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Abstract—The research has been originated based on the 

persuasive applications of Lasers in the field of various 

engineering industries, i.e., Aerospace, Automobile, 

Electronic and Heavy manufacturing industries to machine a 

variety of metals and alloys. Out of all the machining 

processes available, Laser Beam Machining is considered to 

be the best one, because of the following advantages, i.e., 

quick material removal, non-contact, non-wearing tool, 

involves highly localized heat input to the work piece, reduces 

distortion, and offers no tool wear, diminishes tendency of 

cracking. The present paper focused mainly on developing 

the empirical relationships between the input process 

parameters and the output responses in Laser beam cutting 

process. Laser power, Cutting Speed, Gas pressure and Focal 

distance are the input process parameters. The output 

responses considered are related to the quality of cut. Surface 

roughness is the first output responses considered and the 

second one is Burr height. Total number of experiments 

carried out is 27 based on the Taguchi Design of Experiments. 

Haste alloy C276 is the work material. Response Surface 

Methodology is applied for the Experimental data of 31 

samples to derive the empirical relationships. Later ANOVA 

analysis is also carried out to check the adequacy of the 

derived equations. Based on the ANOVA analysis, the models 

are classified as significant or not significant. Further the 

significant models can be used for optimizing the Laser beam 

cutting process. Once the process is optimized, it can be 

automated, so that the process can be run very efficiently and 

economically.   

 

Keywords—ANOVA analysis, empirical modeling, laser 

beam cutting, response surface methodology 

I. INTRODUCTION  

Thermal separation is the process that is used to the laser 

machining process. A wide range of materials, particularly 

those that have low reflectivity, thermally and electrically 

conducting or non-conductive, and that cannot be 

machined by other unconventional machining techniques 

like Wire Electrical Discharge Machining (WEDM), 

Ultrasonic Machining (USM), Electrical Discharge 

Machining (EDM), Electro Chemical Machining (ECM), 

Plasma Arc Machining (PAM), etc., can be processed 

using laser machining. One of the most reliable 

sophisticated manufacturing techniques for industrial 

processes is laser cutting, which has changed significantly 

 
 Manuscript received July 5, 2023; revised August 14, 2023; accepted 

August 28, 2023; published February 21, 2024. 

since its introduction in the 1970s. The following describes 

how a laser is generated and how to regulate its beam so 

that it can cut a workpiece’s surface. A glass tube with 

mirrors at both ends produces a laser beam [1]. A turbine 

disperses the laser gas once it has been introduced into the 

glass. Helium, nitrogen, and carbon dioxide make up the 

laser gas. Typically, this mixture of laser gas is referred to 

as a CO2 laser. An external power source, such as 

Radiofrequency (RF generator) or Electrical Power (DC 

power), is used to excite the atoms in the laser gas and 

release the excited atoms into the mixture of laser gas. A 

photon of seventeen lights is released by the excited gas 

atoms in the laser. More photons are released when this 

photon excite other atoms. This takes the shape of a 

domino effect. The generated photons travel between the 

glass tube’s two mirrors until some of them break free 

through the partially reflected mirror. High productivity 

and the greatest cut quality are achieved when the laser 

beam is focused onto the workpiece to be cut by adjusting 

the laser’s focal length to the cut’s depth [2]. 

 

Fig. 1. Laser cutting principle. 

The principle of laser cutting is shown in Fig 1. The 

efficiency of the overall process in terms of productivity, 

cut quality, and cost is determined by a number of 

characteristics that make laser cutting an unpredictable 

operation. The key concerns for producers are minimising 

costs, cutting quality, and increasing productivity. 

Theoretical and practical knowledge will aid in the 

methodical selection of laser process parameters [3], 

which are often selected using values from handbooks. 

Setting the ideal cutting parameters helps to accomplish a 

desired outcome. A poor choice of cutting parameters 
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leads to excessive manufacturing expenses, poor product 

quality, and waste; conversely, a good choice of these 

parameters improves the quality of the final product. 

