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It was purposed to understand the dynamic response of frame which are subjected to moving
point loads. The finite element method and numerical time integration method (New mark method)
are employed in the vibration analysis. The effect of the speed of the moving load on the dynamic
magnification factor which is defined as the ratio of the maximum dynamic displacement at the
corresponding node in the time history to the static displacement when the load is at the mid-
point of the structure is investigated. The effect of the spring stiffness attached to the frame at
the conjunction points of beam and columns are also evaluated. Computer codes written in Mat
lab are developed to calculate the dynamic responses. Dynamic responses of the engineering
structures and critical load velocities can be found with high accuracy by using the finite element
method.
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INTRODUCTION
Vibration analysis of structures has been of
general interest to the scientif ic and
engineering communities for many years.
These structures have multitude of
applications in almost every industry. The
aircraft industry has shown much interest in
this, some of the early solutions were
motivated by this industry. This study deals
with the finite element analysis of the
monotonic behavior of beams, slabs and
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beam-column joint sub assemblages. It is
assumed that the behavior of these members
can be described by a plane stress field.
Reinforced concrete has become one of the
most important building materials and is widely
used in many types of engineering structures.
The economy, the efficiency, the strength and
the stiffness of reinforced concrete make it an
attractive material for a wide range of structural
applications. For its use as structural material,
concrete must satisfy the following conditions:
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The Structure Must be Strong and Safe:
The proper application of the fundamental
principles of analysis, the laws of equilibrium
and the consideration of the mechanical
Properties of the component materials should
result in a sufficient margin of safety against
collapse under accidental overloads.

The Structure Must be Stiff and Appear
Unblemished: Care must be taken to control
deflections under service loads and to limit the
crack width to an acceptable level.

The Structure Must be Economical:
Materials must be used efficiently, since the
difference in unit cost between concrete and
steel is relatively large. Moving loads have
considerable effects on the dynamic behavior
of the engineering structure. Transport
engineering frame structures such as bridges
are subjected to loads that vary in both time
and space (moving forces), in the form of
vehicular traffic, which cause them to vibrate.
A moving vehicle on a bridge causes
deflections and stresses that are generally
greater than those caused by the same
vehicular loads applied statically. The dynamic
analysis of a structure subjected to a moving
load is an old topic of research; hence a lot of
literature exists. Olsson (1991) studied the
dynamics of a beam subjected to a constant
force moving at a constant speed and
presented analytical and finite element
solutions. Thambiratnam and Zhuge (1996)
studied the dynamics of beams on an elastic
foundation and subjected to moving loads by
using the finite element method. They
investigated the effect of the foundation
stiffness, travelling speed and the span length
of the beam on the dynamic magnification
factor, which is defined as the ratio of the

maximum displacement in the time history of
the mid-point to the static midpoint
displacement. Wang (1997) analyzed the multi-
span Timoshenko beams subjected to a
concentrated moving force by using the mode
superposition method and made a comparison
between the Euler-Bernoulli beam and
Timoshenko beam. Zheng et al. (1998)
analyzed the vibration of a multi span non
uniform beam subjected to a moving load by
using modified beam vibration functions as the
assumed modes based on Hamilton’s principle.
The modified beam vibration functions satisfy
the zero deflection conditions at all the
intermediate point supports as well as the
boundary conditions at the two ends of the
beam. Numerical results are presented for both
uniform and non-uniform beams under moving
loads of various velocities. Wang and Lin (1998)
studied the vibration of multi-span Timoshenko
frames due to moving loads by using the modal
analysis. Kadivar and Mohebpour (1998)
analyzed the dynamic responses of
unsymmetrical composite laminated orthotropic
beams under the action of moving loads. Hong
and Kim (1999) presented the modal analysis
of multi span Timoshenko beams connected or
supported by resilient joints with damping. The
results are compared with FEM. Ichikawa et al.
(2000) investigated the dynamic behavior of the
multi-span Continuous beam traversed by a
moving mass at a constant velocity, in which it
is assumed that each span of the continuous
beam obeys uniform Euler-Bernoulli beam
theory.

