5] for developing robotic applications. The 

ROS navigation stack is an aspect of ROS ecosystem with 

a toolset and functionalities that equip robots with the 

capability to interact with their environment, avoid 

obstacles, and plan paths with reasonable intelligence [6]. 

This system’s accuracy, reliability, and environment 

suitability depend on factors like obstacle detection, 

collision avoidance and path planning algorithms. The 

default ROS (Robot Operating System) navigation stack 

uses A* (A-star) global and Dynamic Windows Approach 

(DWA) local planning algorithms [7] where the latter 

employs a local search strategy that evaluates potential 

trajectories based on robot dynamics, environmental 

constraints, and safety margins. DWA has been widely 

used in different domains and has shown good results in 

robot local path planning and obstacle avoidance cases. 

However, it’s challenged with scenarios that require 

complex navigation behaviours, accurate real-world 

obstacle identification and handling of dynamic obstacles. 

Also, achieving good performance with DWA requires 

handcrafted parameter tuning to suit changing scenarios 

which limits its capability in real-world application. Recent 
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advancements have applied deep learning [8] techniques 

with Convolutional Neural Networks (CNN) to learn 

deeper feature representations from environmental data for 

object classification and detection [9] to enhance intelligent 

navigation. The YOLOv5 (You Look Only Once) model is 

among the most widely adopted systems for object 

detection [10] but it struggles with detection accuracy in 

complex and changing environments, especially where 

varying object types and lighting conditions are critical 

factors. Different hybrid models have been proposed but 

are still limited in performance. The primary focus of this 

research is to design and develop an advanced object 

detection and obstacle avoidance system that transforms 

YOLOv5 detection output into laser scan data suitable for 

ROS navigation. This will create a robust and accurate real-

time system that can effectively detect obstacles of varying 

shapes and sizes in different lighting conditions to ensure 

maximum safety and efficiency in the face of uncertainties. 

In our recent work, we developed a fused CNN [10] that 

uses image fusion from RGB (red, green, and blue) and 

infrared data to improve object visibility, detection 

accuracy, and feature extraction using the YOLOv5 object 

detection model [10]. The fuse-YOLO solution is 

integrated into the ROS navigation stack in this part of the 

project for efficient object recognition and avoidance. 

This study presents a vision-based navigation model that 

employs a pre-trained YOLOv5 model and ROS navigation 

stack to improve obstacle detection and avoidance for safe 

navigation in a complex environment. This solution makes 

use of an RGB-D camera as the primary perception 

modality, providing rich environmental data through real-

time visual feedback to enhance the robot’s situational 

awareness in busy and cluttered hangar environments. By 

integrating the YOLOv5 object detection algorithm, the 

robot can respond proactively and accurately to varying 

and irregular obstacles. The YOLOv5 object detection 

model uses deep learning techniques to identify and 

classify objects [11] in the robot’s field of view, enhancing 

robot perception detection and avoidance capabilities [12] 

The object detection node is created in the ROS framework 

to publish detected objects’ positions and sizes and is 

transformed into laser_scan data representation that 

interacts with the DWA planner in the ROS navigation 

stack. This provides a full navigation pipeline for the robot 

to dynamically improve path planning and obstacle 

avoidance using sensor information. The contribution is to 

enhance the obstacle detection and avoidance problems in 

the complex aircraft hangar environment using coordinate 

transforms from camera frames to map frames to improve 

the accuracy and reliability of the obstacle detection and 

avoidance mechanism. The complete research process is 

shown in Fig. 1. First, the OpenCV AI Kit with Depth 

(OAK-D) camera [13] is embedded in the turtlebot3 

waffle_pi robot to gather environmental information 

through the detection node created with a pre-trained 

YOLOv5 model [10]. The output with bounding box and 

depth information representing object size, position, and 

distance estimation is converted to interface with the 

costmap parameter node in the ROS navigation stack to 

detect obstacles accurately and plan a smooth obstacle 

avoidance path for the mobile robot. The detection and 

avoidance capabilities were benchmarked with YOLOv5 

baseline variants and the default ROS navigation stack. The 

performance is evaluated, analysed, and validated with a 

real robot in an office environment. The overall 

contribution includes: 

• The integration of the OAK-D stereo camera in 

Turtlebot3 waffle_pi robot to obtain environmental 

information. 