Therefore, it is even more important to accurately assess 

using mathematical models the relationship between laser 

cutting parameters and cutting performance [4], and then 

utilise optimisation techniques to determine the ideal or 

nearly optimal cutting parameters [5]. The manufacturing 

process parameters, machine specifications, creation of 

efficient optimisation conditions, empirical equations to 

develop realistic constraints, and proficiency with 

numerical and mathematical optimisation techniques are 

all necessary for the modelling and optimisation of 

processes, which are typically very challenging tasks. A 

vast array of optimisation strategies have been developed 

by researchers, who have also addressed numerous models 

of parameter optimisation problems and talked about the 

Design of Experiment (DOE) [6] and other methods used 

to predict empirical models [7]. Predicting the parametric 

equations between the input process variables and the 

output responses is the primary goal of the proposed effort. 

The empirical models are predicted using the experimental 

data. Using the Response Surface Methodology approach, 

two models are predicted for the kerf width and surface 

roughness. Using the ANOVA analysis, the projected 

models are also evaluated for appropriateness [8]. The 

created formulas can also be utilised to streamline the laser 

beam cutting procedure, which can then be automated [9]. 

II. EXPERIMENTAL WORK 

The experiments were conducted on a 3 axes CNC 

controlled CO2 laser cutting machine which is available in 

Meera Laser Solutions, Ambattur, Chennai. The maximum 

average power produced at laser is 100 W. The 

experiments are carried out on Hastelloy C-276 with a 

thickness of 2 mm. Square profiles are cut on the 

workpieces. The machine and the samples are presented in 

Fig. 2.   

 

 

Fig. 2. Laser cutting profiles.  

Haste alloy C276 is chosen as the work piece because 

of the following advantages, i.e., high resistance to 

uniform attack, outstanding localized corrosion resistance, 

excellent stress corrosion cracking resistance, and ease of 

machining, welding and fabrication. A total of 31 

experiments were carried out on the LBC apparatus by 

varying the input variables, i.e., Laser power, Cutting 

speed, focal distance and the Gas pressure. Based on 

Taguchi [10], the experimental plan is prepared. Based on 

the trail experiments, the ranges for each process 

parameters are found out. The minimum value of laser 

power is 1.7 and maximum value is 1.9 KW. Cutting speed 

is varied between 3 and 6 mm/sec. The third parameter 

focal distance is adjusted between 0.4 and  

0.6 mm, whereas the fourth and the last parameter, i.e., gas 

pressure is adjusted between 2 and 3 bar. The Minitab 

software [11] is used to prepare the experimental plan. The 

output responses measured are Burr height and the Surface 

roughness. The experimental data is presented in Table I. 

TABLE I. EXPERIMENTAL DATA 

Exp  

No 

Laser 

Power 

Cutting 

Speed 

Focal 

Distance 

Gas 

Pressure 

Surface 

Roughness 

Burr 

Height 

[KW] [mm/sec] [mm] [bar] [µm] [µm] 