Dynamic Analysis by Numerical
Integration
Dynamic response of structures under moving
loads is an important problem in engineering
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and studied by many researchers. The
numerical solution can be calculated by various
methods which are as follows:

1. Duhamel Integral

2. New mark Integration method

3. Central difference Method

4. Houbolt Method

5. Wilson  Method

New Mark Family of Methods
The New mark integration method is based
on the assumption that the Acceleration varies
linearly between two instants of time. In 1959
new mark presented a family of single-step
integration methods for the solution of structural
Dynamic problems for both blast and seismic
loading. During the past 45 years new mark
method has been applied to the dynamic
analysis of many practical engineering
structures. In addition, it has been modified
and improved by many other researchers. In
order to illustrate the use of this family of
numerical integration methods, we considered
the solution of the linear dynamic equilibrium
equations written in the following form:

      tttt FuKuCuM   ...(1)

where M is the mass matrix, C is the damping
matrix and K is the stiffness matrix.

u , uu,  are the acceleration, velocity and
displacement vectors, respectively Ft is the
external loading vector. The direct use of
Taylor’s series provides a rigorous approach
to obtain the following two additional equations:

ttttttttt utututuu  

 

62

32

...(2)

ttttttt ututuu 

 

2

2

...(3)

New mark truncated these equations and
expressed them in the following form:

utututuu ttttttt
 3

2

2



   ...(4)

ututuu ttttt
 2   ...(5)

If the acceleration is assumed to be linear
within the time step, the following equation can
be written as:

t
uuu ttt




 


 ...(6)

The substitution of Equation (6) into
Equations (4) and (5) produces new mark’s
equations in standard form

tttttttt utututuu  22

2
1







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...(7)

  tttttt ututuu    1 ...(8)

Stability of New Mark Method
For zero damping new mark method is
conditionally stable if



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2
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max

tand
...(9)

where max is the maximum frequency in the
structural system New mark’s method is
unconditionally stable if

2
12   ...(10)

However, if  is greater than 1/2, errors are
introduced. These errors are associated with
“numerical damping” and “period elongation”.
For large multi degree of freedom structural
systems the time step limit, given by Equation
(9), can be written in a more usable form as:
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minT
t

...(11)

where Tmin is the minimum time period of the
structure. Computer model of larger structures
normally contain a large number of periods
which are smaller than the integration time
step; therefore, it is essential that one select a
numerical integration method that is
unconditionally stable for all time steps. Table
1 shows the summary of the New mark method
for direct integration.

Solution Using Finite Element
Method
Finite Element Method (FEM) is a numerical
method for solving a differential or integral

equation. It has been applied to a number of
physical problems, where the governing
differential equations are available. The method
essentially consists of assuming the piecewise
continuous function for the solution and
obtaining the parameters of the functions in a
manner that reduces the error in the solution.

A promising approach for developing a
solution for structural vibration problems is
provided by an advanced numerical
discretization scheme, such as, Finite Element
Method (FEM). The FEM is the dominant
discretization technique in structural
mechanics.

The basic concept in the physical FEM is
the subdivision of the mathematical model into
disjoint (non-overlapping) components of
simple geometry called finite elements or
elements for short. The response of each
element is expressed in terms of a finite
number of degrees of freedom characterized
as the value of an unknown function, or
functions, at a set of nodal points. The
response of the mathematical model is then
considered to be approximated by that of the
discrete model obtained by connecting or
assembling the collection of all elements.

The Finite Element Method (FEM) is the
dominant discretization technique in structural
mechanics. The basic concept in the physical
interpretation of the FEM is the subdivision of
the mathematical model into disjoint (non-
overlapping) components of simple geometry
called finite elements or elements for short. The
response of each element is expressed in
terms of a finite number of degrees of freedom
characterized as the value of an unknown
function, or functions, at a set of nodal points.

