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Abstract—This paper proposes a method for identifying 

isomorphisms between different kinematic chains that is 

highly efficient, reliable, and simple, with a short CPU 

running time (KC). In contrast to many methods proposed 

by researchers in this field, which require significant 

computing time, particularly in kinematic chains with a large 

number of bars. Isomorphism identification is critical for 

designers in order to avoid duplicate solutions and focus all 

of their energy and creativity on novel, independent 

kinematic chain solutions. The shortest path between non-

binary bars is primarily used in this article to solve the 

problem of isomorphism identification. The computational 

complexity and efficiency of the method are evaluated and 

compared to existing published methods for a variety of cases, 

including 8-bar, 10-bar, 12-bar, three-complex 13-bar, 15-

bar, 28-bar, and 42-bar single-joint kinematic chains. These 

comparisons demonstrate the superiority of the proposed 

method.
   

Keywords—adjacency matrix, isomorphism, distance matrix, 

invariant identification   

I. INTRODUCTION 

Before beginning work on a new kinematic chain design, 

we must first check for isomorphism between several 

potential solutions. This is one of the most difficult and 

daunting challenges, especially for complex mechanisms 

based on kinematic chains with many bars. Confusion 

between isomorphic and non-isomorphic kinematic chains 

may result in redundant efforts and solutions. 

Many methods for overcoming this challenge have been 

developed by researchers. The following is a summary of 

various works on the subject published in recent years by 

researchers. Butcher and Hartman [1] proposed an 

algorithm that allows for exhaustively enumerating and 

structurally classifying simple articulated planar kinematic 

chains using the hierarchical representation by Fang and 

Freudenstein. In this algorithm, all isomorphic chains are 

automatically eliminated during the enumeration process, 

thereby eliminating isomorphism tests on the final set of 

chains. Pucheta and Cardona [2] used a constrained 

subgraph-based isomorphism identification approach for 
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structural synthesis. Deng et al. [3] proposed a technique 

for adding subchains for the structural synthesis of planar 

closed KCs. In studying mixed-loop mechanical systems 

with simple and multiple joint K-chains, Pozhbelko [4] 

proposed a unified structure theory. Yan’s mechanism 

synthesis method [5] generates comparable edges and 

vertices by using permutation groups and combinatorial 

concepts. Yan’s approach is appropriate. Although 

achieving an efficiency breakthrough is difficult, it 

provides a foundation for applying and analysing similar 

edges in mechanism synthesis. In 2002, Wang and Yan [6] 

used regeneration rules to divide KC similarity into 

symmetry, transfer, row, and irregular similarities. The 

detection of link similarity was then suggested as a method 

for selecting functional components. Yang et al. [7] 

proposed the incident matrices technique for determining 

topological network isomorphism. When there are several 

comparable values in rows and arrays, discrimination 

becomes difficult. Dargar et al. [8] developed a method 

based on the concept of weighted structural matrices to 

demonstrate that a link and a chain are isomorphic at the 

same time. However, their utility has yet to be proven. 

Lohumi et al. [9] proposed a computerised loop-based 

method for determining isomorphism in planar kinematic 

chains but provided no mathematical justification. 

Ambekar and Agrawal [10] proposed a coding-based 

method for identifying isomorphisms in 1986. Fang and 

Freudenstein [11] proposed the stratified coding method in 

1990. The Fang and Freudenstein approach was based on 

a stratified or hierarchical representation of KCs, 

beginning with the most abstract level (the simplified 

graph), moving to an intermediate representation (the 

contracted graph), and finally to the most detailed (the 

monochrome graph, or, for KCs with different types of 

joints, the colored graph). A stratified adjacency matrix 

represents the kinematic chain, which can then be 

condensed into a special code known as the stratified code. 

Tang and Liu [12] used the degree code of an adjacency 

matrix approach to identify isomorphic KCs, while Shin 

and Krishnamurthy [13] established the standard code 

method in 1994. Rai and Punjabi [14] proposed an 

International Journal of Mechanical Engineering and Robotics Research Vol. 12, No. 5, September 2023