1 1.750 3.750 0.500 2.250 3.575 0.815 

2 1.850 3.750 0.500 2.250 4.640 1.880 

3 1.750 5.250 0.500 2.250 3.543 0.783 

4 1.850 5.250 0.500 2.250 3.803 1.043 

5 1.750 3.750 0.700 2.250 3.539 0.779 

6 1.850 3.750 0.700 2.250 3.548 0.788 

7 1.750 5.250 0.700 2.250 3.548 0.788 

8 1.850 5.250 0.700 2.250 3.697 0.937 

9 1.750 3.750 0.500 2.750 3.050 0.290 

10 1.850 3.750 0.500 2.750 3.879 1.119 

11 1.750 5.250 0.500 2.750 3.308 0.548 

12 1.850 5.250 0.500 2.750 3.398 0.638 

13 1.750 3.750 0.700 2.750 3.646 0.886 

14 1.850 3.750 0.700 2.750 3.551 0.791 

15 1.750 5.250 0.700 2.750 3.317 0.557 

16 1.850 5.250 0.700 2.750 3.127 0.367 

17 1.700 4.500 0.600 2.500 3.210 0.450 

18 1.900 4.500 0.600 2.500 4.589 1.829 

19 1.800 3.000 0.600 2.500 4.425 1.665 

20 1.800 6.000 0.600 2.500 3.440 0.680 

21 1.800 4.500 0.400 2.500 3.256 0.496 

22 1.800 4.500 0.800 2.500 4.245 1.485 

23 1.800 4.500 0.600 2.000 3.070 0.288 

24 1.800 4.500 0.600 3.000 3.789 1.029 

25 1.800 4.500 0.600 2.500 3.345 0.456 

26 1.800 4.500 0.600 2.500 3.968 1.208 

27 1.800 4.500 0.600 2.500 3.635 0.875 

28 1.800 4.500 0.600 2.500 3.595 0.835 

29 1.800 4.500 0.600 2.500 3.471 0.711 

30 1.800 4.500 0.600 2.500 3.223 0.463 

31 1.800 4.500 0.600 2.500 3.210 0.489 

 

III. EMPIRICAL MODELING AND ANALYSIS  

The experimental data shown in above section is used 

to develop the empirical models between the input process 

parameters and the output responses. For all the 

manufacturing industries, automation is the prime 

requirement due to the fact that the manufacturing output 

is increased with the reduction in the manufacturing cost. 
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As LBC process is a very complex process involving many 

number of input process parameters to be controlled 

correctly to achieve quality output, it becomes very 

difficult for the manufacturing people to judge and set the 

correct parameter at the correct level. He never achieves 

the optimal output if such trial and error methods are 

employed. Hence there is a need to develop the 

methodology which gives us the optimal settings. In order 

to optimize the process, one should establish the 

relationships between the input process parameters and the 

output responses. In this work, the main priority is given 

for finding the empirical relationships. Response Surface 

methodology [12] is the method which is used here to find 

the empirical relationships. 

A. Response Surface Methodology (RSM)  

For building of empirical models, the Response surface 

methodology is used for empirical modeling. By 

conducting experiments and applying regression 

analysis [13], a model of response to some independent 

variables can be obtained. In RSM it is possible to 

represent independent process parameters in quantitative 

form as: 

𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛) ± 𝜀         (1) 

In this case, Y represents the response, f denotes the 

response function, ε is the experimental error, and the 

independent parameters are X1, X2, X3, Xn, etc. Plotting Y’s 

anticipated response yields a surface that is referred to as 

the response surface. It is uncertain what form f takes and 

it could be exceedingly complex.  

RSM thus seeks to approximate f in some region of the 

independent process variables by an appropriate lower 

order polynomial. The function 𝑌 mentioned in the above 

Eq. (1) can be rewritten, if the answer can be accurately 

represented by a linear function of the independent 

variables: 

 

𝑌 = 𝐶0 + 𝐶1𝑋1+ . . . +𝐶𝑛𝑋𝑛 ± 𝜀          (2) 

 

However, if a curvature appears in the system, then a 

higher order polynomial such as the quadratic model may 

be used and is given as 

  

𝑌 =  𝐶0 + ∑ 𝐶𝑖𝑋𝑖 + ∑ 𝑑𝑖𝑋𝑖
2𝑛

𝑖=1  ± 𝜀 𝑛
𝑖=1           (3) 

 

In addition to examining the reaction across the whole 

factor space, the goal of Response Space Mapping (RSM) 

is to identify the region of interest where the response 

approaches or exceeds its ideal value. It is possible to 

determine the response surface model—the set of variables 

that produces the optimal response—by closely examining 

the data.   

For the present research, Design Expert software is used 

to find the empirical models based on the RSM method. 