0.2 1.482 1.120 1.131

0.4 1.371 1.139 1.169

0.6 1.908 1.149 1.183

1.0 1.792 1.202 1.271

1.5 1.032 1.358 1.257

1.9 1.191 1.431 1.420

2.0 1.201 1.576 1.497

4.0 1.632 2.052 1.905

4.5 1.729 2.125 1.936

6.0 1.908 2.253 2.003

7.0 1.778 2.078 1.987

8.0 1.341 1.540 1.635

10.0 0.942 1.005 1.120

12.0 0.789 0.791 0.909

14.0 0.632 0.637 0.640

16.0 0.455 0.451 0.448

Table 1: Dynamic Magnification Factors
for the Mid-Points of the Beam and
Columns of the Frame and Spring

Attached Frame

Frame (Column 1)

 Frame Spring
Attached (k1)

Spring
Attached (k2)
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The response of the mathematical model
is then considered to be approximated by that
of the discrete model obtained by connecting
or assembling the collection of all elements.
The disconnection-assembly concept occurs
naturally when examining many artificial and
natural systems. For example, it is easy to
visualize an engine, bridge, building, airplane,
or skeleton as fabricated from simpler
components. Unlike finite difference models,
finite elements do not overlap in space.

Frame Element
The moving load problem is extended to a
frame structure. Axial displacement for
longitudinal vibration of the frame element is
assumed to be linear so the shape functions
for the longitudinal vibration are,

  






 
l
xxH 15 ...(12)

 
l
xxH 6 ...(13)

There are three degrees of freedom per
node, translation along x-axis, translation along
y-axis and rotation about z-axis is assumed
for frame element as shown in Figure 1. The
coupling between bending and longitudinal
vibrations is neglected. The stiffness and mass
matrices for the frame element are constructed
by superimposing both the axial and bending
matrices

The transformation matrices are used to
form the mass and stiffness matrices for the
columns of the frame structure. Both columns
and beam of the frame structure are modeled
with 10 equally sized elements. All the element
mass and stiffness matrices ([K] and [M]) are
multiplied by the transformation matrix [T]
given in as Equation (14).

[K] = [T]’ [K][T] and [M] = [T]’ [M][T]

where

 
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T

     sin,cos  sc ...(14)

 for column 1 is 90° and r for column 2 is 270°
as shown in Figure 1. A spring is attached to
the frame at the column and beam conjunction
points in order to analyze the effect of the
spring stiffness. Spring has a stiffness k in the
x direction as shown in Figure 2.

The effect of springs on the dynamic
response of the frame structure is investigated.
The stiffness of the spring k is added to
column’s stiffness matrices as a constant term
at the corresponding degree of freedom.

Figure 1: Modelling the Frame Elements
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Equations of Motion of the Frame
Structure
The equation of motion for a multiple degree
of freedom undamped structural system is
represented as follows

        tFyKyM  ...(15)

where and y  are the respective acceleration
and displacement vectors for the whole
structure and F(t) is the external force vector.

Under free vibration, the natural frequencies
and the mode shapes of a multiple degree of
freedom system are the solutions of the Eigen
values problem.

      02  MK  ...(16)

where  is the angular natural frequency and
 is the mode shape of the structure for the
corresponding natural frequency.

The Effect of Viscous Damping
A proportional damping is assumed to show
the effect of damping ratio on the dynamic

magnification factor. Rayleigh damping, in
which the damping matrix is proportional to the
combination of the mass and stiffness
matrices, is used.

[C] = a0[M] + a1[K] ...(17)

If the damping ratios m and n associated
with two specific frequencies m, n Rayleigh
damping factors, a0 and a1 can be evaluated
by the solution of the following equation
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The same damping ratio is applied to both
control frequencies, 1 and 2, i.e.,  = 1 = 2

then the proportionality factors can be given in
simplified form as










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2 21
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a
...(19)

Two different damping ratios, 1 = 0.01 and
2 = 0.05 are used to show the effect of the
damping ratio on the dynamic magnification
factor.