297doi: 10.18178/ijmerr.12.5.297-305

School of Engineering, Mohamed V University, Rabat, Morocco



identification isomorphism method based on link 

connection numbers and entropy in 2018. Rai [15] 

published a binary coding technique in 2019 to assess 

isomorphism in various KCs. Uniqueness and decodability 

are, theoretically, advantages of coding-based isomorphic 

identification techniques. Most proposed methods, 

however, can only reliably locate KCs with 10 bars or less 

[16]. In 1970, Buchsbaum and Freudenstein [17] used 

graph theory for the first time to synthesise PGT 

mechanisms. Tsai [18] used the characteristic polynomial 

of epicyclic gear trains to determine rotational and 

translational isomorphism in such mechanisms in 1987. A 

random number technique was used to compute the 

characteristic polynomial. Although less reliable, this 

method is more efficient. Kim and Kwak [19] developed 

an edge permutation-based technique for detecting 

isomorphism in PGTs in 1990. Hsu [20] proposed a 

structural code for detecting PGT mechanisms in 1994. 

Pathapati and Rao [21] examined previous isomorphism 

detection methods in 2002. They stated that one of the 

major reasons for the contradictory synthesis results of 

PGTs is that the isomorphism detection methods fail in 

some cases. In 2003, Rao [22] proposed a genetic 

approach to discovering PGT isomorphism. The use of the 

high-order adjacent link value to find isomorphisms 

among kinematic chains was proposed by Leiying He et al.  

[23]. Moha Shadab Alam et al. [24] identified 

isomorphisms by using the square of the degree link in a 

short path between every pair of vertices and the weight of 

the vertices. Zongyu Chang et al. [25] develop a simple 

method based on the eigenvector and eigenvalue to 

identify kinematic chain isomorphism. 

Despite extensive research on mechanism synthesis 

methods, the limitation of these methods remains due to 

the existence of isomorphic solutions.  

The proposed method is useful to solve the similarity 

between different kinematic chain configurations, which 

is the main problem facing innovative regenerative design 

and mechanism synthesis fields.  

As a result, this paper attempts to develop an 

isomorphism identification method that uses the shortest 

path between non-binary vertices and their links with 

binary vertices. This new method drastically reduces 

execution time while detecting isomorphism in complex 

configurations with many vertices. 

II.  ADJACENCY MATRIX 

A graph could be used to model a kinematic chain. In 

this case, bars are represented as vertices, while joins are 

the graph's edges. 

The adjacency matrix is a square matrix with n-by-n 

dimensions (n is the number of vertices) that describes the 

relationship between different vertices in a graph by 

assigning a value of 1 to the elements 𝑎𝑖𝑗  if two vertices 

are connected (or adjacent) and 0 otherwise. 

 
𝐴 =  [𝑎𝑖𝑗]𝑛×𝑛      n is the number of vertices

𝑎𝑖𝑗 = {
1 if vertex i is adjacent to vertex j
0 otherwise

 

III. DISTANCE BETWEEN NON-BINARY VERTICES  

The distance between two vertices is defined as the 

number of joints on the shortest path between two vertices, 

i and j. This article calculates only the distance between 

non-binary vertices using a simple adaptation of the 

Floyd-Warshall method, which was originally developed 

to find the shortest path between all pairs of vertices in a 

weighted graph. 

The Floyd-Warshall method is used to calculate the 

matrix distance between non-binary vertices. It begins by 

extracting the non-binary vertices connections from the 

adjacency matrix and calculating the distance between the 

vertices.  

A. Application Example 

 
Figure 1. Eight bar KC. 

The non-binary vertices connection matrix is obtained 

by removing the rows and columns from the adjacency 

matrix that correspond to the binary vertices. 

The adjacency matrix and the extracted non-binary 

vertices connection matrix are: 

𝐴 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
1 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0]

 
 
 
 
 
 
 

           (1) 

And   𝑁𝑏𝑐 = [

0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

]                         (2) 

The distance matrix of non-binary vertices connection 

is:  

𝐷𝑁𝑏𝑐 = [

0 1 2 1
1 0 1 2
2 1 0 3
1 2 3 0

]                     (3) 

IV. PROCESS METHOD 

The main idea behind this method is to extract the non-

binary vertices connection (Nbc) and the columns of non-

binary vertices connection (CNbc) from the adjacency 

matrix, calculate the distance between the non-binary 

vertices as shown above (DNbc), sort the DNbc, and 

compare it to the sorted DNbc of other kinematic chains. 

If two sorted DNbc are not identical, the corresponding 

kinematics are also not isomorphic. If not, include the 

DNbc in the adjacency matrix instead of the submatrix 

corresponding to the non-binary vertices to create a new 
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matrix that includes the distance between the non-binary 

vertices. AmDNbc is the name given to this new matrix. 

