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Abstract—Application of robotics on production lines often 

involves handling flexible objects (such as items of natural 

origin or plastic bags containing liquid/bulk substances), 

which makes it crucial to consider the shape of an item 

before and after it has been affected by robotic 

manipulation. Most of the time deformable items are 

challenging for the robot in such operations as grasping, 

cutting, or packaging. The objective of this paper is to track 

object deformations and perform a task based on this 

information. The paper addresses issues in tracking object 

deformation and proposes a solution for deformation 

tracking to form preliminary knowledge and scene 

awareness on the robot side. A curve-fitting-based method 

was implemented to define a region of interest using images 

from a RealSense D415 camera. The developed approach 

identifies the maximum number of aligned points and uses it 

to determine where the deformation occurred. The results of 

this research show that the deformations are efficiently 

tracked. Utilising the algorithm proposed in this paper, an 

efficient method capable of making the robot aware of the 

deformation present in the scene is demonstrated. This 

approach is applicable in domains such as food processing, 

healthcare, and other fields where gentle and precise 

manipulations are required. The method is useful in 

industrial applications in which deformation cannot be 

completely avoided but still needs to be tracked.  

Keywords—camera, curve fitting, deformation, 
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I. INTRODUCTION

An Interaction with deformable objects (i.e., those 

which change shape during manipulation) is a hot topic 

right now in robotics [1]. This is an enormous 

development because robots that can handle these objects 

become more flexible [2] and can be utilized in a variety 

of industries, including services [3], manufacturing [4], 

and healthcare [5]. These deformable objects are, 

however, significantly more challenging to manipulate 

than conventional solid objects [6]. Researchers are still 

working to address this yet-to-be-resolved challenge [7]. 

We need to advance in several areas of robotics, 
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including the design of better robot hardware [8], the 

development of more intelligent methods for tracking 

object deformations [9], the development of methods for 

planning actions [10], and the supervision of the robot’s 

actions [11], to meet this challenge. 

A vision-based control strategy based on the Kelvin 

constitutive equation and the standard spring-mass model 

is proposed to execute autonomous cutting tasks for 

deformable objects [12]. Lines and distance are used as 

features to define the knife position on the picture plane 

to track the targeted surface. The algorithm’s functioning 

has been demonstrated by the experimental results using 

various materials, including sponges, artificial tissues, 

and pork liver. Aranda et al. [13] proposed a template-

based shape servoing scheme to track the deformation to 

solve two problems, i.e. if significant deformations exist, 

a vision-based tracking approach with unconstrained 

problems was developed, and a solution for handling the 

underactuated shape control was proposed. 

Rastegarpana et al. [14] proposed a novel method for 

tracking deformation in real-time. They created an 

algorithm for splitting a point cloud into smaller ones, 

with a little variance. They applied this information to a 

robot that tracks deformation in the actual environment 

using an RGBD camera. To address the limitations of 

initial conditions, Keipour et al. [15] propose a method 

for detecting deformable objects that can handle crossings 

and occlusions and can be used for tasks such as routing 

and manipulation, as well as automatically providing the 

initialization required by tracking methods. 

Pecyna et al. [16] investigated the use of both visual and 

tactile inputs in completing a task of tracking deformable 

objects. They established a benchmark in simulation and 

illustrated how reinforcement learning aids in improving 

visual-tactile fusion compared to using single sensing 

inputs, and the findings demonstrated the importance of 

multimodality, that vision played a vital role in 

completing the task. Zuern et al. [17] proposes a method 

for deformable object localization and tracking. The 

suggested method registers a model of a de-formable 

object to a point cloud acquired from a stereo vision 

system monitoring the scene using self-organizing maps. 

A unique approach for deformable tracking in deformable 
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SLAM is also reported in the available research [18]. 

Each map point is used to create a 3D surfel that is a local 

approximation of the scene surface. The deformations of 

the map are modeled by moving these surfels and 

proposed to remove any link between 3D map points, 

which has also been proven experimentally. To track the 

deformation of deformable objects in real-time, a 

Gaussian mixed model [19] with uniform noise 

distribution is developed for point registration, and the 

estimates are then sent to a dynamic simulation module 

for further refinement. A set of experiments validate this 

established concept. 

