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Abstract—Control Lyapunov Function (CLF) is a powerful 

tool for synthesizing nonlinear control laws. Several control 

laws may be deduced from the same CLF. In the Electro-

hydraulic Servo Systems (EHSS) literature, two types of 

CLF are distinguished, especially for tracking control 

problems. The first type is a sum of a quadratic function of 

the errors while the second type is the quadratic function of 

the weighted sum of the errors. In this paper, we extend the 

second type of CLF by adding a power factor to appreciate 

its influence on closed-loop performances. Thus, we obtain 

three CLFs instead of the classic quadratic function by 

varying the power factors 2, 4 and 6. The three deducing 

control laws are compared under the presence of Coulomb 

friction. The study is carried out both for an angular 

velocity tracking control and an angular position tracking 

control. The numerical results show that the control laws 

using the CLFs of orders 2 and 4 have the best 

performances. Moreover, the closed-loop systems based on 

both controllers exhibit the best robust results under 

friction disturbance.    

 

Keywords—Control Lyapunov Function (CLF), Sontag 

formula, Electro-hydraulic Servo Systems (EHSS), 

Lyapunov redesign control, friction, weighted tracking 

errors sum 

 

I. INTRODUCTION 

Engineering applications require Electro-hydraulic 

Servo Systems (EHSS) to manipulate large mechanical 

loads with a fast, robust and accurate response. Common 

examples include aerospace actuation [1], automobile 

active suspension actuation [2], machine tool actuation 

[3], lift system actuation [4], and drilling process 

actuation [5]. PID controllers are widely used to control 

those machines because of their simplicity, flexibility and 

well-established design [6]. Xiang et al. [7] apply PID 

 
 Manuscript received May 18, 2023; revised August 14, 2023; accepted 

September 13, 2023; published January 29, 2024.  

regulators based on a hydraulic excavator model and 

highlight the complexity of the control adjustment due to 

the incomplete information about the dynamics of the 

system and its interactions with the earth’s environment. 

Thus, the performances obtained by this linear control 

theory are limited around an operating point [8]. The 

EHSS has nonlinear dynamics with hydraulic parameter 

uncertainties [9]. Moreover, frictions and external 

disturbances lead the overall system away from the 

operating point [7]. 

Among the existing nonlinear control laws in the 

literature, the Lyapunov Redesign (LR) approach offers 

powerful solutions. LR is based on the design of the 

Control Lyapunov Function (CLF). A CLF is a positive 

definite function whose time derivative is made negative 

definite by choosing an appropriate control law. This 

approach allows the design of an original control law 

while ensuring asymptotic stability [10]. Unlike the 

feedback linearization approach which cancels all system 

nonlinearities, the LR approach selects the nonlinearity to 

be cancelled. Thus, robust performance is achieved using 

this technique. In the EHSS literature, backstepping 

control [11], sliding mode control [12] and control based 

on Sontag’s formula [13] are control theories based on 

the Lyapunov Redesign approach and give good results. 

The main obstacle to the LR approach is the 

determination of the CLF. First, this positive definite 

function must include all the system state variables. For 

EHSS, the system variable states may reach the number 

five. Second, the input signal must appear after a single 

time derivative of the CLF. Finally, an analytic control 

law is found to make the time derivative of the CLF 

negative definite. One can note that the LR has two 

flexible steps: the choice of the CLF and the choice of the 

analytic structure of the control law. 

In 1982, Lyapunov functions appeared in literature to 

provide proof of the asymptotic stability of nonlinear 
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systems [14]. Initially, LFs are used in aerospace 

applications to control the satellite altitude or to describe 

orbital motion [15] using the total energy. Due to the 

presence of friction, the total energy decreases over time. 

Indeed, the total energy is an excellent Lyapunov 

candidate function for these mechanical systems because 

its time derivative is a negative definite function. 

However, for most systems, not all the state variables are 

included in this energy function. Moreover, for tracking 

control systems, the tracking error and its time derivatives 

are more relevant than the system state variables 

themselves [16–18]. The disadvantage of this approach is 

the difficulty of demonstrating that the time derivative of 

the selected LF is negative definite. In 1983, Artstein [19] 

circumvented the problem by introducing the Control 

Lyapunov Function (CLF) which is a LF that includes the 

input control signal, which has to be designed. Hence, the 

control strategy consists of finding control algorithms that 

make the time derivative of the CLF a negative definite 

function. Based on Artstein’s results, Sontag [20] builds 

an elaborate version of CLF using the Lie derivatives of 

the system and finds an analytic control solution based on 

the Riccati equation.  