The data collected from distinctive experiments pertaining 

to output responses, Surface roughness and Burr height 

from Table I are used to implement the proposed RSM 

methodology. The need in developing the mathematical 

relationships is to relate the measured output responses 

Surface Roughness and the Burr height to the input process 

parameters such as Laser power (x1), Cutting speed (x2), 

Focal distance (x3), and Gas Pressure (x4) thereby 

facilitating the optimization of the cutting process. Design 

Expert 10, statistical analysis software [8], is used to 

compute the regression coefficients of the proposed 

models. The following empirical models are obtained 

Surface Roughness = 23.46 – 59.71 x1 + 2.98 x2 + 39.91 

x3 + 9.62 x4 – 2.49 x1 x2−29.62 x1 x3−4.23 x1 x4 +0.41 x2 

x3 −0.08  x2 x4 + 3.08 x3 x4 + 21.81 x1
2 + 0.14 x2

2 + 3.45 

x3
2 − 0.73 x4

2                                      (4) 

  

Burr Height = 25.79 – 65.00 x1 + 2.92 x2 + 39.47 x3 + 

9.55 x4 – 2.49 x1 x2−29.62 x1 x3−4.23 x1 x4 +0.41 x2 x3 

−0.08  x2 x4 + 3.08 x3 x4 + 30.18x1
2 + 0.14 x2

2 + 3.82 x3
2 

– 0.71 x4
2                                                                      (5) 

Predictions on the response for specific amounts of each 

element can be made using the equations above, which are 

expressed in terms of coded factors. The factors’ high 

values are automatically typed as +1, and their low levels 

are coded as −1. By comparing the factor coefficients, the 

coded equation can be used to determine the relative 

impact of the components. Also to understand the trends 

between the input process parameters and the output 

rsponses, using the Design Expert software, two 

dimentsonal plots are plotted. Fig. 3 shown below is the 

plot between the inputs, i.e., power, cutting speed, focal 

distance and the gas pressure versus the surface roughness, 

The plot shows that the surface roughness tends to increase 

with the increase in  the power and the focal distance, 

wheras the surface roughenss decreases with the increase 

in the cutting speed and the gas pressure. 

 

Fig. 3. Effect of Input parameters on surface roughnesss. 

Fig. 4 is the plot between the inputs, i.e., power, cutting 

speed, focal distance and the gas pressure versus the burr 

height. The graph shows that the burr height is increasing 

with the increase in the power and the focal distance, 

Design-Expert® Software
Factor Coding: Actual
Surface Roughness

Actual Factors
A: Power = 1.8
B: Cutting Speed = 4.5
C: Focal Distance = 0.6

D: Gas Pressure = 2.5

A: Power (KW)

1.7 1.75 1.8 1.85 1.9

S
u
rf

a
c
e
 R

o
u
g
h
n
e
s
s

3

3.5

4

4.5

5

B: Cutting Speed (mm/sec)

3 3.6 4.2 4.8 5.4 6

S
u
rf

a
c
e
 R

o
u
g
h
n
e
s
s

3

3.5

4

4.5

5

C: Focal Distance (mm)

0.4 0.5 0.6 0.7 0.8

S
u
rf

a
c
e
 R

o
u
g
h
n
e
s
s

3

3.5

4

4.5

5

D: Gas Pressure (bar)

2 2.2 2.4 2.6 2.8 3

S
u
rf

a
c
e
 R

o
u
g
h
n
e
s
s

3

3.5

4

4.5

5

International Journal of Mechanical Engineering and Robotics Research, Vol. 13, No. 1, 2024

135



 

wheras the burr height decreases with the increase in the 

cutting speed and the gas pressure. 

 

Fig. 4. Effect of Input parameters on burr height. 

IV. TEST FOR ADEQUACY USING ANOVA 

The empirical models shown above are s are tested for 

their adequacy using the ANOVA analysis [9]. It is carried 

out for both the models which are shown as equations. The 

statistics of ANOVA for Surface Roughness and Burr 

height are given in the Tables II and III respectively. 