According to the literature, there is no one-of-a-kind 

method, or a unique approach is there for tracking the de- 

formation of a deformable object. It is because of the 

recent developments of different novel contributions in 

this particular area. The research contributed to the field 

of deformation tracking by introducing a novel notion 

based on curve fitting. The approach outlined in this 

research reads the ROS bag file to retrieve image and 

depth data recorded by a vision system (Red, Green, Blue 

plus Depth (RGB-D) camera). All the images are 

processed, the corresponding depth is read, and an “Area 

of Interest (AOI): is displayed. The depth values inside 

the AOI are evaluated to establish the maximum depth 

values, and the relevant index for each row is utilized to 

fit a curve that will track down the deformation. 

The following describes the structure of the paper: A 

brief summary of recent events, which includes the 

contribution provided by this article, is included in 

Section I. Section II has the details of the notations that 

have been used in this paper, and Section III presents the 

problem description that has been addressed in the paper 

with details of the setup used in Section IV. The main 

results and discussion, and conclusion are presented in 

Sections V and VI, respectively. 

II. NOTATIONS 

In this section, we present the notations that have been 

used in this paper. Let A є ℝN×M×2 be a matrix that has 

RGB, and depth information recorded from an RGB-D 

camera. Let C є ℝN×M ⊂ A be a matrix that has all the 

color information present in a particular scene (at each 

pixel) of a N × M resolutions RGB camera. Let D є 

ℝ+
N×M ⊂ A be a positive matrix that has all the depth 

information present in a particular scene (at each pixel) of 

a N × M resolutions depth camera. Let d є ℝ+
n×m ⊂ D is 

also a positive matrix with n ⊂ N, m ⊂ M, n ≤ N and m 

≤ M. Let O be an operator that maps D ↦ d ⇒ d = O(D) 

and captures depth information of particular pixels of 

interest. Let MX be an operator that maps d+ є ℝn×m ↦ 

dmax є ℝ+
n×1 ⇒ dmax = MX(d), that gives the maximum of 

each row of the matrix d. The term “area of interest 

(AOI)” is used in this paper to indicate a pixel of interest 

where further analysis is required. 

III. PROBLEM FORMULATION AND METHOD 

When robotic manipulation is involved, tracking the 

deformation of a deformable object is challenging and 

important. The deformable object’s shape, size, and 

orientation may have changed as a result of the robotic 

manipulation, and thus the tracking provides information 

on the next steps in the robotic manipulation without 

destroying the deformable object. In this paper, the 

deformation to be tracked is caused by a disturbance 

(force applied) to a sponge (a deformable object), as 

shown in Fig. 1, which changes the shape of the sponge. 

Looking at Fig. 1(a) and Fig. 1(b), one can easily 

conclude that the shape of the sponge changed after 

applying force to it, and the upper horizontal piece of the 

sponge shifted downward. The goal now is to track this 

deformation so that the robot can be given information 

about this AOI and do further manipulations such as 

cutting at this AOI or marking at this AOI, and so on.  

 

Fig. 1. The deformable object Sponge: (a) when there is no disturbance, 
(b) when there is a disturbance. 

The method used for deformation tracking is based on 

the adoption of an intriguing idea focused on curve fitting. 

In this approach, the ROS bag file needs to be read for the 

purpose to access image and depth data captured by a 

vision system. The depth values within the AOI are 

evaluated to determine the maximum depth values, and 

the relevant indices for each row (that has the maximum 

values) are used to fit a curve to track the deformation of 

the object. All the processing is implemented using 

MATLAB. 

IV. THE SETUP 

In this paper, a real-sense D415 depth camera is 

installed at the position depicted in Fig. 2, and RGB-D 

video is recorded to capture the full information about the 

deformation on the sponge caused by the disturbance. 