This is the first step in the procedure. 

The second step is to post multiply AmDNbc by CNbc 

and then pre-multiply the result by the transpose of CNbc. 

Finally, the rows and columns of the resulting matrix are 

sorted in ascending order. The obtained matrix is denoted 

MI, which stands for Matrix Identity. Two isomorphic 

kinematic chains have identical MI. 

Two non-isomorphic KCs may lead to the same matrix 

identity MI in some cases. For example, when the only 

difference between two KCs is a path with a different 

number of binary bars in series. To make the proposed 

method more general, first change the binary bar series to 

two binary bars directly connected and remove the rows 

and columns from the adjacency matrix that correspond to 

the intermediate bars in this series, then add k to the Aac 

element of the adjacency matrix. The number of joints 

(edges) between vertices a and b is represented by Aac, 

which is as follows: 

 

Figure 2. Series of binary vertices between two non-binary vertices. 

In this example, Aac=2. 

The summary of the method is as follows: 

(1) Let us refer to the product of AmDNbc and CNbc 

as matrix C, which is n by nb (n total number of 

bars and nb the number of non-binary bars) 

• The elements of C that correspond to a binary 

bar i and non-binary j are obtained by counting 

the number of common neighbors i and j share  

• The elements of C corresponding to a non-

binary bar i and non-binary j are the sum of the 

number of binary bars adjacent to i and j and 

the sum of distances between i and all non-

binary bars neighbors with j. 

Note: C(i,i)=degree(i). 

(2)  The matrix formed by multiplying the transpose of 

CNbc by the matrix formed in point 1 (named C) is 

a nb by nb matrix and is obtained as follows: 

elements corresponding to non-binary bars i and j 

are the sum of elements C(i,k), where k are all j’s 

neighbors. 

The two kinematic chains are isomorphic if the sum of 

the distances between the non-binary vertices adjacent to 

each other non-binary vertices and the number of bars in 

paths of length 2 between the binary vertices and each 

other non-binary vertices are equal for each of the two 

corresponding vertices in the two kinematic chains. These 

two points demonstrate how well this method works in 

determining whether two kinematic chains are equivalent 

or not. 

Application on KC of Fig. 1:  

The AmDNbc and the CNbc are:  

𝐴𝑚𝐷𝑁𝑏𝑐 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0  1 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 2 1
0 0 1 0 1 0 1 2
1 1 0 0 2 1 0 3
1 1 0 0 1 2 3 0]

 
 
 
 
 
 
 

         (4) 

 𝐶𝑁𝑏𝑐 =

[
 
 
 
 
 
 
 
0 0 1 1
0 0 1 1
0 1 0 0
1 0 0 0
0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0]

 
 
 
 
 
 
 

                      (5) 

The matrix identity is: 

𝑀𝐼 = 𝑠𝑜𝑟𝑡(𝐶𝑁𝑏𝑐′ × 𝐴𝑚𝐷𝑁𝑏𝑐 × 𝐶𝑁𝑏𝑐) 

So, MI corresponding to the KC of Fig. 1 is: 

𝑀𝐼 = [

0 1 4 5
0 1 4 5
4 4 5 9
4 4 5 9

]                 (6) 

A. Application Examples 

In this subsection, as all previous methods in the 

literature identify the isomorphism of eight-bar 

configurations, we apply the proposed method to eight-bar 

configurations (see Fig. 3); we then apply the proposed 

method to a fifteen-bar kinematic chain (Figs. 4, 5, and 6), 

such that most isomorphism identification methods in the 

literature have failed to distinguish; and finally, we show 

the ability of the proposed method to identify the 

isomorphism of kinematic chains with a large number of 

vertices (Figs. 7, 8, and 9); as an example, the twenty-bar 

kinematic chains.     

1) Identification of isomorphism between three eight-

bar configurations  

 
Figure 3. Three eight bars kinematic configurations, such as B and C 

isomorph and A non-isomorph with B and C. 

It is obvious that the vertices of graphs B and C 

correspond. To obtain graph B, simply permute vertices 2 

and 3 in configuration C. This is not the case when A and 

B or A and C are concerned. The sorted distance matrices 

between non-binary vertices for the three kinematic chains 

are identical: 

𝑆𝐷𝑁𝑏𝑐 = [

0 1 1 2
0 1 1 2
0 1 2 3
0 1 2 3

]                             (7) 
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However, A, B, and C are not necessarily isomorphic. 