To our knowledge, only two types of CLF are used in 

the EHSS literature. The first type of CLF is obtained by 

a recursive method or backstepping. This approach 

consists of dismantling the EHSS into several first-order 

subsystems. A piecewise CLF is constructed for each 

subsystem. Kaddissi et al. [11] back step four subsystems 

to derive the final CLF and deduce the control law for 

EHSS. However, this strategy is very painful because the 

recursive steps increase with the system order leading the 

closed-loop system to an explosion of complexity. The 

second type of CLF comes from the Artstein / Sontag 

analytical expression [20]. Because the input signal 

should appear in the first time derivative of the CLF, 

Mintsa et al. [13] choose the weighted sum of the 

tracking error as CLF. As is explained in [21] and in 

sliding mode theory [22], the time derivative of the 

weighted sum of the tracking error makes the input signal 

appear after one time derivation [24]. Most of the CLFs 

in the literature are quadratic functions to provide 

positive definite functions. Quadratic functions are well 

established to study system stability [23]. Recent works 

show that non quadratic Lyapunov functions lead to 

higher robustness in the system performances [24].  

In this paper, we address the analysis of different non-

quadratic CLFs architectures derived from our previous 

work [13]. In addition to the velocity servo control, we 

extend the study to the angular position servo control. 

The objective is to compare the closed-loop performances 

using the same analytic control solution with different 

opportunities of CLF. We vary the conventional power 

factor of 2 in the CLF with a power factor of 4 and 6.  

The rest of the paper is organized as follows: Section II 

describes the EHSS under study and its mathematical 

model. Section III shows the development of the control 

laws based on the three different CLFs. Section IV 

presents the numerical simulation results and the 

discussion. Finally, the conclusion is drawn in Section V. 

II. SYSTEM MODELING

The electrohydraulic servo system under study is 

shown in Fig. 1. It consists of a hydraulic bidirectional 

motor that drives a rotational mechanical load. The 

hydraulic power pack includes the oil tank, the pump, the 

relief valve and the accumulator. Its objective is to supply 

hydraulic oil at a constant pressure in the servo valve 

entry. The electrohydraulic servo valve ensures the 

interface between the operative part and the control part. 

The input signal u(t) is the output of the feedback control 

law. In this study, the outputs of interest are the angular 

velocity ( )t  of the motor sensed by the feedback 

transducer and the angular position which is the time 

integration of the velocity. The desired angular velocity 

and the desired angular position are obtained via the 

reference signal. 

Fig. 1. Electro-hydraulic servo system. 

The following assumptions are considered in this 

section: 

• The saturation and the hysteresis in the

electrohydraulic servo valve are neglected.

• The external disturbances are not taken into

account.

• The servo valve dynamics are approximated to a

first-order system.

Besides the time integration of the angular velocity, the 

dynamics of the EHSS are dismantled into three 

subsystems as shown in the state-space equation Eq. (1). 

The first subsystem describes the equation of motion of 

the rotational load. The second subsystem shows the 

equation of continuity through the hydraulic motor lines. 

The second subsystem is the servo valve dynamics. 
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where 

( )1x t is the angular position ( )t  

( )2x t is the angular velocity ( )t  

( )3x t  is the motor pressure difference ( )LP t  due to the 

load 

( )4x t  is the servo valve opening area due to the input 

signal 

( )u t  is the control current input 

( )fT t  is the coulomb friction disturbance 

J  is the hydraulic motor total inertia 

md  is the volumetric displacement of the motor 

  is the fluid bulk modulus 

mV  is the total oil volume of the hydraulic motor 

dc  is the servo valve discharge coefficient 

  is the fluid mass density 

smc  is the leakage coefficient of the hydraulic motor 

sP  is the supply pressure at the inlet of the servo valve 

K  is the servo valve amplifier gain 

  is the servo valve time constant 

To satisfy the Lipshitz conditions in the mathematical 

model [29], we replace the non-differentiable sign 

function with the continuously differentiable sigmoid 

function described in Eq. (2) and detailed in [25]: 

