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Abstract—In contrast to serial robots, the forward kinematics 

of cable parallel robots is more difficult to solve because of 

their nonlinearity and complexity. For cable robots, the 

forward kinematics is more difficult to solve because it is also 

affected by the sagging of the cables and driven system. The 

solution for forward kinematics based on the dynamic model 

is quite complex, requiring many processing steps to solve the 

forward kinematics problem. In cable robot control, the 

forward kinematics problem is necessary to precisely control 

the position and velocity of its moving platform. The 

computational methods give suitable solutions for these cable 

robots, but these methods also have disadvantages like 

convergence. This paper describes using a neural network 

model in proposing a solution for the cable robot with cable 

sagging because of its weight in its workspace. The 

experiments conducted with the results show that the solution 

of the forward kinematics by the neural network model 

increases the convergence of the solutions with a very small 

evaluation error. A comparison of the calculation results 

shows that the used model has achieved prediction accuracy 

with an error of less than 0.1 mm corresponding to CDPR 

size 4200×3200×2900 mm.   
 

Keywords—cable robots, forward kinematics, inverse 

kinematics, cable sag, neural network, Multilayer Perceptron 

(MLP), backpropagation 

I. INTRODUCTION 

Cable Driven Parallel Robot (CDPR) is a type of 

parallel robot in which the end-effector is defined by cable 

instead of hard links [1, 2]. The challenges in research and 

implementation of CDPR are similar to those encountered 

in Stewart’s parallel structure. Indeed, CDPR may be 

required not only for more flexible operations but also for 

accessible large workspaces and high loads. An important 

characteristic of CDPR is that the cables can only operate 

unilaterally through tension and without compression. The 

CDPRs have many different classification methods, they 

can be classified according to the following criteria, such 

as number of cables –m and degrees of freedom −n. This 

kinematic classification was proposed by Ming and 

Higuchi [3] to distinguish between different type of 

CDPRs. An obvious criterion for classification is to 

consider the number of cables expressed in m and the 
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controllable degrees of freedom of the moving platform, 

denoted as n. Moreover, the redundant freedom r = m − n 

is introduced too. We can distinguish between the 

following groups: m < n ≤ 6 Under-constrained cable 

robot; n = m Fully-constrained cable robot; n + 1 = m. The 

robot may be constrained via cables in certain positions; n 

+ 1 < m. Over constrained and forces must be distributed 

between cables. Classification is important for many of the 

methods and algorithms described in model design options 

because different types of cable robots have different 

structures and control methods.  

Calculating the Forward Kinematic (FK) problem of 

CDPR is difficult even when the ideal cable is assumed to 

be straight [5, 6], or more complicated with a more realistic 

model taking into account the pulley diameter [7], or 

assuming that the cable has a small diameter, average 

length and tension is always greater than a given value, 

allowing us to ignore elasticity in the calculation [8]. In 

this study, the cable model is calculated in general 

including cable sagging and pulley diameter based on the 

chain cable model presented in [9] allowing to take into 

account the influence of cable mass, model This has been 

applied and verified experimentally on CDPR [10, 11]. 

This paper introduces a new method to predict the FK 

problem of CDPR taking into account the influence of 

cable deflection and guide pulley size. The Inverse 

Kinematic Problem (IKP) is calculated and the Neuron 

network is used to find the value of the Forward Kinematic 

Problem (FKP), the model is applied on a four-cable fully 

constrained parallel robot with the effects of cable sag in 

its workspace that is only deflected by its own weight. In 

this study, a neural network is used with the following 

layers: an input layer, five hidden layers and an output 

layer. The training data is generated by the results of the 

robot’s inverse kinematics. In the prediction and 

regression of neural networks, the data plays a very 

important role in the accuracy of the selection model. 

Therefore, generating data with noise is extremely 

important to ensure accurate training for the model. The 

first step in predicting process is to generate data based on 

the values of the robot’s inverse kinematics with the 

cable’s sagging at different locations of the moving 
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platform randomly in the robot’s workspace. The 

generated data is divided into 2 parts: training and testing. 

In the next step, the Multilayer Perceptron (MLP) model is 

trained with the data with the input as the position of the 

moving platform and the output as the length of the cables 

generated in the previous step. The final step is to test and 

evaluate the model based on testing the data at different 

random points of the inverse kinematics in its workspace.  