The identity matrices for the three KCs, on the other hand, 

are used to determine which KCs are isomorphic, as 

follows: 

𝑀𝐼𝐴 = [

0 2 4 6
0 2 4 6
2 4 6 10
2 4 6 10

]                             (8) 

𝑀𝐼𝐵 = [

0 2 3 5
0 2 4 6
3 4 5 9
4 4 6 9

]                              (9) 

𝑀𝐼𝐶 = [

0 2 3 5
0 2 4 6
3 4 5 9
4 4 6 9

]                            (10) 

Therefore, only A and B are isomorphic. 

2) Isomorphism identification of fifteen bar 

configurations 

 
Figure 4. fifteen bars kinematic chains configurations. 

 
Figure 5. fifteen bars kinematic chains configurations non-isomorphic 

with Fig. 4. 

 

Figure 6. fifteen bars kinematic chains configurations isomorphic with 

Fig. 4. 

Permuting vertex 2 and 3 in graph A in Fig. 4 results in 

graph C in Fig. 6, but there is no similarity between 

vertices in graph B in Fig. 5 and the other two graphs. 

These three kinematic chains have identical SDNbc, but 

the identity matrices determined the isomorphism and 

non-isomorphism between the three graphs. 

𝑆𝐷𝑁𝑏𝑐𝐴&𝐵&𝐶 =

[
 
 
 
 
 
 
 
 
0 1 1 1 1 2 2 2 2
0 1 1 1 1 2 2 2 2
0 1 1 1 1 2 2 2 2
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3]

 
 
 
 
 
 
 
 

    (11) 

𝑀𝐼𝐴&𝐶 =

[
 
 
 
 
 
 
 
 
10 13 13 18 18 19 19 20 23
10 13 13 18 18 19 19 20 23
10 13 13 18 18 19 19 20 23
10 13 13 18 18 19 19 20 23
10 13 13 18 18 19 19 20 23
10 13 13 18 18 19 19 20 23
18 18 20 20 22 23 23 29 29
18 18 20 20 22 23 23 29 29
18 18 20 20 22 23 23 29 29]

 
 
 
 
 
 
 
 

 (12) 

𝑀𝐼𝐵 =

[
 
 
 
 
 
 
 
 
10 13 13 18 18 18 20 20 23
10 13 13 18 18 18 20 20 23
10 13 13 18 18 18 20 20 23
10 13 13 18 18 18 20 20 23
10 13 13 18 18 18 20 20 23
10 13 13 18 18 18 20 20 23
18 18 20 20 22 23 23 29 29
18 18 20 20 22 23 23 29 29
18 18 20 20 22 23 23 29 29]

 
 
 
 
 
 
 
 

 (13) 

3) Isomorphism identification of twenty-eight bar 

configurations 

 
Figure 7. twenty-eight bars kinematic chains. 

 
Figure 8. Twenty-eight bars kinematic chains isomorphic with Fig. 7. 
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Figure 9. Twenty-eight bars kinematic chains non-isomorphic with Fig. 

7. 

The identity matrices obtained using the proposed 

method confirm that the two graphs A and B respectively 

in Figs. 7 and 8 are isomorphic, which is supported by the 

literature [26]. However, there is no correspondence 

between the sorted distance matrices of non-binary 

vertices of graph C in Fig. 9 and graph A. This confirms 

that graphs A and C are not isomorphic. 

The identity matrices of graphs A and B  

𝑀𝐼𝐴&𝐵

= [
8 × 41010101011111212141414141616161616202020202323

16 × 111214141616171720202324242427272727292930303434
] 

(14) 

The SDNbc of graph C 

𝑆𝐷𝑁𝑏𝑐𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 

011122222233333333334444
3 × 011122222233333333344444

011122222233333333444445
5 × 011122222333333333444445

011122222333333334444445
2 × 011122222333333344444445
2 × 011122222333333344444455
2 × 011122223333333444444455
2 × 011222233333333444444456
2 × 011222233333333444444556
2 × 011222233333334444445556

012233334444444555555566 ]
 
 
 
 
 
 
 
 
 
 
 

   (15) 

𝑆𝐷𝑁𝑏𝑐𝐴 = [
16 × 011122222333333334444445
8 × 011222233333333444444556

] (16) 

V.  COMPARISON WITH PUBLISHED METHODS 

A. Link Connectivity Number and Entropy Neglecting 

Tolerance and Clearance Algorithm Method [14] 

 
Figure 10. Wall graph kinematic chain. 