 ( )( )
( )

( )
( )( )

2
; 0x

x

x t
sign x t sigm x t

x t



= 

+
 (2) 

where we assume: 

 
( )( )

lim 0
x

dsigm x t

dt →
=  (3) 

The sigmoid parameter δ is adjusted based on the x 

domain to have the S-shaped as shown in Fig. 2. When 

the values of x are close to 10-8, the parameter of the 

sigmoid function is adjusted to 10-18. When the values of 

x are close to 1, the parameter of the sigmoid function is 

adjusted to 10-3.  

 

Fig. 2. Parameters effect on sigmoid function. 

III. CONTROLLERS DESIGN BASED ON CLF 

In this section, the design of the three controllers based 

on three CLFs is presented. We use the same control law 

established in our previous work [13]. It consists of a 

Lyapunov redesign control law based on the Sontag 

formula [20]. The objective is to vary the power factor in 

our previous CLF to obtain three CLF opportunities. In 

this paper, only the outline of the controller design is 

followed and shown in Fig. 3. For more details, readers 

can refer to our previous work [13, 26]. 

The design is focused on the development of the 

angular velocity tracking controller of the EHSS. In 

subsection B, we extend the design to develop the angular 

position tracking controllers.  

 

 

Fig. 3. Design of three Lyapunov redesign controllers from three CLF. 

The first step consists of writing the EHSS model of 

Eq. (1) in the companion form (Eq. (4))[13, 26]: 

 ( ) ( ) ( ) ( )
6
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, ,i i

i
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where the output equation of the Eq. (1) is ( ) ( )y t t=  
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Step 1 : Put the 

state space model in 

the companion form 

Step 2 : Establish 

the reference model  

Step 3 : Construct  

three CLF based on 

three different power 

factors in order to 

make appear the input 

signal after one time 

derivative of the CLF 

Step 4 : Design 

three control laws 

from the three CLF 

in order to obtain 

three negative 

definite time 

derivative of CLF 

Step 5 : Design an 

output derivatives 

estimator 
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The second step is to describe the desired trajectory of 

the state by considering the three-order reference model 

shown in Eq. (5).  

 ( ) ( ) ( ) ( ) ( )2 1 0des des des desy t y t y t y t r t  + + + =  (5) 

where ( ) ( )des desy t t=  and ( )r t are the desired output and 

the input of the reference model respectively. The 

coefficient 
i are distributed in the Butterworth pattern. 

The third step is to choose a CLF that includes all the 

system variable states. Now, we propose a CLF different 

from our previous work by varying the power factor 2. 

 ( )
( ),

, 2,4 6

n

n

s x t
V x t n and

n
= =  (6) 

where ( ) ( ) ( ) ( )1 0,s x t e t e t e t = + + is the combined error or 

the weighted sum of the velocity error ( ) ( ) ( )dese t y t y t= − . 

The coefficients 
i are distributed according to the 

Butterworth model. In the sliding mode control design, 

the combined error is well-known as the sliding surface 

[18]. In Eq. (6), the power factor n ensures the positive 

definition of the CLF only if n is an even number. For the 

remainder of this study, we use three power factors as 

shown in Eq. (7)–Eq. (9) to deduce three CLFs of order 2, 

4 and 6. 

 ( )
( )2
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,
,
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V x t =  (7) 

 ( )
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4

,
,

4

s x t
V x t =  (8) 

 ( )
( )6

6

,
,

6

s x t
V x t =  (9) 

The fourth step is to calculate the time derivative of the 

three CLFs to bring up the input control signal.  
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Next, we extend the Sontag’s formula according to [20] 

and [13] to obtain the three following control laws:  

( )
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We recall that the function ( ),g x t  is always strictly 

positive because the pressure difference across the motor 

line never exceeds 2 3sP for the servo valve requirements 

[9]. Finally, with these control laws, the time derivative 

of the three CLFs become: 

( ) ( ) ( ) ( ) ( )( )
2

6
4
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2 , , ,, ,
i i

i
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=− +
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6
4
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5 5

6 , , ,, ,
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V x t s a f x t s g x tx t x t
=

=− +
 
 
 

  (18) 

The three CLFs are negative definite because 

2,4,6( , ) 0V x t = if ( ), 0s x t = . Thus, the asymptotic stability of 

the three closed-loop systems is ensured. Fig. 4 shows the 

implementation of the controlled closed-loop system in 

the Matlab / Simulink environment.  
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Fig. 4. The block diagram of the EHSS closed loop controlled EHSS. 