Besides, simulation has also been used to show that the 

proposed model has high convergence and small errors. 

Based on the results of analysis, simulation and 

experiment, this model increases the accuracy and the test 

error is small. 

II. INVERSE KINEMATIC OF THE 4-CABLE ROBOT 

The kinematic model of a fully constrained suspended 

CDPR is shown in Fig. 1, Bi and Mi are attaching points to 

the moving platform and fixed frame of the robot (i = 1, 2, 

3, 4). bi is the position vector of Bi in the fixed frame B. To 

better understand the CDPR kinematics, a pulley 

schematic associated with the movement of the moving 

platform and the CDPR is shown in Fig. 2. The li is the 

vector of the variable cable’s length, ri is the position 

vector of attaching points on a moving platform (moving 

frame E). p is the position vector of the moving platform’s 

center of mass in B frame. According to the vector diagram 

in Fig. 2, the Mi can be obtained as: 

0 i iO M r p= +  
(1) 

 

Fig. 1. Kinematic Modeling of a 4 cables robot in this study. 
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Fig. 2. Pulley kinematic modelling of fully constrained suspended 

CDPR. 

The variable cable’s length: 

0i i i i il O M b r p b= − = + −
 

(2)   

Since the pulley has a radius of rR, Lt is the length of the 

ACM wire. The length of the cable is calculated from Ai, 

Ci, Bi points: 

ti Ri R fiL r l= +
 

(3) 

On the other hands: 

2 2( ) ( )xyi xi xi yi yib B M B M= − + −
 

(4) 

zi zi zib B M= −
 

(5) 

2 2 2

fi xyi zi Rl b b r= + −
 

(6) 

where: 

2 2

i xyi zil b b= +
 

From Fig. 2, we have: 

ar cos( ) ar cos( )
2

fi xyi

Ri

i i

l b

l l


 = + +

 
(7) 

From Eqs. (3)–(7), we have like as. 

2 2 2

( ar cos( ) ar cos( )) r
2

fi xyi

ti R

i i

xyi zi R

l b
L

l l

b b r


= + +

+ + −
 

(8) 

In this study, Eq. (8) is used to solve the forward 

kinematics of cable robots. From there, velocity and 

acceleration can also be calculated. However, we only 

focus on the position of the cable robot with noise due to 

cable sagging. 

Finding the end-effector position when knowing the 

joint variables is called the Forward Kinematic Problem 

(FKP). The FKP of CDPR is very complex and cannot be 

solved in a closed form. For the general case with 6 degrees 

of freedom, there can be up to 40 solutions for the forward 

kinematic problem [4], this would be very impractical to 

implement. In this paper, the NN network is used to find 

the response values of the forward kinematics problem of 

a fully constrained suspended CDPR. Along with building 

the CDPR kinematic model, a simulation method is also 

used to evaluate the computational model. The results 

show that the proposed method increases the convergence 

efficiency and achieves a very small error in the solution. 

On the other hand, the fast computation time is an 

advantage of the predictive method over the numerical 

method. 

III. INVERSE KINEMATIC WITH CABLE SAG PROBLEM 

The cable sagging model will assume that the cable is 

only deflected by its weight, neglecting wind and uneven 

distribution of weight. Consider a cable profile between 
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two points B and M as in Fig. 3. Where B is the attachment 

point on the fixed frame, M is attachment point on the 

moving platform, LS is the straight‐line (Euclidean norm) 

distance between A and B, L is the catenary (actual) length 

between B and M, g is the acceleration due to gravity, T is 

the cable tension with X and Z components Tx and Tz at M, 

TBx and TBz are the X and Z components of the cable tension 

at B, and (xm, zm) are the coordinates M. For this cable, the 

static catenary displacement equations for the inextensible 

case after simplification are [10–12]: 

1 1sinh sinh
x z z L

m

L x x

T T T gL
x

g T T





− −
    −

= −    
      

(9) 

2 2 2 21
( )m x z x z L

L

z T T T T gL
g




 = + − + −
 

 

(10) 

where ρL is the linear density of the cable material. 

 

Fig. 3. The sag of cable between two points. 