TABLE II. ANOVA TABLE FOR SURFACE ROUGHNESS 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value 

p-value 

Prob > F 

Model 80.52 14 5.75 3.82 0.0126 

Power (x1) 17.60 1 17.60 11.70 0.0051 

Speed (x2) 36.64 1 36.64 24.36 0.0003 

Focal Distance (x3) 1.84 1 1.84 1.22 0.2908 

Gas Pressure (x4) 6.30 1 6.30 4.19 0.0632 

x1 x2 1.82 1 1.82 1.21 0.2934 

x1 x3 2.08 1 2.08 1.38 0.2626 

x1 x4 0.92 1 0.92 0.61 0.4485 

x2 x3 3.52 1 3.52 2.34 0.1521 

x2 x4 0.40 1 0.40 0.26 0.6173 

x3 x4 0.033 1 0.033 0.022 0.8855 

x1
2 2.68 1 2.68 1.78 0.2070 

x2
2 0.12 1 0.12 0.079 0.7829 

x3
2 5.04 1 5.04 3.35 0.0922 

x4
2 1.58 1 1.58 1.05 0.3259 

Residual 18.05 12 1.50   

Cor Total 98.57 26    

Std. Dev. 1.23   R-Squared 0.8169 

Mean 6.26   Adj R-Squared 0.6033 

 

The model’s F-value of 3.82 for surface roughness 

suggests that it is important. The probability that an F-

value this great may be the result of noise is merely 1.26 %. 

“Prob > F” values less than 0.0500 suggest the significance 

of the model terms. x1, x2 are important model terms in this 

instance. The model terms are not important if the value is 

bigger than 0.1000. Model reduction could make your 

model better if it has a large number of unimportant model 

terms (apart from those needed to maintain hierarchy). 

TABLE III. ANOVA TABLE FOR BURR HEIGHT 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value 

p-value 

Prob > F 

Model 83.72 14 5.98 3.60 0.0081 

Power (x1) 16.67 1 16.67 0.15 0.7014 

Speed (x2) 8.32 1 8.32 1.09 0.3178 

Focal Distance (x3) 7.53 1 7.53 0.98 0.3411 

Gas Pressure (x4) 19.16 1 19.16 2.50 0.1398 

x1 x2 8.13 1 8.13 1.06 0.3233 

x1 x3 4.99 1 4.99 0.65 0.4352 

x1 x4 0.27 1 0.27 0.036 0.8530 

x2 x3 0.57 1 0.57 0.074 0.7897 

x2 x4 5.75 1 5.75 0.75 0.4032 

x3 x4 0.041 1 0.041 5.287E–003 0.9432 

x1
2 3.30 1 3.30 0.43 0.5243 

x2
2 4.41 1 4.41 0.58 0.4624 

x3
2 0.46 1 0.46 0.059 0.8115 

x4
2 0.044 1 0.044 5.807E–003 0.9405 

Residual 91.93 12 7.66   

Cor Total 175.66 26    

Std. Dev. 1.23   R-Squared 0.840 

Mean 6.26   Adj R-Squared 0.719 

 

From both the ANOVA tables of Surface Roughness 

and Burr Height, it can observe that the value of “Prob > 

F” for the models are less than 0.05, which indicates that 

the models are significant [14]. Hence both the above 

equations are suitable for further use in the process of 

optimization [15]. 

A. Multiple Regression Coefficient (R2) 

The multiple Regression Coefficient (R2) is calculated 

to see if the fitted models accurately represent the 

experimental data. The R2 statistic, which is used to gauge 

how well a model fits an experimental set of data, is 

defined as the ratio of variability explained by the model 

to the total variability in the actual data [12]. The better the 

model fits the experimental data, the closer R2 becomes to 

unity. Stated otherwise, it refers to the percentage of 

variance in the answer, the dependent variable, that can be 

accounted for by the factors, or predictors, in the model. 

R2 for Surface Roughness is determined to be 0.816 from 

Table II. This indicates that 81.6% of the variation in 

Surface Roughness can be explained by the second-order 

model. Similarly, R2 for Burr Height is determined to be 

0.84 from Table III. This demonstrates that an 84% 

explanation of the variance in Burr height can be provided 

by the second-order model.  