• Create a ROS node that generates object detection 

results using pre-trained YOLOv5 weight. 

• Develop an improved navigation algorithm by 

transforming object detection results to laser scan 

format for the navigation stack’s local planner to 

improve obstacle detection and avoidance. 

• Evaluate and validate the solution using baseline 

YOLOv5 versions and DWB local planner. 

Fig. 1. Integrated YOLO and ROS navigation framework. 

The remainder of this paper is organised as follows: 

Section II briefly reviews the related works for object 

detection and the ROS combination approach in mobile 

robot navigation. In Section III, the necessary background 

information on YOLOv5 and the ROS navigation stack was 

introduced, along with a detailed overview related to the 

proposed methodology. Section IV demonstrates the 

experimental and evaluation of the effectiveness of the 

proposed algorithm. This is followed by Section V, which 

dwells on the result and discusses the achieved result. 

Finally, Section VII presents the summary and future work 

of the paper.  

II. RELATED WORK 

The requirement for obstacle detection and avoidance 

for mobile robots to safely navigate in complex scenarios 

is a crucial area of attention in robotics research. In real-

world operations, accurately detecting static and dynamic 

obstacles is still a bottleneck. Conventional obstacle 

detection employs mathematical approaches, which limit 

detection efficiency and the extraction of detailed obstacle 

features. Recent deep learning-based obstacle avoidance 

developments have gained significance in research and 

application [14]. Through stacked convolutional layers, 

image feature representations are learned to realize the 

description of environmental-complicated objects [15]. For 

instance, Madawi et al. [2] proposed the use of Faster 

RCNN, which is a Region-Based Convolutional Neural 

Network (R-CNN) and multi-stage object detector 
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model [2] improved to detect and avoid hazardous objects 

using a custom image dataset for an indoor mobile robot 

operational environment. Henke et al. [16] proposed a safe 

navigation system with YOLOv2 that recognizes objects 

and calculates their distances to the robot for a control 

decision. However, these algorithms did not take 

cognizance of the object’s height and size, which are 

critical for quality detection and safety in a complex setting. 

To improve the detection capability, Hairol et al. [17] 

proposed an object detection and avoidance algorithm that 

can give control instructions to a mobile robot but is limited 

to objects with either square or rectangular shapes. This 

relates to traditional obstacle avoidance methods that are 

based on mapped environments and struggle with 

environmental changes and dynamic structures. To address 

this for real-world applications, hybrid solutions have been 

studied to detect and avoid irregular-shaped objects.  

Luo et al. [18] developed Contextual-YOLOV3 with 

improved environment perception capability to help 

identify even small objects and enhance obstacle avoidance 

techniques for an intelligent inspection task. Aghi et al. [19] 

used the ROS navigation system and CNN techniques to 

create a resilient navigation model that is power efficient, 

and Lee et al. [20] integrated a pre-trained deep 

convolutional neural network to detect and classify 

obstacle types for efficient obstacle detection and 

avoidance. In general, research on obstacle and avoidance 

for mobile robot navigation is still widely studied, and the 

introduction of object detection models to improve 

performance still requires further improvement. This paper 

proposes a new robust and accurate real-time object 

detection and avoidance method based on the YOLOv5 and 

ROS navigation stack that strikes a balance between 

accuracy and efficiency, enabling the robot to navigate 

smoothly and safely in dynamic environments. 