The output derivatives are calculated using a model of 

the form:  

 ( ) ( ) ( ) ( )1 0est est est acty t y t y t y t + + =  (19) 

where ( )acty t and ( )esty t are the measured actual output and 

the estimated output. The coefficients 
i are distributed 

according to the Butterworth pattern. 

A. Extension of the Design for the Angular Position 

Tracking Control 

In this subsection, the main lines of the previous 

development are taken up to design the three control laws 

for tracking the angular position. The system output 

becomes the angular position of the load. The angular 

position ( )t  is the time integration of the angular 

velocity ( )t . Hence, the companion form becomes a 

four-order system. 

 ( ) ( ) ( ) ( )
6

1

, ,p i i

i

y t a f x t g x t u t
=

= +  (20) 

where the output equation of the Eq. (1) becomes 

( ) ( )py t t=
.
 

A four-order reference model Eq. (21) replaces the 

three-order reference model of Eq. (5). 

 ( ) ( ) ( ) ( ) ( ) ( )_ 3 _ 2 _ 1 _ 0 _p des p p des p p des p p des p p desy t y t y t y t y t r t   + + + + = (21) 

where ( ) ( )_p des desy t t=  is the desired output for the 

angular position control. The coefficient ip are 

distributed in the Butterworth pattern. For the angular 

position, the combined error ( ),ps x t  is 

 ( ) ( ) ( ) ( ) ( )2 1 0,p p p p p p p ps x t e t e t e t e t  = + + +  (22) 

where the position tracking error is 

( ) ( ) ( )_p p p dese t y t y t= − . The coefficients ip are 

distributed according to the Butterworth model. The three 

angular position control laws based on the three power 

factors are 
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 
   










 (23) 

Finally, for the angular position controller, the output 

derivatives estimator becomes 

( ) ( ) ( ) ( ) ( )_ 2 _ 1 _ 0 _ _p est p p est p p est p p est p acty t y t y t y t y t  + + + =  (24) 

where ( )_p acty t and ( )_p esty t are the measured actual output 

and the estimated output. The coefficients ip are 

distributed according to the Butterworth pattern. 

IV. RESULTS AND DISCUSSION 

In this section, the performances of the three 

controllers are presented, analysed and compared. The 

simulation is executed under the Matlab/ Simulink 

environment for 20 s with a sampling time of 10 ms. The 

input signal used for this study is a sine wave with an 

amplitude of 1 rad/s and a frequency of 2 rad/s. The 

numerical data used for the simulation are tabulated in 

Table I.  

TABLE I. THE NUMERICAL DATA USED FOR THE SIMULATION 

Symbol Description Value and units 

EHSS 

1x
  Sigmoid function constant for ( )1x t  0.001 

  Servo valve time constant 0.01 s 

3x  Sigmoid function constant for ( )3x t  10−18 

K Servo valve amplifier gain 8.10−7 m2/mA 

Vm Total oil volume of the motor 3×10−4 m3 

  Fluid bulk modulus 8×108 Pa 

cd Flow discharge coefficient 0.61 

Ps Supply pressure 9×106 Pa 

csm Leakage coefficient 9×10−13 m5/ (N.s) 

dm Volumetric displacement of the motor 3×10−6m3/rad 

  Fluid mass density 900 Kg/m3 

J Total inertia of the motor and the load 0.05  N.m.s2 
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B Viscous damping coefficient 0.2 N.m.s 

fT  Friction term 1.8 Nm  

Reference Model for the angular velocity controller 

2  Coefficient for the reference model ( )2 2 20   

1  Coefficient of the reference model ( )
2

2 2 20   

0  Coefficient of the reference model ( )
3

2 20   

Reference Model for the angular position controller 

0 p  Coefficient for the reference model ( )
4

2 20   

1p  Coefficient for the reference model ( )
3

2.61 2 20   

2 p  Coefficient for the reference model ( )
2

3.41 2 20   

3 p  Coefficient for the reference model ( )2.61 2 20   

Proposed angular velocity Controller 

rf  Cutoff frequency for the combined 

error 
100 Hz  

1  Coefficient for the combined error ( )2 2 rf   

0  Coefficient for the combined error ( )
2

2 rf   

c  Sigmoid function constant for the 

controller 
310−

 