This isomorphism detection method consists of several 

steps. Create a link-link connection matrix first, then 

compute the connectivity number of links for each vertex 

in the configuration, followed by the sum of all calculated 

values to provide a new value called the chain's total 

connectivity. Second, compute the power transmission 

connectivity. Third, compute the joint connectivity of each 

joint in the graph configuration, followed by the total joint 

value of the kinematic chain, which is the sum of all joints' 

joint connectivity. Finally, the energy transfer rate and 

power transmission efficiency are evaluated. All the 

preceding steps are designed to determine two constants of 

the configuration kinematic chain in question: the 

connectivity of power transmission and the efficiency of 

power transmission. 

Application of this method on watt chain in Fig. 10 

(1) the connectivity number link of each vertex stars 

by vertex 1 and so on 3.021, 2.011, 2.011, 3.021, 

2.011, 2.011 

(2) The total connectivity of the chain N=14.086  

(3) Power transmission capacity is P=0.769563  

(4) The joint connectivity of joint of each joint 3.032, 

2.022, 3.032, 3.032, 2.022, 3.032, 4.042  

(5) The total joint value of the kinematic chain is 

J=20.214 

(6) Energy transfer rate E= 0.834152  

(7) The power transmission efficiency Te= 0.987047  

All these steps are required in order to evaluate the two 

invariant identifications of this simple Watt kinematic 

chain configuration. In addition, this method doesn’t 

identify the non-isomorphism between configurations in 

Figs. 4 and 5. This demonstrates the proposed method’s 

simplicity and speed, especially when the number of 

vertices is large. 

The matrix identity and SDNbc of the Watt KC of Fig. 

10 are: 

𝑀𝐼 = [
0 7
0 7

] , 𝑎𝑛𝑑 𝑆𝐷𝑁𝑏𝑐 = [
0 1
0 1

]       (17) 

B. Genetic Algorithm Method [22] 

Application of this method on the kinematic chain of 

Fig. 10. 

This method necessitates the creation of so-called 

fitness matrices and the corresponding chain strings. The 

fitness matrices and chain strings are developed until the 

problem is solved (first, second, third, fourth generation, 

etc.), which increases the computer execution time widely 

(see Table I below). Fortunately, the example in Fig. 10 

only required two fitness matrices and two corresponding 

chain string generations (first and second). Two 

configurations are isomorphic if they have the same string 

in each generation. 

The first-generation fitness matrix and the second-

generation fitness matrix 

𝐹𝑖𝑟𝑠𝑡 

[
 
 
 
 
 
0 5 1 6 1 5
5 0 4 1 4 2
1 4 0 5 2 4
6 1 5 0 5 1
1 4 2 5 0 4
5 2 4 1 4 0]

 
 
 
 
 

  𝑆𝑒𝑐𝑜𝑛𝑑 

[
 
 
 
 
 
0 4 2 4 2 4
4 0 4 2 4 2
2 4 0 4 2 4
4 2 4 0 4 2
2 4 2 4 0 4
4 2 4 2 4 0]

 
 
 
 
 

   (18) 
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First generation chain string = 2[18–6 ,2 (5), 2 (1)] and 

4[16–5,2 (4), 2, 1] 

Second generation chain string = 6[16–3 (4), 2 (2)] 

The matrix identity and SDNbc of the proposed method 

are:  

𝑀𝐼 = [
0 7
0 7

] , 𝑎𝑛𝑑 𝑆𝐷𝑁𝑏𝑐 = [
0 1
0 1

]      (19) 

The proposed method returns the matrix identity of the 

configuration, demonstrating its unparalleled simplicity 

and speed. Meanwhile, Raos’s method [22] requires more 

time to compute the first- and second-generation fitness 

matrices, as well as the corresponding first- and second-

generation chain strings. The situation is worst for KCs 

with large numbers of vertices. Furthermore, if 

isomorphism cannot be determined after calculating the 

first- and the second-generation matrices, the iterative 

process should continue calculating the fitness matrices of 

subsequent generations. 