III. METHODOLOGY 

For a safe visual inspection with mobile robots, accurate 

perception, and an avoidance system is required to navigate 

autonomously in a complex environment. This paper 

proposes a combination of object detection and avoidance 

methods, as shown in Fig. 1, where a pre-trained and 

improved YOLOv5 model [10], trained with custom 

datasets, was integrated into the ROS framework for real-

time obstacle recognition and avoidance towards improved 

navigation for aircraft visual inspection tasks. The study 

aims to compare the proposed method against the existing 

default navigation stack planners: the A* algorithm and the 

traditional Dynamic Windows Approach (DWA). 

A. YOLOV5 

YOLOv5 (You Only Look Once) is one of the releases 

of the YOLO family developed by Redmon et al. [21], 

which is a single-stage object detection model that can 

learn image features at different scales. As compared to 

other detection algorithms, YOLOv5 is widely used for its 

fast inference time and low computer resource demand, 

making it efficient for real-time applications [22]. It was 

built on the PyTorch framework and uses the 

CSPDarknet53 backbone structure to extract feature maps 

from the input image. The neck region architecture is 

designed with a path aggregation network to improve the 

detection of objects of different sizes, while the head 

structure consists of prediction layers that generate 

bounding box coordinates, class probability and object 

confidence score [23]. The model employs many 

techniques to improve detection accuracy, like the use of 

anchor boxes, post-processing techniques, optimizers, and 

mish activation functions. It performs significantly well in 

detecting different object structures and uses non-

maximum suppression to suppress multiple detections of 

the same object. YOLOv5 contains small, medium, large, 

and extra-large types that are distinguished by their 

respective network structures. An improved YOLOv5s was 

applied in this context, which was developed by integrating 

the DENSEFUSE network [24] and the CBAM-based 

YOLOv5s technique [25] For a mobile robot that is 

navigating in a cluttered hangar environment with lightning 

variations, fused environment-specific thermal and RGB 

images and LLVIP datasets [26] were trained for efficient 

obstacle detection and avoidance capability. The package 

generates output in the form of a ROS topic named 

/yolov5/yolov5 which disseminates crucial information 

like bounding box coordinates and object detection 

probability value from the processed camera feed. 

B. Ros Navigation Stack 

The ROS navigation package is a configurable 

framework that houses modules that manage autonomous 

navigation system capabilities for mobile robots. This 

includes the move-base sub-package that provides 

functionalities for action servers, path planning, obstacle 

avoidance and motion control modules [27]. Different 

path-planning algorithms can be implemented, and 

navigation parameters can be configured based on the 

application scene. The ROS framework, by default, 

consists of A star global and DWA local planners. These 

are used as the baseline in this context to compare the 

navigation abilities of mobile robots through obstacle 

routes without collision. The Dynamic Windows 

Approach (DWA) is widely used for robot motion 

planning and obstacle avoidance [28]. It employs a local 

search strategy that allows the robot to select the best 

trajectory in real-time while avoiding collisions with 

detected obstacles. Comparing its capability with other 

ROS local planners such as potential field [29], DWA uses 

a velocity-based method to determine a collision-free path 

towards the objective against the way following the 

approach of the potential field. The robot can dynamically 

access and choose viable velocities that steer it towards the 

intended destination while ensuring obstacle 

avoidance [30]. The combination with the improved 

YOLOv5 object detection model enhances the mobile 

robot’s obstacle detection and avoidance strength and 

overall navigation behaviour, which are critical for safe 

navigation. 

C. The Proposed Method 

Our goal is to develop a real-time object detection and  

avoidance system that can overcome object irregularities 

and light variations in a complex environment when 
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carrying out an autonomous navigation task. The core idea 

is that it can pick out where the obstacles are and create a 

trajectory to avoid them accordingly. This will improve its 

ability to detect obstacles and augment the trajectories that 

it produces.   