When considering the effect of cable sagging (i.e. the 

weight of the cable) in the modeling, cable tension must be 

taken into account to find cable length. Therefore, the 

kinetic and pseudo-random problems are combined and 

must be solved simultaneously, obviously from Eqs. (9) 

and (10). This is a system of implicit nonlinear equations, 

so there is no analytical solution, so it is imperative to use 

numerical methods. Li et al. [13] and Sridhar et al. [14] 

show that, for cases of minimal or under constraints, the 

catenary Eqs. (9) and (10) are solved with equilibrium 

equations: 

0, 0, 0x y zF F F= = =  
 

(11) 

For cases of a 4-cable 3-dof (XYZ translation) fully 

constrained suspended CDPR in Fig. 1, a requirement 

arises that a solution of tension distribution must be 

selected because the equilibrium calculation does not have 

a unique solution. Since the number of variables is larger 

than the number of equations available, there can be an 

infinite number of valid solutions. Thus, solving static 

equilibrium equations (Fig. 4), for a given valid position, 

there can be an infinite number of valid combinations T = 

T1 T2 T3 T4T for satisfying the equilibrium Eq. (11). In 

other words, at a given location there can be many valid 

cable tensioning solutions to maintain static equilibrium. 

To obtain a desired solution out of many possible 

solutions, mathematical optimization techniques are used. 

T1

T2

T3

T4

wp
 

Fig. 4. The force acting on moving platform on static equilibrium. 

There are various methods to optimize mathematics 

based on the nature of the problem. A common approach 

used in the field of robots is the Moore-Penrose 

pseudoinverse method of the Jacobian matrix, which helps 

minimize the Euclidean norm of cable tension. Another 

useful technique is Linear Programming, which helps to 

find solutions to the above problem, provided that the 

target function and constraints are linear. 

When using the catenary Eqs. (9) and (10) to find the 

cable length of a fully-constrained cable robot, a viable 

approach is to solve it as a constrained optimization 

problem or specify the (m-n) number of forces before 

solving. The methodology adopted here to address the 

Inverse Position Kinematics and Statics problem is as 

described in [10, 12, 15]. The computational results of this 

method are shown in [12], and they are used to generate 

input data for a forward kinematic problem. Fig. 5 shows 

the results of straight-line and cable sag inverse 

kinematics. The sag of cables depends on the length of 

cables, the angle of cables with Z axis and the weight of 

the moving platform. 

 

Fig. 5. Length of cables with sag compensator. 

IV. NEURAL NETWORK FOR FORWARD KINEMATICS 

An artificial or neural network (also known as an 

Artificial Neural Network-ANN or Neural Network) is a 

mathematical or computational model based on biological 

neural networks. It consists of a group of artificial neutrons 
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(nodes) connected together and processes information by 

transmitting along the connections and calculating new 

values at the nodes (the connectionist approach to 

computation). In many cases, an artificial neural network 

is an adaptive system that changes its structure based on 

external or internal information flowing through the 

network during learning. 

In actuality, many neural networks are nonlinear 

statistical data modeling tools. They can be used to model 

complex relationships between inputs and results or to 

look for patterns or samples in data [16]. From the 

equations that require input/output relationships, ANN is 

trained using sample data to construct input/output vector 

maps in a default way. Therefore, ANN can solve high 

nonlinear problems without determining the relationship 

between input and output [17].  

The most common neural network used to solve FKP is 

the Multilayer Perceptron (MLP).  

The graphical representation of MLP for the FKP 

solution is shown in Fig. 6. ANN’s input is a vector of 

(1×4) L = [L1, L2, L3, L4]’ corresponding to the length of 

the cables (variable joints). On the other hand, the 

coordinates of the working head are X, Y, and Z in the 

Cartesian coordinate system space. Because there is no 

theoretical method approach to determining the number of 

layers and neurons in each layer, so many neural networks 

(one hidden layer, two hidden layers,…) with different 

neurons were tested. The neurons in the hidden layer have 

the function of activating the sigmoid. The output layer has 

linear neurons. In this procedure, an end criterion is set to 

MSE and all initial weight coefficients are randomly 

assigned. Then the input vectors from the test data set are 

presented to the backpropagation network. The outputs of 

the network-the coordinates of the end effector P (X, Y, Z) 

are compared with the targets in the test data.  