C. Isomorphic Identification for Kinematic Chains 

Using Variable High-order Adjacency Link 

VALUES [23] 

Calculating the high-order adjacency link string of each 

vertex of the two configurations is the key to detecting the 

correspondence manner of the pair of corresponding 

strings to generate the adjacency matrix of one of the two 

configurations. Two isomorphic KCs have identical 

adjacency matrices; otherwise, they are not. This process 

requires a number of steps to determine isomorphism. To 

begin, compute the high-order adjacency link value 𝑠𝑖
𝑟of 

each vertex using the following equation:  

𝑠𝑖
𝑟 = 𝑠𝑖

𝑟−1 +
1

10
∑ 𝑠𝑗

𝑟−1𝑑𝑖,𝑗
𝑛
𝑗=1         (20)  

where n is the number of vertices in the configuration, di,j 

is an element from the ith row and jth column of the 

adjacency matrix, and r is the maximum length of the 

shortest path between each vertex indicated 𝑠𝑖
0 = 𝑠𝑖 , is the 

initial value of vertex i. Second, if the string 𝑆𝑟 =
{𝑠1

𝑟 , 𝑠2
𝑟 , … . , 𝑠𝑛

𝑟}  contains a duplicate value, the KC 

reassignment is performed [23] until a new string 𝑆𝑎,𝑞,𝑙
𝑟  

with no duplication is obtained. Third, search for pairs of 

corresponding strings between the two configurations; if 

none exist, the two configurations are not isomorphic. 

Determine the correspondence form of two corresponding 

strings in the fourth step. Finally, using the 

correspondence form, compute the adjacency matrix of 

one of the two configurations and compare it to the second 

matrix. If the two adjacency matrices are identical, the two 

KCs are isomorphic; otherwise, they are not. 

We will Apply this method on fifteen bars configuration 

of Figs 4, 5 

In this case r = 3,  

(1) The 0-order adjacency link values of the two KCs 

A and B in Figs 4, 5 are: 

𝑆𝐴
0 = 𝑆𝐵

0 = {2, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1}  (21) 

(2) The three-order adjacency link values of the two 

KCs A and B in Figs. 4, 5 are: 

𝑆𝐴
3 = 𝑆𝐵

3 = {5.526, 5.526, 5.526, 8.306, 8.306, 8.306, 3.183, 3.183 

 3.183, 5.526, 5.526, 5.526, 3.183, 3.183, 3.183}         (22) 

(3) Because there are duplicate values in the three-

order adjacency link values of A and B, we must 

reassign KCA and KCB. KCA becomes as follows 

after two reassignment procedures. 

𝑆𝐴,2
3 = {8.083,6.297, 6.269, 10.114, 8.781, 8.837, 3.858,3.282   

 3.614, 5.899, 5.599, 5.627, 3.220, 3.252, 3.552}        (23) 

After two reassignment procedures, we find six 
forms of the 3-order adjacency link value of KCB and 
select one as an example. 

𝑆𝐵,2
3 = {8.083, 6.269, 6.269, 10.114, 8.837, 8.781, 3.614, 3.282 

 3.858, 5.899, 5.597, 5.629, 3.222, 3.250, 3.552}       (24) 

(4) Because the 𝑆𝐴,2
3  and the six 3-order adjacency link 

values of KCB do not correspond, the two 

configurations are not isomorphic. 

Fortunately, there is no correspondence between 𝑆𝐴,2
3  

and the six forms of 𝑆𝐵,2
3 . Otherwise, we must determine 

how each related string pair ( 𝑆𝐴,2
3  and each variant of 𝑆𝐵,2

3 ) 

corresponds. In each instance, the adjacency matrix of 

configuration B is generated and compared to the 

adjacency matrix of configuration A. In terms of computer 

execution time, the proposed method in this paper is 

unquestionably simpler and faster than the exposed 

method. It immediately returns the aforementioned 

identity matrices. 

D. Isomorphism Identification and Structural Similarity 

& Dissimilarity Among the Kinematic Chains Based 

On [WSSP] Matrix [24] 

To create the WSSP matrix, add the sum of the squares 

of the vertices in the short route between vertices i and j 

and the degree of vertices in the configurations. This 

matrix's sum is the KC identity. As a result, two kinematic 

chains with the same identities are isomorphic. The 

various procedures for developing KC identification will 

be applied to the example shown in Fig. 11 below: 

 

Figure 11. Two non-isomorphic eight bars configuration 

(1) Find the degree vector, which is a vector whose 

elements are the vertices’ degrees. 