Proposed angular position Controller 

2 p  Coefficient for the combined error ( )2 2 60   

1p  Coefficient for the combined error ( )
2

2 2 60   

0 p  Coefficient for the combined error ( )
3

2 60   

Output derivatives Estimator for the angular velocity controller 

1  Coefficient of the estimator model ( )2 2 1000   

0  Coefficient of the estimator model ( )
2

2 1000   

Output derivatives Estimator for the angular position controller 

2 p  Coefficient for the estimator model ( )2 2 1000   

1p  Coefficient for the estimator model ( )
2

2 2 1000   

0 p  Coefficient for the estimator model ( )
3

2 1000   

 
In

 
order

 
to

 
evaluate

 
the

 
robustness

 
of

 
the

 
three

 
controllers,

 
we

 
simulate

 
a
 
Coulomb

 
friction

 
disturbance

 
between

 
8

 
and

 
10

 
s in

 
the

 
hydraulic

 
motor.

 
As

 
shown

 
in

 
Fig.

 
5,

 
the

 
amplitude

 
of

 
the

 
friction

 
reaches

 
10%

 
of

 
the

 
maximal

 
mechanical

 
torque

 
applied

 
to

 
the

 
load.

 

 
( ) ( )( )21.8fT t sgm x t=

 
(25)

 

 Fig. 5.

 

Simulation

 

of

 

Coulomb

 

friction

 

disturbance.

 

A.

 

Angular

 

Velocity

 

Controllers

 

Results

 Figs.

 

6

 

and

 

7

 

show

 

the

 

closed-loop

 

responses

 

obtained

 with

 

the

 

three

 

controllers.

 

We

 

wanted

 

to

 

execute

 

the

 closed-loop

 

system

 

with

 

the

 

same

 

combined

 

error

 

cutoff

 frequency

 

of

 

our

 

previous

 

work

 

which

 

is

 

100

 

Hz

 

[13].

 Recall

 

that

 

the

 

combined

 

error

 

is

 

a

 

Butterworth

 

polynomial filter. The two first responses obtained with 

u2(t) and u4(t) show good results. Between 8s and 10s, 

when the Coulomb friction operates, the closed-loop 

responses obtained with these two controllers show 

excellent robustness with slight overshoots visible in  

Fig. 7. When using the controller u6(t), the tracking 

performances are good up to 8 s. After 8 s, high 

frequency sustained oscillations with large amplitude are 

observed until the end of the simulation. Between 8 s and 

10 s, the amplitude of the sustained oscillations is about 

15 rad/s while the amplitude reaches 18 rad/s after 10 s. 

The closed loop based on the CLF of power factor 6 

shows less robustness. The power factor of 5 in the 

control signal u6(t) provides a large deviation in the 

tracking error leading the closed-loop systems to 

instability when disturbances occur. Power factors 2 and 

4 amplify the tracking error deviation without moving it 

away from the region of asymptotic stability. 

 

 

Fig. 6. System response when using (a) the control law ( )2u t ; (b) the 

control law ( )4u t ; (c) the control law ( )6u t for 100rf Hz=
.
 

 

Fig. 7. Tracking error when using (a) the control law ( )2u t ; (b) the 

control law ( )4u t ; (c) the control law ( )6u t  for 100rf Hz=
.
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Fig. 8. System response when using (a) the control law ( )2u t ; (b) the 

control law ( )4u t ; (c) the control law ( )6u t for 60rf Hz=
.
 

 

Fig. 9. Tracking error when using (a) the control law ( )2u t ; (b) the 

control law ( )4u t ; (c) the control law ( )6u t  for 60rf Hz=
.
 