The Application of the Moving Force
The dynamic response of an Euler-Bernoulli
beam under moving loads is studied by mode
superposition. The inertial effects of the moving
load are included in the analysis. The time-
dependent equations of motion in modal
space are solved by the method of multiple
scales.

The transverse point load F has a constant
velocity, v = L/, where t is the travelling time
across the beam and L is the total length of
the beam.

For the forced vibration analysis an implicit
time integration method, called as the

Figure 2: Spring Attached Frame
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Newmark integration method is used with the
integration parameters  =1/4 and ϒ =1/2,
which lead to constant-average acceleration
approximation. The time step is chosen as t
= T20/20 during the beam vibration analysis in
order to ensure that all the 20 modes contribute
to the dynamic response, where T20 is the
period of the 20th natural mode of the structure.

The time history of the nodal force in the
transverse direction is given in Figure 3. The
time for the load to arrive ith node,  = xi/v,
where xi is the location of ith node. The nodal
force on the ith node, Fi = 0 except -1 < t <+1.
The force is applied all the nodes according
to Figure 4. Moment effect of the force is
ignored, only vertical degree of freedom is
affected by this force. The Simple method in
which Mi = 0 at any time is used for the
calculation of the dynamic responses. A non-
dimensional velocity parameter a is used as
 = T1/, where Ti is the period of the first
natural frequency of the beam.

Results of the Dynamic Analysis of
Frame Structure
Figure 4 shows the first three mode shapes of
the frame and spring attached frame (k2).
Attaching a spring to the frame at the
conjunction points of the beam and columns
makes the frame more rigid and shifts the
mode shapes of the frame structure up.
Generally, the first mode of vibration is the one
of primary interest.  The first mode usually has
the largest contribution to the structure’s
motion. The period of this mode is the longest.
(Shortest natural frequency = first eigenvecto.

Figure 10 the effect of a on the dynamic
magnification factor of column 2 for normal and
spring attached frame at different nodes.

Figure 4: First Three Mode Shape of the
Frame and Spring Attached Frame (K2)

Frame
f1 = 7.537 Hz

Spring Attached k2
f1 = 29.74 Hz

Frame
f2 = 29.74 Hz

Spring Attached k2
f2 = 42.26 Hz

Frame
f3 = 48.52 Hz

Spring Attached k2
f3 = 52.61 Hz

Figure 3: Moving Load Time History
for the ith Node
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Figure 5: The Effect of the Springs on the Mid-Point Displacement of the Column 1
of the Frame Structure

Figure 6: The Effect of the Springs on the Mid-Point Displacement of the Column 2
of the Frame Structure

Figure 7: The Effect of the Springs on the Mid-Point Displacement of the Beam
of the Frame Structure
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Figure 8: The Effect of a on the Dynamic Magnification Factor of Column 1 for Normal
and Spring Attached Frame at Different Node

Figure 9: The Effect of a on the Dynamic Magnification Factor of Beam for Normal
and Spring Attached Frame at Different Nodes

Figure 10: The Effect of a on the Dynamic Magnification Factor of Column 2 for Normal
and Spring Attached Frame at Different Nodes
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Figures 5, 6, and 7 show the effect of the
assumed springs stiffness (Ks) on the mid-
point displacements of beam and columns of
a Frame structure. Three critical load speeds
shown in Figures 8, 9 and 10 are considered
for columns and beam. v = 4.522 m/s for
column 1 ( = 0.6), v = 34.67 m/s for beam (
= 4.6), v = 45.22 m/s for column 2 ( = 6).
Figure 5 shows that springs have more effect
on the dynamic response of the mid-point of
column 1 for the critical load speed and reduce
the maximum dynamic displacements. On the
other hand, springs have no contribution for
beam displacements as shown in Figure 6 and
also no noteworthy contribution for the mid-
point displacement of column 2 as shown in
Figure 7.