The goal of the adjusted R2 is to get a more suitable 

number for the R2 estimation. One formula to calculate 

adjusted R2 is as follows: 

                            (6) 

where k represents the number of predictors and N is the 

number of observations [16]. Because the ratio of (N−1) / 

(N−K−1) will be significantly smaller than 1, there will be 

a lot larger discrepancy between R2 and adjusted R2 when 

N is small and k is large. In contrast, the ratio of (N−1) / 

(N−K−1) will approach 1 when the number of 
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observations are more than the  number of predictors, 

meaning that the value of R2 and adjusted R2 will be 

considerably closer. 

From Table II, adjusted R2 for Surface Roughness is 

found to be 0.6033. It can be observed that the values of 

R2 and adjusted R2 are closer to each other. This means that 

the developed model can represent the process adequately. 

From Table III, adjusted R2 for Burr height  is found to be 

0.71. It can be observed that R2 and adjusted R2 are closer 

to each other for Surface Roughness and Burr Height. This 

proves that the developed models [17] can represent the 

process adequately. 

B. Normal Probability Plots 

The normal probability plot of residuals is to be used to 

once more assess the validity of the generated 

mathematical models. To see whether any assumptions are 

broken and to see if the data are normally distributed, 

diagnostic plots are created. Thus, Surface Roughness, 

Burr Height, and the residuals for the responses are 

displayed using the normal probability plot. Plots of 

normal probability are used to determine whether data are 

normally distributed. The statistical process operates under 

the presumption that there is a normal underlying 

distribution [14]. Consequently, normal probability 

plots [18] can either confirm that the assumption is 

reasonable or flag potential issues with the assumption. 

Hypothesis tests for normalcy are usually used with 

normal probability plots in an investigation of normality. 

If every data point in a normal probability plot is close to 

the line, then it is plausible to assume that the data is 

normal [19]. If not, the points will diverge off the line, 

making it inappropriate to assume normalcy. The normal 

probability plot of residuals is to be used to once more 

assess the validity of the generated mathematical models. 

To see whether any assumptions are broken and to see if 

the data are normally distributed, diagnostic plots are 

created. Thus, Surface Roughness, Burr Height, and the 

residuals for the responses are displayed using the normal 

probability plot. Plots of normal probability are used to 

determine whether data are normally distributed. The 

statistical process operates under the presumption that 

there is a normal underlying distribution [14]. 

Consequently, normal probability plots [18] can either 

confirm that the assumption is reasonable or flag potential 

issues with the assumption. Hypothesis tests for normalcy 

are usually used with normal probability plots in an 

investigation of normality. If every data point in a normal 

probability plot is close to the line, then it is plausible to 

assume that the data is normal [19]. If not, the points will 

diverge off the line, making it inappropriate to assume 

normalcy. 

The normal probability plots of the residuals for the 

output responses, Surface Roughness and Burr Height are 

shown in Figs. 5 and 6 respectively. It can be observed that, 

the residuals are located on straight line, which means that 

the errors are distributed normally. This represents that the 

proposed model is satisfactory for the given conditions. 

 

 

Fig. 5. Normal probability plot of residuals for surface roughness. 

 

Fig. 6. Normal probability plot of residuals for burr height. 

V. CONCLUSION 

In the current research work, Empirical modeling is 

carried out for the output response of Laser beam cutting 

process using the Response Surface Method. Experimental 

data was used to predict the empirical models. Two 

empirical models are developed one for the Surface 

roughness and the next one for the burr height. Design 

Expert software is used successfully to carry out the 

modeling based on the regression analysis. Also, the 

empirical models are tested for its adequacy using the 

ANOVA analysis and also by calculating the multiple 

regression coefficients. R2 values are calculated only for 

the significant equations. R2 for Surface Roughness is 

found to be 0.816 means the empirical model can explain 

the variation in Surface Roughness up to the extent of 

81.6%. Similarly, for Burr height, R2 is found to be 0.84, 

i.e., the model can explain the variation in Burr height up 

to the extent of 84%. Overall, the empirical models 

developed are satisfactory and proved to be significant, 

which makes them fit to be used for further analysis in the 

process of optimizing the Laser beam cutting process. 
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