To reduce the high-frequency sustained oscillations in 

the closed-loop response seen earlier with the controller 

u6(t), we reduce the cutoff frequency to 60 Hz. Figs. 8 

and 9 illustrate the closed-loop responses for the three 

controllers with a combined error cutoff frequency of 60 

Hz. We see that reducing the cutoff frequency increases 

the robustness of the controller by suppressing high-

frequency sustained oscillations in the tracking error. 

Again, CLF based controllers with powers factor 2 and 4 

perform well. Their closed-loop responses correctly 

follow the desired angular velocity with a negligible error 

when there is no friction (see Fig. 9 (a), (b)). Between 8 

and 10 seconds, when friction occurs, both closed-loop 

responses show almost the same slight overshoots at 8 s 

and 10 s. However, the third closed-loop EHSS response 

shown in Fig. 9(c), the one based on the CLF with a 

power factor of 6, gives the least satisfactory results. 

Small chattering is visible after 8 s.  

Fig. 10 shows the control signal obtained during the 

simulation. It is noted that the three controllers develop 

large effort with amplitude reaching 1010 A for the 

controller based on the CLF of power factor 2, 1013 A for 

the controller based on the CLF of power factor 4 and 

1018 A for the controller based on the CLF of power 

factor 6. Chattering is well-known in controlled systems 

using Lyapunov Redesign [27]. Severe chattering is 

unacceptable for the actuator input signal because it 

causes rapid system wear. However, there is a trade-off 

between the fluctuation in control input and the steady 

state error [28]. The controller parameters and the output 

derivatives estimator play a role in the closed-loop 

performances. Other settings of these different parameters 

are necessary to obtain an acceptable control signal. 

Strategies could also be grafted onto the controller to help 

it to reduce or eliminate chattering [29]. 

 

Fig. 10. Control signal when using (a) the control law ( )2u t , (b) the 

control law ( )4u t and (c) the control law ( )6u t  for 60rf Hz=
.
 

B.
 

Angular
 
Position

 
Controllers

 
Results

 
In

 
this

 
subsection,

 
we

 
present

 
the

 
results

 
obtained

 
with

 
the

 
angular

 
position

 
controllers.

 
Figs.

 
11

 
and

 
12

 
show

 
the

 
closed-loop

 
responses

 
with

 
the

 
cutoff

 
frequency

 
to

 
60

 
Hz.

 
Good

 
results

 
are

 
achieved

 
with

 
the

 
three

 
controllers.

 
Again,

 
the

 
control

 
law

 
with

 
the

 
power

 
factor

 
6

 
shows

 
insufficiencies

 
of

 
robustness.

 
Fig.

 
13

 
shows

 
the

 
control

 
signal

 
of

 
the

 
three

 
controllers

 
with

 
the

 
cutoff

 
frequency

 
of

 
60

 
Hz.

 
We

 
can

 
see

 
that

 
significant

 
chattering

 
is

 
present.

 

 

Fig. 11. System response when using (a) the control law ( )2pu t , (b) the 

control law ( )4pu t and (c) the control law ( )6pu t for 60rf Hz=
.
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Fig. 12. Tracking error when using (a) the control law ( )2pu t , (b) the 

control law ( )4pu t
,
 (c) the control law ( )6pu t  for 60rf Hz=

.
 

 

Fig. 13. Control signal when using (a) the control law ( )2pu t , (b) the 

control law ( )4pu t and (c) the control law ( )6pu t  for 60rf Hz=
.
 

V. CONCLUSION 

In this paper, we investigate the performances of a 

nonlinear Lyapunov redesign controller based on 

Sontag’s formula from three different control Lyapunov 

functions. The study is carried out both for an angular 

velocity tracking control and an angular position tracking 

control. The three control Lyapunov functions are a 

weighted sum of the tracking error and its time 

derivatives to which we apply a power factor of 2, 4 and 

6 respectively. From a general point of view, the 

simulations show that the three controllers have 

satisfactory and almost identical results with a small 

tracking error. The controllers having the CLFs with the 

quadratic form and the power factor 4 show the best 

robust performances while the one with the power factor 

6 displays some destabilizing behavior when friction 

occurs. Future works must involve experimental 

simulations to confirm the actual results.  
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