Figures 8-10 shows the effect of a values
on the dynamic magnification factor for
different nodes of a normal and spring attached
frame. Dynamic magnification factors are
calculated for frame structure as calculated for
beam. Dd is the ratio of the maximum dynamic
displacement to the static displacement at the
considered node. The static displacements for
all the nodes of the beam and columns of the
frame are calculated when the force acting on
the mid-point of the beam. There is no
noteworthy difference between frame and
spring attached frame static displacements
except conjunction points. Figures 8-10 also
show the contribution of springs to Dd. It can
be said that for small a values ( < 1) springs
are very effective for all nodes. In this interval,
higher Dd values are obtained with increasing
spring stiffness. Figures 8-10 show the Dd

values only when the moving load is on the
beam, so the interpretations are based on this
situation. The maximum Dd values occur in the

neighborhood of  = 6 for nodes 2-5. The
attachment of the spring causes higher Dd

values in the middle speed region. Lower Dd

values are obtained with increasing spring
stiffness in this region. The maximum Dd

values for nodes 6-11 are observed close to
 = 0.6. The springs are very effective
especially in this low speed region, but higher
Dd values are obtained with increasing spring
stiffness in this interval. For beam (nodes 12-
21) not a noteworthy difference is observed
both by attaching a spring or increasing spring
stiffness. The maximum Dd occurs at  = 4.5
for the mid-point of the beam. Similar to column
1, two critical moving load speeds are
observed for column 2,  =1 and  = 6. The
springs have no contribution to the Dd values
for both beam and columns at high speed
region ( > 10). Lower Dd values are obtained
by attaching spring for column 2 in the middle
speed region.

Table 1 Dynamic magnification factors for
the mid-points of the beam and columns of the
frame and spring attached frame for different
 values. (* values which makes Dd maximum
when the moving load is on the beam.

Effect of the Rayleigh Damping
Dynamic analyses are performed to show the
effect of the Rayleigh damping on the
magnification factors of beam and frame
structures. A description of a mechanical
structure requires knowledge of the geometry,
boundary conditions and material properties.
The mass and stiffness matrices of a structure
with complicated geometry, boundary
conditions and material properties can be
obtained experimentally or numerically (for
example, using the finite-element method).
Unfortunately, present knowledge of damping
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does not allow us to obtain the damping matrix
like the mass and stiffness matrices for
complicated systems. For this reason we
consider simple systems for which geometry,
boundary conditions and material properties
are easy to determine.

Figure 11 shows the effect of damping ratio
 on the magnification factor of a clamped-
clamped beam. The maximum Dd value
(1.632), which is observed at  = 1.02 for the
undamped case is recorded at  = 1 (Dd =
1.608) for  = 0.01 and at  = 0.97 (Dd =
1.524) for  = 0.05. Dd values are decreased
with increasing damping ratio as expected and
the time at which the maximum Dd occurs shifts
left with increasing damping ratio.

Figures 12-17 show the effect of the
Rayleigh damping on the dynamic
magnification factor for the mid-point of both
columns and beam of frame and spring
attached (k2) frame. The maximum Dd values
for the mid-points of columns and beam of the
frame are; for  = 0.01, at  = 6.1 (Dd = 1.849)
for column 1, at  = 4.4 (Dd = 1.534) for beam
and at  = 6.1 (Dd = 3.595) for column 2.
Similarly the maximum Dd values are observed
at  = 0.7 (Dd = 1.691) for column 1, at  = 4.2
(Dd = 1.468) for beam and at  = 6.1 (Dd =
3.172) for column 2 for the damping ratio  =
0.05. Lower Dd values are observed with
increasing damping ratio.

The time at which the maximum Dd values
occur shifts left for the mid-point of the beam
of the frame with increasing damping ratio, but
the maximum Dd values are obtained with
higher values for the columns of the frame with
increasing damping ratio. The dynamic
magnification factors for the frame structure