 𝑑𝐴 = [3 3 3 3 2 2 2 2], 𝑑𝐵 = [3 3 3 3 2 2 2 2]    (25) 

(2) Calculate the squared shortest path distance matrix 

[SSP] 
[𝑆𝑆𝑃] =  {𝑑𝑖𝑗}𝑛×𝑛   

{𝑑𝑖𝑗}𝑛×𝑛 = {

1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0 𝑖𝑓 𝑖 = 𝑗

𝑠𝑢𝑚 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
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The [𝑆𝑆𝑃]𝐴 and [𝑆𝑆𝑃]𝐵  are: 

[𝑆𝑆𝑃]𝐴 =

[
 
 
 
 
 
 
 
0 1 4 1 9 9 13 1
1 0 8 4 1 1 4 9
4 8 0 1 9 4 1 1
1 4 1 0 1 13 9 9
9 1 9 1 0 9 13 18
9 1 4 13 9 0 1 13
13 4 1 9 13 1 0 9
1 9 1 9 18 13 9 0 ]

 
 
 
 
 
 
 

        (26) 

[𝑆𝑆𝑃]𝐵 =

[
 
 
 
 
 
 
 
0 1 1 1 9 9 9 9
1 0 8 4 1 13 1 4
1 8 0 4 13 1 4 1
1 4 4 0 1 1 13 13
9 1 13 1 0 9 9 13
9 13 1 1 9 0 13 9
9 1 4 13 9 13 0 1
9 4 1 13 13 9 1 0 ]

 
 
 
 
 
 
 

    (27) 

(3) Determine the relative weight of degree link 

The weight of the degree link is the ratio of the degree 

of the i-th vertex to the degree of the j-th vertex, as shown 

below: 

𝑊 = {𝑤𝑖𝑗}𝑛×𝑛 

{
𝑤𝑖𝑗 =

𝑑𝑖

𝑑𝑗

 𝑎𝑛𝑑 𝑤𝑗𝑖 =
𝑑𝑗

𝑑𝑖

 𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗 

𝑤𝑖𝑖 = 𝑤𝑗𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑊𝐴 = 𝑊𝐵 =

[
 
 
 
 
 
 
 

0 1 1 1 1.5 1.5 1.5 1.5
1 0 1 1 1.5 1.5 1.5 1.5
1 1 0 1 1.5 1.5 1.5 1.5
1 1 1 0 1.5 1.5 1.5 1.5

0.7 0.7 0.7 0.7 0 1 1 1
0.7 0.7 0.7 0.7 1 0 1 1
0.7 0.7 0.7 0.7 1 1 0 1
0.7 0.7 0.7 0.7 1 1 1 0 ]

 
 
 
 
 
 
 

   (28) 

(4) Calculate the weighted squared shortest path 

[𝑊𝑆𝑆𝑃], which is the product of the [𝑆𝑆𝑃] matrix 

and the [𝑊] matrix  
 

[𝑊𝑆𝑆𝑃] = [𝑆𝑆𝑃] × [𝑊] 

[𝑊𝑆𝑆𝑃]𝐴 =

[
 
 
 
 
 
 
 
28.4 27.4 24.4 27.4 32 32 28 40
22.5 23.5 15.5 19.5 33.5 33.5 30.5 25.5
19.5 15.5 23.5 22.5 25.5 30.5 33.5 33.5
27.4 24.4 27.4 28.4 40 28 32 32
39 47 39 47 70 61 57 52

34.1 42.1 39.1 30.1 54.5 63.5 62.5 50.5
30.1 39.1 42.1 34.1 50.5 62.5 63.5 54.5
47 39 47 39 52 57 61 70 ]

 
 
 
 
 
 
 

 

(29) 

[𝑊𝑆𝑆𝑃]𝐵 =

[
 
 
 
 
 
 
 
28.2 27.2 27.2 27.2 31.5 31.5 31.5 31.5
25.3 26.3 18.3 22.3 37.5 25.5 37.5 34.5
25.3 18.3 26.3 22.3 25.5 37.5 34.5 37.5
27.6 24.6 24.6 28.6 40.5 40.5 28.5 28.5
36.7 44.7 32.7 44.7 67 58 58 54
36.7 32.7 44.7 44.7 58 67 54 58
34.1 42.1 39.1 30.1 54.5 50.5 63.5 62.5
34.1 39.1 42.1 30.1 50.5 54.5 62.5 63.5]

 
 
 
 
 
 
 

 

(30) 

(5) The KC identity is the structural invariant of a 

kinematic chain that is the sum of all elements in 

the [WSSP]. 