This camera placement of Fig. 2 is intended to mimic the 

visual information that can be read from an eye-to-hand 

configuration on a robot, as shown in Fig. 3. The process 

of image and video processing is then carried out to find 

the deformation at the AOI after the video has been 

captured. 
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Fig. 2. Real-sense camera placement for the video recording. 

 

Fig. 3. Real-sense camera placement on the robot in eye-to-hand 

configuration. 

V. MAIN RESULTS AND DISCUSSION 

In this section, the steps of tracking the deformation in 

the deformable object are discussed step by step. The first 

step is to detect the deformable object itself and 

Algorithm 1 has been used to detect it. Let us define the 

total number of white objects in the scene as WO, which 

has information about how many white objects are 

present in the scene, and an operator WOI that maps A є 

ℝ+
N×M×2 ↦ WO є R+

1×1 ⇒ WO = WOI(A) The output of 

the Algorithm 1 can be seen in Fig. 4. 

Algorithm 1: To detect the sponge in the scene. 

 Input: Obtain A 

 Output: A rectangular box around WOI(A) 

1 Step 1: Read A from the bag file;   

2 Step 2: Get the info message from A; 

3  for i = 1: number of messages from A do  

4  Step 3: Marker and mask A to detect white objects;   

5  Step 4: Get the properties of the white objects; 

6  for j = 1: length(WO) do 

7    Step 5: Read the area of the WO’s; 

8    if area(WO) > specific area then 

9    Step 6: Display a rectangle at the AOI; 

10   end 

11  end 

12  Step 7: Display the detected white object in the scene; 

13 end 

 

Fig. 4. The detected sponge in the scene, (a) when there is no 
disturbance, and (b) when there is a disturbance. 

From Fig. 4, it can be seen that the object is detected in 

the scene. Now, let us modify the algorithm to find the 

locations of all the points based on the depth information 

D present at the detected image of Algorithm 1, and 

display the places where the maximum depth is present at 

the AOI. At this stage, we now have the information of C 
є ℝN×M ⊂ A, the color information present in a particular 

scene (at each pixel) of a N × M resolutions RGB camera, 

and D є ℝ+
N×M ⊂ A, the depth information present in a 

particular scene (at each pixel) of a N × M resolutions 

depth camera.  

The modified Algorithm 2 will give the output as 

shown in Fig. 5. 

Algorithm 2: To detect all the maximum points at the AOI 

in the scene. 

 Input: Obtain A 

 Output: A rectangular box around  

              WOI(A) ∪ (O(D) ∩ MX(d)) 

1 Step 1: Read A from the bag file;   

2 Step 2: Get C and D from A; 

3  for i = 1: number of messages from A do  

4  Step 3: Marker and mask A to detect white objects;   

5  Step 4: Get O(D); 

6  Step 5: [Value,Index] = MX(d) 

7  for j = 1: length(Index) do 

8    Step 6: Insert a point at MX(d) 

9  end 

10  Step 7: Display the scene; 

11 end 

It is clear from Fig. 5 that the objective of collecting all 

the maximum points is fulfilled. Now to track the 

deformation where the maximum depth is aligned, it is 

evident to fit a straight line (assuming the deformation is 

represented by a line and is obvious) at the point where 

MX(d) is positioned into the matrix d. This straight line 

can be fetched using the curve fitting concept at the 

locations detected by MX(d) at the AOI. Let us further 
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modify the algorithm to fit a line at the locations of the 

dmax in d.  

 

Fig. 5. Detected AOI with MX(d) information, (a) when there is no 
disturbance, and (b) when there is a disturbance. 

In Algorithm 3, the terms numel, unique are standard 

MATLAB commands. The output of this algorithm is 

shown in Fig. 6. It is clear from this figure that the 

deformation is tracked and displayed in the scene (Fig. 6) 

in green color. 

 
Algorithm 3: To detect all the maximum points at the AOI 

in the scene and fit a line at the deformation. 