1) OAK-D camera 

This paper uses the DepthAI OAK-D camera [13] as the 

primary vision-sensing device to capture images or video 

footage of the robot’s environment. The camera is 

specifically designed for conducting experiments related 

to depth estimation, object detection, and tracking that 

effectively promote the obstacle detection and avoidance 

tasks required in this case study. Cameras are notable for 

high resolution and detailed information as compared to 

Light Detection and Ranging (LiDARs) especially when 

attempting to accurately track fast-moving objects in real-

time. 

The information from the Light Detection and Ranging 

(LiDAR) is used by default to update the local planner 

costmap, which is a 2D grid-based representation of the 

local environment around the Turtlebot in ROS navigation 

stack. The costmap assigns cost values to each cell in the 

grid based on the information received from the LaserScan 

message. Obstacles are assigned higher costs, while free 

spaces are given lower costs. To achieve this capability 

with a camera device, a mechanism is established to 

convert the objects detected within the camera’s field of 

view into relevant scan-based information.  

From the simulation perspective, the obstacle detection 

and avoidance system process begins with the integration 

of the OAK-D Depthai ROS repository developed for ROS 

into ROS navigation nodes as the source of data stream for 

object detection. The improved YOLOv5 model used in 

this work was developed to detect varieties of object 

structures in changing and light variation environments. 

These are setup in the ROS simulation environment [31] 

to acquires information from the environment as ROS 

image message using /camera/image_raw topic, which is 

converted to a suitable YOLOv5 readable format and 

resized using the OpenCV package. With the pretrained 

YOLOv5s package that includes model weights and 

configuration files, the ROS detector node process 

generates information to identify and describe objects in 

the environment. The detection output in the form of a 

ROS topic named /yolov5/yolov5, contains structural 

properties like the bounding box coordinates, class 

probabilities and object detection probability values that 

are transformed to generate a safe path to the target 

location [32].  

2) YOLO’s detected result to laser scan data 

The detected object transformation starts by fetching the 

positions of the objects detected by the YOLOv5 package 

and injecting them into the local path planning algorithm. 

The DWA planner by default takes laser scan data as input 

from the LiDAR device to steer the velocity commands 

[33]. The detected YOLO result is converted to laser scan 

data and reprogrammed in the move-base package to 

improve DWA planner function as displayed in Fig. 2 

workflow. The /yolov5 topic which is of 

vision_msgs/Detection2DArray of ROS object detection 

message type, generates the bounding boxes’ pixel 

coordinates among other features and computes the center 

of the bounding boxes. To increase the robustness of the 

solution and ensure more accurate laser information, the 

left and right parts of the pixel coordinates of the obstacles 

were also computed. This provides accurate detection of 

varying shapes of obstacles within the 10m detection range 

of the camera device. The pixel coordinates are converted 

to camera coordinates with correspondence to the depth 

image captured by the RGB-D camera that provides the 

distance of each pixel from the camera’s optical centre. 

This conversion is facilitated using camera intrinsic and 

extrinsic parameters provided by turtlbot3 Waffle Pi 

sensor_msgs/CameraInfo topic.  This contains the focal 

lengths 𝑓𝑥  and 𝑓𝑦  and the principal points 𝐶𝑥  and 𝐶𝑦  that 

are used to compute the distance point of the objects as 

shown below in Eqs. (1) and (2). 

 

𝐶𝑎𝑚𝑒𝑟𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑥 =  
(𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑥− 𝐶𝑥)

𝑓𝑥
  (1) 

𝐶𝑎𝑚𝑒𝑟𝑎 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑦 =  
(𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑖𝑛 𝑦− 𝐶𝑦)

𝑓𝑦
   (2) 

 
 

Fig. 2. YOLO object detection to scan data conversion workflow. 

Once the camera coordinates were obtained, the ROS 

tf2 library which provides built-in tools to transform the 

camera data into scan data was employed to automate the 

transformation of data between frames. With the 3D 

coordinates of the detected objects now in the laser scan 

frame, the system can calculate the Euclidean distance 
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from each object to the robot's centre. The Euclidean 

distance formula shown in Eq. (3) is applied to determine 

the straight-line distance between the detected object and 

the robot’s centre. The LaserScan message is generated 

and published on a specific ROS topic to allow interface 

with other ROS nodes or applications.  

          𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋 − 𝑥𝑜)2 +  (𝑌 − 𝑦𝑜)2                        (3) 

where (X, Y) represent the transformed coordinate of the 

3D point and (𝑥𝑜, 𝑦𝑜) represent the origin of the robot’s 

centre which in this case will be (0,0). To be sure of the 

consistency of the data converted, the LaserScan data 

corresponding to the position of the bounding boxes were 

also converted to map coordinates and printed. Then, the 

robot was placed in front of an obstacle of a known 

position. The map coordinates printed were slightly 

different by an avoidable few centimetres from the 

obstacle coordinates. 

3) Obstacle avoidance 

The process of detecting and transforming the object 

and generating distance values is repeated for all the pixels 

in the camera frame, essential for the DWA local planner 

to understand the immediate obstacles and free spaces 

surrounding the robot. The transformed /scan node that 

generates coordinate frames in suitable format for path 

planning and obstacle avoidance in the navigation stack is 

configured in the costmap file of the move-base package. 

The navigation stack capability is enhanced, and the 

ground robot from the experiment navigates through 

different checkpoints while avoiding detected obstacles 

with significant accuracy. The resulting solution is a 

lightweight system that can detect small to large 

environmental objects and respond in real-time to achieve 

a safe autonomous navigation experience. Performance 

metrics were defined for comparing the models, such as 

mean Average Precision (mAP), inference speed, time, 

distance covered and number of obstacles detected. Both 

accuracy and efficiency were considered to strike a 

balance between performance and real-time capabilities. 

IV. EXPERIMENT 

Aiming at a solution that will solve the navigation 

problem of obstacle detection and avoidance, the 

integrated solution was evaluated and validated through 

systematic experiments. These experiments were 

conducted on a computer running an Ubuntu 20.04 64-bit 

operating system, ROS noetic, and powered by an 8th 

generation Intel® CPU, with YOLO packages, OAK-D 

dependencies and ROS requirements adequately 

configured. To measure the solution’s detection accuracy 

and collision avoidance efficiency, the robot was 

navigated from its initial position to a designated goal 

within the hangar setting. The average time taken for the 

robot to reach its destination was approximately 15 min. 

Throughout this process, the models’ performance was 

observed in correctly identifying obstacles and instances 

where obstacles were not detected at all. We used common 

performance indicators for the object detection model and 

avoidance measures in the  ROS framework, including the 

number of obstacles detected and avoided per distance and 

time, Intersection over Union (IOU), precision, and mean 

average precision.  

We implemented our proposed model in the 

ROS_Gazebo simulation environment with the Cranfield 

DARTeC aircraft hangar virtual world model as shown in 

Fig. 3, and a total of fifteen obstacles, 12 static and 3 

dynamic obstacles, were spawned in the environment at an 

increasing rate. The obstacles include a moving person and 

other aircraft hangar-related object types. The turtlebot3 

robot navigation experience was tested in three different 

environments with varying complexities and 5 

checkpoints each, to study the behaviour of the robot at 

different instances. The Adaptative Monte Carlo 

Localization (AMCL) pose of the robot was recorded 

using the rosbag tool. The AMCL is a localisation 

algorithm used in ROS to obtain more accurate 

information about the robot’s pose in its environment.  The 

robot poses were plotted to compare the path taken for the 

two methods and the total distance covered by the 

turrtlebot3 was computed using the Euclidean distance 

formula shown in equation 3 to determine the shortest path. 

Finally, the total navigation time for each of the methods 

and the number of collisions were recorded. The model 

was transferred to the real-world Turtlebot3 Waffle_pi 

robot, which showed good detection avoidance accuracy 

when used in an office environment, as shown in Fig. 4. 