0.2 1.291 1.113 1.121

0.4 1.572 1.206 1.179

0.6 1.804 1.214 1.203

1.0 1.955 1.284 1.209

1.5 1.873 1.470 1.424

1.9 1.821 1.421 1.419

2.0 1.730 1.372 1.504

4.0 3.123 2.754 3.628

4.5 3.388 3.025 3.312

6.0 3.710 3.358 3.630

7.0 3.467 3.132 3.343

8.0 2.77o 2.571 2.486

10.0 1.433 1.370 1.256

12.0 0.614 0.609 0.598

14.0 0.219 0.215 0.209

16.0 0.230 0.226 0.220

Table 2: Maximum Dd Values for the Mid-
Points of the Columns and Beam of the

Frame with the Effect of Damping

Frame (Column 2)

 Frame Spring
Attached (k1)

Spring
Attached (k2)

Table 3: Maximum Dd Values for the Mid-
Points of the Columns and Beam of the
Spring Attached (k2) Frame with the

Effect of Damping
Undamped

Quantity Dd 

Column 1 2.016 1.6
Beam 1.550 1.2
Column 2 3.635 1.5

= 0.01
Quantity Dd 

Column 1 1.969 1.6
Beam 1.532 1.1
Column 2 3.538 1.5

= 0.05
Quantity Dd 

Column 1 1.795 1.6
Beam 1.465 1.1
Column 2 3.189 1.5
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Figure 11: The Effect of Rayleigh Damping on the Magnification Factor of Clamped-
Clamped Beam

Figure 12: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Column 1 of the Frame Structure

Figure 13: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Beam of the Frame Structure
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Figure 14: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Column 2 of the Frame Structure

Figure 15: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Column 1 of the Spring Attached (k2) Frame Structure

Figure 16: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Beam of the Spring Attached (k2) Frame Structure
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Figure 17: The Effect of Rayleigh Damping on the Dynamic Magnification Factor for the
Midpoint of Column 2 of the Spring Attached (K2) Frame Structure

for different damping ratios are given in Table
2. Table 3 shows the dynamic magnification
factor values for the mid-points of beam and
columns of spring attached (k2) frame with
and without damping effect. Similar to frame
structure, smaller dynamic displacements are
observed with increasing damping ratio.
Negligible difference is observed at the
occurring time of the maximum Dd values for
the columns of the spring attached frame. The
occurring time of maximum dynamic
displacement shifts left for the beam of the
spring attached frame similar to frame
structure.

CONCLUSION
Moving load problem is generally studied for
beam structures. In addition to the beam
structures, dynamic responses of frames and
spring attached frames subjected to the
moving point load are also analyzed in this
study. Euler-Bernoulli beam theory is used in
the finite element method for constituting the
element matrices. The New mark integration
method is employed for forced vibration

analysis. The conclusions drawn can be
summarized as follows:

1. The moving load and the maximum dynamic
displacements for the mid-point of the beam
are not in the same phase at overcritical
part. The time at which the maximum mid-
point displacement is observed shifts right
with increasing  values regardless of the
boundary condition of the beam.

2. The highest dynamic displacements
occur for a pinned – pinned beam. For
pinned – pinned boundary conditions the
dynamic magnif icat ion values are
greater than those obtained for clamped
– clamped and clamped – pinned beams
for low and high moving load speeds. The
clamped – clamped boundary conditions
generally gives the lower dynamic
magnification values except the middle
speed region.

3. Attaching a spring to the frame at the
conjunction points of beam and columns
makes the frame more rigid and shifts the
mode shapes of the frame structure up.
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4. A longer beam implies a smaller first natural
frequency for frame structure; similarly
longer columns imply smaller natural
frequencies.

5. With lower  values ( < 1) springs are very
effective for all nodes. In this interval, higher
Dd values are obtained with increasing
spring stiffness. In the middle and high
speed region, attaching a spring to the
frame is not an advisable solution due to
the increasing Dd values.

6. Maximum Dd occurs after the moving load
left the beam for both columns and beam of
the frame structure when the  value is
greater than some critical values.

7. Lower Dd values are observed with
increasing damping ratio for a clamped-
clamped beam. The occurring time of
maximum dynamic displacement shifts left
with increasing damping ratio.

8. Maximum Dd values are observed at
smaller  values both for the beam of the
frame and spring attached frame with
increasing damping ratio.
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