 Input: Obtain A 

 Output: A rectangular box around  

              WOI(A) ∪ (O(D) ∩ MX(d)) and a fitted 

               line at dmax in d 

1 Step 1: Read A from the bag file;   

2 Step 2: Get C and D from A; 

3  for i = 1: number of messages from A do  

4  Step 3: Marker and mask A to detect white objects;   

5  Step 4: Get O(D); 

6  Step 5: [Value,Index] = MX(d) 

7  for j = 1: length(Index) do 

8    Step 6: Insert a point at MX(d) 

9  end 

10  Step 7: Get unique(Index); 

11  for k = 1: numel(unique(Index)) do 

12   Step 8: Check if the maximum of points is 

aligned along the vertical axis; 

13   Step 9: Find the horizontal coordinate with the 

maximum number of aligned points; 

14  end 

15  Step 10: Fit line on the image; 

16  Step 11: Display the scene; 

17 end 

 
The final Algorithm 3 reads the bag file containing the 

image and depth data. Selects specific image and camera 

information topics from the bag file and stores in A є 

ℝN×M×2. The frame labels for object detection are obtained 

using camera information. All the images are processed, 

the corresponding depth D є ℝ+
N×M and images C є ℝN×M   

are read, and an AOI is displayed. The depth values d 

within the AOI are analyzed to determine the maximum 

depth value MX(d)and its corresponding index for each 

row. The image is annotated with blue points that 

represent the detected MX(d)and is displayed around the 

AOI. The algorithm determines whether there are any 

aligned points along the vertical axis within a given 

bandwidth. The algorithm finds the horizontal coordinate 

with the greatest number of aligned points and draws a 

vertical line on the image in green color to display (track 

down) the deformation. The reliability and correctness of 

the algorithm can also be verified by the 3D visualization 

generated from the real-sense viewer software, as shown 

in Fig. 7. In this figure, when no force is applied, i.e., Fig. 

7(a), the deformation tracking based on curve fitting is 

aligned towards the left-hand side of the AOI (see Fig. 

6(a)), simply because the depth reading from the camera 

is maximum at the left-hand side, as shown in this figure. 

When a force is applied, as in Fig. 7(b), the deformation 

tracking based on curve fitting is aligned around the 

middle of the AOI (see Fig. 6(b)), and this information 

can be easily concluded when referencing Fig. 7(b), 

which tells us that there is a maximum depth around the 

middle of the AOI. 
It is obvious that if the deformation tracking is 

successful, the robot (or operator) must be made aware of 

these details. The robotic arm then targets this location 

and performs the necessary marking or cutting tasks as 

instructed. Further altering the algorithm, the equation of 

the line representing the aligned points as well as the 

depth value of those points can be achieved. The 

outcomes can be displayed and saved for later analysis. 

The algorithm proposed is useful in domains such as food 

processing, healthcare, and other fields where gentle and 

precise manipulations are required. The approach is 

beneficial in industrial settings where deformation cannot 

be prevented fully but must still be supervised based on 

the information obtained for further manipulations. 

 

Fig. 6. Tracking of the deformation through the curve fitting, (a) when 
there is no disturbance, and (b) when there is a disturbance. 

193

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 2, 2024



 

Fig. 7. 3D visual of the scene, (a) when there is no disturbance, and (b) 
when there is a disturbance. 

VI. CONCLUSION 

In this paper, the tracking of deformation has been 

carried out satisfactorily. A curve-fitting approach is used 

for deformation tracking, and a line is fitted at the point 

of interest. A real-sense D415 depth camera is attached so 

that it mimics the eye- in-hand configuration on a robot, 

and RGB-D data is collected to provide a comprehensive 

understanding of the deformation on the sponge induced 

by a disturbance. Algorithms are de- scribed in the study 

to achieve the motivating goal of tracking the 

deformation. A demonstration video showcasing the pro- 

posed approach is available at 

https://youtu.be/HZ6BcyDFyuc. 

The suggested approach has limitations in that it 

currently fits a linear straight line at the obtained 

maximum values of the points read by the depth camera 

while avoiding outliers in a targeted AOI. Future work is 

aimed at experimentally validating the results obtained on 

a real robot that can be guided to move to the location of 

the AOI as suggested by the algorithm, and perform the 

tasks as instructed. 
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