Based on the results of the testing process, we have 

designed and taught the five-layer ANN model with a 

sigmoid transfer function for the hidden layer and linear 

transmission function for the output layer to denote any 

functional relationship between inputs and outputs, if the 

sigmoid layer has enough neurons. Parallel robots with 

solid links usually have rather limited and complex 

workspaces, while cable robots with parallel kinematics 

have larger flexible workspaces.  

Fig. 6 shows a model of generated data of the CDPR 

used in this study. The selection to generate data ensures 

uniform distribution in the workspace, which can be 

determined by geometric and linear algebra  

methods [13, 18]. With the robot’s parameters used in this 

study, the workspace makes up the data in the range of 

1,450, 1,950, and 2,030 (mm) in x, y, and z axes. The data 

from the inverse kinematic problem, Eqs. (8)–(10) are used 

as the input for ANN designed from 600 random 

coordinates. Table I shows a piece of the data from the 

inverse kinematic problem, that means, input variables in 

the forward problem (L1, L2, L3, L4) and the output 

variables (X, Y, Z) used to determine the structure of ANN) 

that was randomly determined. The general structure of the 

input/output of the model is shown in Fig. 7. 

 

Fig. 6. Structure of an ANN model for the solution of Forward 
kinematics. 

 

Fig. 7. Structure of proposed model. 

TABLE I. DATA FOR TRAINING 

L1 L2 L3 L4 x y x 

4.455 3.615 1.731 3.125 −1.168 1.292 0.725 

2.305 2.641 2.815 2.503 0.286 −0.122 1.514 

2.516 1.52 2.977 3.589 −0.693 −0.84 1.589 

1.155 3.049 3.989 2.819 1.373 −0.848 1.964 

3.329 4.223 2.749 0.898 1.164 1.317 1.73 

4.288 3.786 0.855 2.187 −0.699 1.744 1.948 

3.296 4.077 2.861 1.559 0.993 1.081 1.09 

4.284 4.926 3.348 2.302 1.018 1.674 0.056 

2.193 2.943 3.112 2.415 0.664 −0.131 1.36 

3.304 4.366 2.917 0.601 1.405 1.353 2.246 

4.455 3.615 1.731 3.125 −1.168 1.292 0.725 

V. EXPERIMENTS AND DISCUSSIONS 

Experiments are carried out with a fully constrained 

suspended CDPR. Specification of simulation CDPR is 

shown on Table II. 

TABLE II. SPECIFICATION OF CDPR 

Dimension of base frame (L×W×H) 4200×3200×2900mm 

Tension limit [40–800] N 

Number of cables 4 

Number of DOF 3 

Maximum load 80 kg 

 

The experimental coordinates are randomly taken in the 

feasible workspace, and 600 experimental coordinates are 

used to calculate the FK problem by ANN. The error 

results of the FK problem shown in Fig. 8 shows that the 

accuracy of the prediction model is stable, the error in 3 
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coordinates X, Y and Z are all less than 0.1 mm. The results 

show the appropriateness of CDPR’s FK prediction model 

by ANN. This model initially gives high-precision results 

with the proposed CDPR configuration, which can be 

applied to solving linear kinematics. For CDPR, the 

advantage of the predictive model is the short computation 

time, which can be integrated with the cable sagging 

calculation models or the characteristic parameters of the 

cable actuators. However, the model is only simulated with 

a given CDPR configuration and corresponding tension 

distribution algorithm. The next research direction is to 

experiment with the algorithm on a concept CDPR to 

evaluate the calculation results and develop algorithms for 

other robot configurations and different tension 

distribution methods. 

 

 

 

Fig. 8. The errors of the FKP of 4 cables robot modeling with ANN.  

VI. CONCLUSION 

This study proposes the use of back-propagation MLP 

artificial neural networks for a cable robot’s FKP solution, 

which can be constructed to generate the best estimate of 

the location of the moving platform. The results of this 

paper are interesting because they solve a problem in that 

no closed-form solution is known. Therefore, ANN can 

improve the accuracy of cable robots. In addition, a 

backpropagation network can explore high nonlinear 

functions and has been successfully applied to the 

approximate complex mapping between robot positions 

and cable lengths. The results of the simulation studies 

have demonstrated the advantages of this method in 

increasing the convergence with model accuracy which is 

superior to the corresponding methods for parallel robots. 
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