 

Fig. 3. Robot obstacle detection in a hangar environment. 

 

Fig. 4. Real-world object detection test result. 

We compared the NAV-YOLO framework with the 

default ROS navigation stack DWA planner based on the 

number of obstacles detected and avoided per distance, 

distance covered and time to the target location. The 

detection accuracy was also evaluated based on YOLOv5 

small and medium versions to observe the model’s 

performance and generalizability to increased 

environmental complexities. To ensure robustness and 

reliability in the evaluation process, each experiment type 

is repeated five times. This repetition serves to mitigate 

any potential anomalies and to derive a more accurate and 
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representative understanding of the system's behaviour 

across multiple instances. The performance evaluation 

results are detailed in Tables I, II, and III with visual 

representations in Figs. 5 and 6. 

TABLE I. COMPARING TIME AND DISTANCE COVERED BY NAV-YOLO 

AND ROS DWA 

Models 
Time 

(min) 
Distance Covered (m) 

Number of 

Collisions 

ROS 

NAV.Stack 
16.37 278.9 2 

NAV-YOLO 14.43 262.7 0 

TABLE II. COMPARING OBSTACLES AVOIDED BY NAV-YOLO AND 

ROS DWA IN DIFFERENT ENVIRONMENTS 

Models 

Environ 1 with 

5 Static 

Obstacles 

Environ 2 

with 10 obstacles 

(1 dynamic) 

Environ 3 

with 15 obstacles 

(3 dynamic) 

ROS 
Navigation 

Stack 

5 7 11 

NAV-

YOLO 
5 10 14 

TABLE III. COMPARING THE ACCURACY OF NAV-YOLO WITH 

YOLOV5 VARIANTS 

Models mAP0.5 (%) Precision (%) 

YOLOv5m 75 74 

YOLOv5s 70 77 

NAV-YOLO 79 78 

 

 

Fig. 5. NAV-YOLO trajectory. 

 

Fig. 6. ROS NAV trajectory. 

V. RESULT AND DISCUSSION 

A. Result 

This section delves into the empirical evaluation of the 

object detection and avoidance models, highlighting their 

performance in accurately identifying obstacles of varying 

shapes and sizes for obstacle avoidance. Two variants of 

YOLOv5 are used: YOLOv5s and YOLOv5m, as 

benchmarks to compare the obstacle detection 

performance of NAV-YOLO in real-time. For the obstacle 

avoidance evaluation, efficiency was compared based on 

the ROS DWA planner and the new NAV-YOLO model.  

After simulating each method, data shown in Table I 

below were obtained. The NAV-YOLO experiment was 

the fastest in terms of execution time, covered a reasonably 

short distance and the path followed seemed smoother 

without collision as shown in Fig. 5. The default algorithm 

experiment encountered an obstacle after reaching the 

second and fourth checkpoints and Fig. 6 showed a very 

rough path to the target location which contributes to the 

slightly longer average time of 16.37 min for 278.9 m 

distance covered. An essential aspect contributing to the 

extended execution time of the default algorithm lies in the 

occurrence of robot localization failures during a subset of 

tests. This phenomenon necessitates a period for the robot 

to rectify its position before resuming its intended path, 

consequently influencing the overall navigation time. This 

gives the proposed solution an edge as it shows better 

perception ability of its environment which improves its 

localization capability and overall navigation without 

collision. In Table II, three different environments were 

explored to evaluate the performance of the obstacle 

avoidance system for this work. The first experiment 

makes use of only static obstacles, in the second 

experiment, we increase the number of static obstacles 

plus one dynamic obstacle, and in the final experiment, we 

introduce three dynamic obstacles into the environment. It 

is important to note that the start position of the robot in 

all the experiments is the same. In environment 1, the 

robot detected all the static obstacles with both models but 

showed reduced detection ability for the ROS navigation 

stack in environments 2 and 3. These environments 

showed that our approach outperformed the baseline 

method by detecting almost all static and dynamic 

obstacles at different phases with augmented scenario 

complexity. The analysis of the accuracy of the detected 

objects, as shown in Table III brought out exciting findings. 