The sum of [𝑊𝑆𝑆𝑃]𝐴 is: 2464 and the sum of [𝑊𝑆𝑆𝑃]𝐵 

is: 2478 

As a result, the two kinematic chains are not isomorphic. 

This method, however, is more complicated than the 

proposed method. It takes longer to reach the conclusion 

because defining the degree of each vertex and the type of 

vertices on the shortest path between every two pairs of 

vertices is required, followed by calculating the relative 

weight of the degree link, and so on. In contrast, the 

proposed method does not consider the degree of vertices 

when identifying the isomorphism, demonstrating its 

simplicity and speed once more. 

E. Identification Isomorphism by Using Eigenvalues and 

Eigenvectors [25] 

The eigenvalues and eigenvectors of a graph are 

fundamental constants used to identify isomorphisms 

between various kinematic chains. Despite the publication 

of some counterexamples, such as the two eight-bar 

kinematic chain graphs in Fig. 12, this method yields 

different eigenvalues (in absolute) for the two kinematic 

chains in Fig. 12, confirming that they are not isomorphic. 

 
Figure 12. Two isomorphic eight bars kinematic chains 

Each column of eigenvalue matrices is sorted in 

ascending order, as shown below, to facilitate comparison. 

𝑒𝐴 =

[
 
 
 
 
 
 
 
−2.281333395043705
−1.944310733422072
−1.140548094310296
−0.099890015366104
0.598633976166785
1.000000000000000
1.275163171393258
2.592285090582134 ]

 
 
 
 
 
 
 

                (31) 

  𝑒𝐵 =

[
 
 
 
 
 
 
 
−2.281333395043705
−1.944310733422072
−1.140548094310296
−0.099890015366104
0.598633976166784
0.999999999999998
1.275163171393258
2.592285090582136 ]

 
 
 
 
 
 
 

                  (32) 

There is no absolute similarity between the elements of 

the eigenvalues of the two graphs’ kinematic chains. The 

proposed method, however, recognizes the similarity 

between graphs A and B in Fig. 12. (The two kinematic 

chains’ identity matrices are identical.) 

 𝑀𝐼𝐴 = [

0 2 3 5
0 2 4 6
3 4 5 9
4 4 6 9

] and 𝑀𝐼𝐵 = [

0 2 3 5
0 2 4 6
3 4 5 9
4 4 6 9

]     (33) 
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As shown in the preceding example, the proposed 

method outperforms the method that involves calculating 

eigenvalues and eigenvectors. 

The following table contains a comparison between the 

execution times of the above methods and the proposed 

method. 

TABALE I. COMPARISON OF EXECUTION TIME WITH SOME 

LITERATURE METHODS 

Methods Execution time 

Genetic algorithm method 𝑂(𝑛3 + 𝑛𝑔) 

Isomorphic identification for kinematic 

chains using variable high-order 
adjacency link values 

𝑂(𝑛3 + 𝑚𝑛2) 

Isomorphism identification and 

Structural Similarity & Dissimilarity 
Among the Kinematic Chains Based On 

[WSSP] Matrix 

𝑂(𝑛3 + 𝑛2) 

Proposed method 𝑂(𝑛𝑁𝑏
3 + 𝑛𝑏

2) 
n: vertex number; g: number of generation; m: edges number; nNb: non-

binary vertex number; nb: binary vertex number 

VI. CONCLUSION 

In this paper, we propose a method to solve the problem 

of isomorphism identification among kinematic chains. 

For the last thirty years, isomorphism identification has 

been a critical issue, particularly in complex 

configurations with many vertices. Many researchers have 

made significant contributions to this field. In comparison 

to recently published articles, the proposed method 

identifies isomorphisms more efficiently and with 

significantly less computer execution time. 

NOMENCLATURE 

AmDNbc: Adjacency matrix with the distance between 

the non-binary vertices 

CNbc: Columns of non-binary vertices in the adjacency 

matrix 

DNbc: Distance matrix of non-binary vertices 

connection 

KCs: Kinematic chains 

MI: Identity matrix 

Nbc: Matrix of non-binary vertices connection  

nNb: Number of non-binary vertices 

nb: Number of binary vertices 

PGTs: Planetary gear trains  

SDNbc: Sorted distance matrix of non-binary vertices 

connection 

SSP: Squared shortest path distance matrix 

W: Relative weight of degree link matrix 

WSSP: Weighted squared shortest path: [WSSP] 

matrix 
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