YOLOv5 versions showed good accuracy of 72.5% on 

average in detecting obstacles correctly, while NAV-

YOLO performed significantly better with an accuracy of 

79.2%, as visually presented in Fig. 3. The investigation is 

further conducted through real-world experiments on the 

Turtlebot3 robot, shedding light on its adaptability in 

navigating changing and complex environments. As 

shown in Fig. 4, NAV-YOLO displays an improved level 

of detection accuracy with a precision rate of 78% in an 

office environment without prior environmental 

experience.  
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B. Discussion 

The successful integration of the ROS local planner and 

YOLO detector in both simulation and real-world states 

was proven, highlighting the effectiveness of our approach. 

The hangar model complexity was changed by increasing 

the number of obstacles per scene, as shown in Table II, to 

observe model efficiency and adaptability in complex 

settings. The ROS navigation stack with the default DWA 

planer [34] failed in some instances to detect and avoid 

obstacles, while the proposed approach showed a 

significant improvement for both static and dynamic 

environments in terms of accuracy of detection and 

avoidance in different environments. The baseline model’s 

detection mechanism simplifies obstacle 

representation [35] and does not give detailed detected 

object information like the size, shape, and color of the 

object, and this impacts the avoidance technique, 

especially where dynamic obstacles are applicable.  

Furthermore, the comparison of YOLOv5 variants and 

the proposed method shows a disparity in detection 

accuracy, as displayed in Fig. 5. The primary factor 

includes the architectural pattern that increases complexity 

from small to large versions of YOLOv5 models [11]. An 

increase in network structure increases detection accuracy 

and speed but requires more computational resources. The 

integrated pretrained YOLOv5s model [10] was developed 

with an improved YOLOv5m structure that balances 

computational intensity and performance to achieve better 

detection results. The overall combined solution shows 

improved detection avoidance capability for mobile robots 

compared to the performance of the ROS-based Dynamic 

Windows Approach planner. The notable limitation in this 

project is that the camera field of view can only capture 

objects in the forward direction making dynamic obstacle 

avoidance more challenging in more complex 

environments. The use of additional stereo cameras and 

fusion with LiDAR will be explored in the next project to 

mitigate this problem. 

VI. CONCLUSION 

This paper presents a vision-based obstacle detection 

and avoidance algorithm for robust and efficient 

navigation in aircraft hangars. The proposed approach 

successfully combines the YOLO detection model and 

ROS navigation stack to enhance robots’ ability to detect 

and avoid obstacles accurately. 

This combination harnesses the strengths of YOLOv5’s 

object detection capabilities and the ROS DWA planner’s 

real-time obstacle avoidance technique facilitating the 

real-time adaptation of the robot’s trajectory to avoid 

collisions, showcasing the potential for dynamic obstacle 

avoidance. The ROS DWA planner uses real-time obstacle 

data from YOLOv5 to adjust and update the robot's 

planned path and this demonstrates its ability to effectively 

identify and classify obstacles of varying structures in 

different environments. The navigation solution was 

integrated into a real-world robotic platform (TurtleBot3), 

and the object detection and avoidance goals were 

significantly achieved. The proposed solution is a valuable 

solution for autonomous robot navigation and is applicable 

in diverse real-world scenarios.  

With these promising results, there are still areas for 

further improvement. The integration of a more advanced 

planner algorithm can improve obstacle prediction with 

optimal obstacle avoidance navigation strategy to improve 

adaptability in unknown environments. For detection 

enhancement, object detection accuracy, especially in 

identifying intricate objects, remains a challenge and can 

be addressed through continuous model refinement and 

dataset augmentation. More performance metrics will be 

investigated and optimized to expand the effectiveness of 

this model in the real world. 
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